BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN"

Transcriptie

1 BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

2

3 Voorwoord Dit vak is een voortzetting van het tweedejaarscollege Besliskunde. Een aantal andere mathematische beslissingsproblemen komt aan de orde en voor enkele onderwerpen uit Besliskunde worden aanvullende resultaten en methoden afgeleid. Hieronder volgt een beknopte beschrijving van de onderwerpen die worden behandeld. Hoofdstuk : Lineaire Optimalisering (deel ) Deel van Lineaire Optimalisering is reeds in Besliskunde besproken. In dit hoofdstuk komen andere resultaten aan de orde: implementatie aspecten, gevoeligheidsanalyse, de duale simplex methode en de primale-duale simplex methode. Hoofdstuk : Geheeltallige Lineaire Optimalisering Na een inleiding, waarin het model, formuleringen en voorbeelden worden besproken, worden diverse methoden behandeld om geheeltallige lineaire optimaliseringsproblemen op te lossen: de branch-and-bound techniek en technieken gebaseerd op sneden. Het hoofdstuk wordt afgesloten met een vrij uitgebreide bespreking van het Handelsreizigersprobleem. Hoofdstuk 3: Niet-lineaire Optimalisering Begonnen wordt met voorbeelden, algemene optimaliteitsvoorwaarden en eigenschappen zoals convexiteit. Daarna worden de onbeperkte en de beperkte optimalisering behandeld. Bij de onbeperkte optimalisering wordt ingegaan op ééndimensionale en meerdimensionale optimalisatie. De behandeling van de beperkte optimalisering betreft zowel theorie als methoden. De theoretische zaken zijn Lagrange multipliers, Karush-Kuhn-Tucker voorwaarden en dualiteit. De methoden die worden behandeld zijn de volgende: het algoritme van Wolfe voor kwadratische optimalisering, de methode van toelaatbare richtingen, de gereduceerde gradiënt methode, de gegeneraliseerde gereduceerde gradiënt methode en de barrière methode. Hoofdstuk 4: Netwerk Optimalisering Dit hoofdstuk behandelt kortste paden en netwerkstromen. Wat de kortste paden betreft komt aan de orde: de methoden van Dijkstra, van Bellman en Ford, en van Floyd en Warshall, het probleem van de kortste gemiddelde ronde en enkele toepassingen. Bij het onderwerp netwerkstromen wordt behandeld: maximale stromen, minimale kostenstromen en toepassingen. i

4 ii Hoofdstuk 5: Scheduling Bij scheduling moeten taken bewerkingen op machines ondergaan. Van iedere taak is bekend op welke machines deze moet worden uitgevoerd, eventueel ook in welke volgorde, en hoe lang iedere bewerking duurt. De probleemstelling luidt: hoe deze taken te schedulen opdat een bepaalde functie ge-optimaliseerd wordt, bijv. minimaliseer het tijdstip waarop alle taken klaar zijn. We bespreken zogenaamde open shop, job shop en flow shop problemen op één of meer machines. Verder worden ook scheduling problemen op parallelle machines besproken. Het hoofdstuk wordt afgesloten met een bespreking van de verbanden met het Handelsreizigersprobleem. Hoofdstuk 6: Speltheorie In de speltheorie houdt men zich bezig met modellen die conflictsituaties beschrijven. Niet alle conflictsituaties zijn in één model te vangen. We onderscheiden bijvoorbeeld: a. Het aantal deelnemers (twee-personen spelen of spelen met meer personen); b. Het al dan niet geoorloofd zijn van combines (wel of niet coöperatieve spelen); c. Het regelen van de uitbetalingen (wel of geen nulsomspel). De volgende onderwerpen komen aan de orde: twee-personen nulsomspelen, bi-matrix spelen en coöperatieve spelen. Vragen en opgaven Het dictaat bevat 7 vragen en 90 opgaven. De oplossingen van de vragen staan in Appendix A. College, tentamen en informatie Het college is 4 uur per week. Het tentamen bestaat voor 50% uit het wekelijks maken van opgaven en voor 50% uit een schriftelijk tentamen. Verdere informatie over dit vak is te vinden op: kallenberg.

5 Inhoudsopgave LINEAIRE OPTIMALISERING (deel ). Inleiding Implementatie aspecten Begrensde variabelen Herziene simplex methode en de productvorm van de inverse Opgaven Gevoeligheidsanalyse Veranderingen in één coëfficiënt van de doelfunctie Veranderingen in één coëfficiënt van het rechterlid Veranderingen in meer coëfficiënten van het rechterlid (of doelfunctie) Veranderingen in een kolom van een niet-basisvariabele Toevoegen van een nieuwe activiteit/variabele Parametrische programmering Opgaven De duale en de primale-duale simplex methode De duale simplex methode De primale-duale methode Opgaven GEHEELTALLIGE LINEAIRE OPTIMALISERING 3. Model, formuleringen en voorbeelden Model en formuleringen Voorbeelden Opgaven Branch-and-Bound Het generieke algoritme Behandeling van en opsplitsing in deelproblemen Opgaven Sneden Gomory s fractie-snede algoritme Gomory s snede voor gemengd geheeltallige optimalisering iii

6 iv INHOUDSOPGAVE.3.3 Opgaven Handelsreizigersprobleem Inleiding en formuleringen Branch-and-Bound methode Heuristieken Opgaven NIET-LINEAIRE OPTIMALISERING Inleiding Klassificatie van niet-lineaire optimaliseringsproblemen Voorbeelden Afgeleiden Optimaliteitsvoorwaarden Convexiteit Opgaven Onbeperkte optimalisering Inleiding Eéndimensionale optimalisatie Meerdimensionale optimalisatie Opgaven Beperkte optimalisering: theorie Inleiding Lagrange multipliers bij gelijkheidsbeperkingen Karush-Kuhn-Tucker voorwaarden bij gelijkheden en ongelijkheden Fritz John voorwaarden Convexe optimalisering en dualiteit Opgaven Beperkte optimalisering: methoden Kwadratische optimalisering Methode van toelaatbare richtingen Gereduceerde gradiënt methode Gegeneraliseerde gereduceerde gradiënt methode Barrière methode Opgaven NETWERK OPTIMALISERING Kortste paden Inleiding De methode van Dijkstra Methode van Bellman en Ford Methode van Floyd en Warshall

7 INHOUDSOPGAVE v 4..5 De kortste gemiddelde ronde Enkele toepassingen Opgaven Netwerkstromen Maximale stromen Minimale kostenstromen Enkele toepassingen Opgaven SCHEDULING Inleiding Eén machine Model A: L max Model B: n j= w jc j Model C: n j= U j Twee machines Model D: O C max Model E: F C max Model F: J C max Parallelle machines Verbanden met het handelsreizigersprobleem Model K: s jk C max Model L: F m no wait C max Opgaven SPELTHEORIE 7 6. Inleiding Tweepersonen nulsomspel Bi-matrix spelen Coöperatieve spelen Opgaven A OPLOSSING VAN DE VRAGEN 35 A. Hoofdstuk A. Hoofdstuk A.3 Hoofdstuk A.4 Hoofdstuk A.5 Hoofdstuk A.6 Hoofdstuk

8 vi INHOUDSOPGAVE

9 Hoofdstuk LINEAIRE OPTIMALISERING (deel ) In Besliskunde is het onderwerp lineaire optimalisatie reeds aan bod geweest. Het model is geïntroduceerd, een aantal resultaten uit de theorie van lineaire (on)gelijkheden is behandeld, en de dualiteit en de simplex methode zijn besproken. We gaan in dit hoofdstuk in op implementatie aspecten, gevoeligheidsanalyse en we bespreken twee alternatieven voor de gewone simplex methode: de duale simplex methode en de primale-duale simplex methode.. Inleiding In deze paragraaf herhalen we in het kort een aantal zaken uit Besliskunde. De standaard formulering van het LP-probleem luidt in matrixnotatie: max{p T x Ax b; x 0}, waarbij p, x R n, b R m en A een m n-matrix is (.) Met verschilvariabelen y = b Ax krijgen we de equivalente formulering max{p T x Ax + y = b; x, y 0} (.) Bij ieder LP-probleem hoort een duaal probleem. Het duale probleem van (.) is min{b T u A T u p; u 0} (.3) en met verschilvariabelen v = A T u p geeft dit de equivalente formulering min{b T u A T u v = p; u, v 0} (.4) De simplex methode is een methode om deze problemen op te lossen. De methode maakt gebruik van simplex tableaus, waarin de relevante informatie staat. Ieder tableau behoort bij een basismatrix B: dit is een niet-singuliere m m-deelmatrix van het oorspronkelijke stelsel (.), waarvoor bovendien geldt dat B b 0. De overige kolommen vormen een m n-deelmatrix N. De bijbehorende variabelen x B resp. x N heten de basisvariabelen resp. de niet-basisvariabelen.

10 HOOFDSTUK. LINEAIRE OPTIMALISERING (DEEL ) Het tableau heeft de vorm x N x B B b B N x 0 p T B B b d T N waarbij d T N = pt B B N p T N, en de bijbehorende oplossing luidt: x B = B b, x N = 0. Het tableau bevat tevens een bijbehorende duale oplossing: u B = 0, u N = d N. Om de notatie simpel te houden, voeren we in: b = B b, A = B N, p = p T B B b en d = p T B B N p T N. Het stelsel is dan, tezamen met de doelfunctie, te schrijven als: (x B ) i = b i n j= a ij (x N) j, i =,,..., m p T x = p (.5) n j= d j (x N) j Als d j 0 voor alle j, dan is x B = b, x N = 0 een optimale oplossing. In het andere geval is d k < 0 voor zekere k, en kan als volgt een nieuw tableau worden gevonden. a. Bepaal de pivotkolom, d.w.z. bepaal een k met d k < 0 (meestal k zdd. d k = min j d j ). b. Bepaal een pivotrij, d.w.z. bepaal een r met b r a = min{ b i rk a a ik > 0}. ik c. Verwissel de variabelen (x B ) r en (x N ) k die de pivot a rk bepalen. d. De nieuwe pivotrij, met uitzondering van het pivotelement zelf, is de oude rij gedeeld door het pivotelement. e. De nieuwe pivotkolom, met uitzondering van het pivotelement zelf, is de oude kolom gedeeld door het tegengestelde van het pivotelement. f. Van de elementen a ij met i r en/of j k trekken we a rj a ik a rk g. Vervang het pivotelement a rk door zijn inverse a. rk In het simplex tableau staat ook informatie over het duale probleem te lezen. Naar analogie van (.5) moet daarvoor de j-de kolom van het simplex tableau moet gelezen worden als (de voorste kolom met b slaat op de doelfunctie): (u N ) j = d j + m i= a ij (u B) i, j =,,..., n b T u = p + (.6) m i= b i (u B) i af.. Implementatie aspecten.. Begrensde variabelen Vaak zijn variabelen begrensd, zowel naar beneden als naar boven, zeg l j x j u j. Door over te gaan op de variabele x j = x j l j, kunnen we l j x j u j vervangen door 0 x j u j l j. We

11 .. IMPLEMENTATIE ASPECTEN 3 kunnen dus veronderstellen dat alle ondergrenzen 0 zijn en aannemen dat begrensde variabelen van het type 0 x j u j zijn. Deze beperkingen kunnen natuurlijk op de gewone manier behandeld kunnen worden met een verschilvariabele: x j + y j = u j ; x j, y j 0. Zo n verschilvariabele is echter niet nodig. We kunnen deze namelijk impliciet behandelen, zoals we ook de ondergrens 0 impliciet behandelden door er bij de keuze van de pivotrij op te letten dat geen enkele variabele negatief wordt. In het geval bovengrenzen aanwezig zijn hebben alle niet-basisvariabelen de waarde 0 (hun ondergrens) of de waarde u j (hun bovengrens). Zoals een niet-basisvariabele die op de ondergrens (0) staat een potentiële pivotkolom is als er in de onderste rij een negatief getal staat, zo is een niet-basisvariabele x j die op zijn bovengrens (u j ) staat een potentiële pivotkolom als er in de onderste rij een positief getal staat, want door de waarde van deze variabele te verlagen stijgt de waarde van de doelfunctie. Door echter dan de variabele te beschouwen als x j := u j x j hebben we weer de gewone situatie. Ook bij de keuze van de pivotrij moet rekening worden gehouden met het feit dat x j niet groter dan u j mag worden, d.w.z. voor begrensde basisvariabelen (x B ) i met in de pivotkolom een negatief getal moet gelden dat b i a ik (x N) k (u B ) i d.w.z. (x N ) k (u B) i b i a ik Nadat we een pivotkolom hebben gekozen zijn er vier mogelijke gevallen: Geval : met a ik < 0. De niet-basisvariabele (x N ) k van de pivotkolom staat op zijn ondergrens en loopt tegen zijn bovengrens aan. Deze variabele (x N ) k blijft een niet-basisvariabele en komt nu op zijn bovengrens te staan. We drukken dan de vergelijkingen van het stelsel in een tableau uit in (x N ) k := (u N ) k (x N ) k, d.w.z. (x B ) i = b i j k a ij(x N ) j a ik (x N) k = {b i a ik (u N) k } j k a ij(x N ) j + a ik {(u N) k (x N ) k }. Voor de transformaties geldt dus: (x N ) k komt op zijn bovengrens, de pivotkolom verandert van teken en van het getransformeerde rechterlid wordt (u N ) k keer de pivotkolom afgetrokken. Geval : De niet-basisvariabele (x N ) k staat op zijn bovengrens en loopt tegen zijn ondergrens aan. We drukken dan de vergelijkingen die bij het stelsel van een tableau horen uit in (x N ) k, d.w.z. (x B ) i = b i j k a ij(x N ) j a ik {(u N) k (x N ) k } = {b i a ik (u N) k } j k a ij(x N ) j + a ik (x N) k. Voor de transformaties geldt dus: (x N ) k komt op zijn ondergrens, de pivotkolom verandert van teken en van het getransformeerde rechterlid wordt (u N ) k keer de pivotkolom afgetrokken. Geval 3: Een basisvariabele (x B ) r loopt tegen zijn ondergrens aan. Dit is het geval van de gewone simplex methode en we behandelen dit op de bekende manier.

12 4 HOOFDSTUK. LINEAIRE OPTIMALISERING (DEEL ) Geval 4: Een basisvariabele (x B ) r loopt tegen zijn bovengrens aan. Merk op dat in dit geval de pivot a rk negatief is. De gewone simplex transformaties volgen uit de vergelijking (x B ) r = b r j a rj (x N) j, die equivalent is met (u B ) r (x B ) r = (u B ) r b r + j a rj(x N ) j Voor de transformaties geldt dus: Voer de gewone transformaties uit na de volgende veranderingen: neem (u B ) r b r in plaats van b r en verander de pivotrij van teken. De winst van deze speciale techniek is het feit dat in de gevallen en er met vrijwel geen werk een nieuw tableau gevonden wordt. Voorbeeld. Beschouw het volgende LP-probleem: max x + x + 3x 3 + x 4 + x 5 x + x 3 x 5 + x 6 = x + x 4 + x 5 + x 7 = x + x x 3 x 4 + x 8 = onder de voorwaarden 0 x ; 0 x ; 0 x 3 ; 0 x 4 3; 0 x 5 ; 0 x 6 ; 0 x 7 3; 0 x 8. We starten met als basisvariabelen x 6, x 7 en x 8. Als de variabele x j op zijn bovengrens staat, dan noteren we dat met x j. Verder schrijven we achter iedere variabele tussen haakjes de bovengrens. Dit geeft de volgende tableaus (als pivotkolom de gebruikelijke keuze bij het meest negatieve element in de onderste rij): x () x () x 3 () x 4 (3) x 5 () x 6 () x 7 (3) 0-0 x 8 () x Geval 4: x 8 loopt tegen zijn bovengrens aan. Aanpassing van b 3 en de derde rij geeft: x () x () x 8 () x 4 (3) x 5 () x 6 () x 7 (3) 0-0 x 3 () x Geval 3: dit geeft de gewone transformatie. x () x () x 3 () x 4 (3) x 5 () x 6 () x 7 (3) 0-0 x 8 () x Nu voeren we de gewone pivottransformaties uit met verwisseling van x 8 en x 3. x () x 6 () x 8 () x 4 (3) x 5 () x () x 7 (3) x 3 () x Geval 4: x 3 loopt tegen zijn bovengrens aan. Aanpassing van b 3 en de derde rij geeft:

13 .. IMPLEMENTATIE ASPECTEN 5 x () x 6 () x 8 () x 4 (3) x 5 () x () x 7 (3) x 3 () x Nu voeren we de gewone pivottransformaties uit met verwisseling van x 3 en x 5. x () x 6 () x 8 () x 4 (3) x 3 () x () x 7 (3) x 5 () x Geval 4: x loopt tegen zijn bovengrens aan. Aanpassing van b en de eerste rij geeft: x () x 6 () x 8 () x 4 (3) x 3 () x () - 0 x 7 (3) x 5 () x Nu voeren we de gewone pivottransformaties uit met verwisseling van x en x 4. x () x 6 () x 8 () x () x 3 () x 4 (3) x 7 (3) x 5 () x Geval 3: dit geeft de gewone transformatie. x 5 () x 6 () x 8 () x () x 3 () x 4 (3) - - x 7 (3) 3-0 x () x Geval : x 6 komt op zijn bovengrens. x 5 () x 6 () x 8 () x () x 3 () x 4 (3) - x 7 (3) x () 0 0 x Dit tableau is optimaal. De optimale oplossing luidt: x = ; x = ; x 3 = ; x 4 = ; x 5 = 0; x 6 = ; x 7 = ; x 8 =. De optimale waarde is. Vraag. Beschouw het volgende LP-probleem: { max 3x + x x + x 0; 0 x 4 5x + 3x 7; 0 x 5 }. Los dit probleem op met de simplex methode voor begrensde variabelen... Herziene simplex methode en de productvorm van de inverse De tot nu toe behandelde simplex methode in tableauvorm is alleen geschikt voor handberekening en kleine problemen. De technieken van de herziene simplex methode en de productvorm van de inverse zijn ontwikkeld om grote problemen op te kunnen lossen. In essentie is dit de reeds behandelde simplex methode, maar deze speciale technieken zijn efficiënter t.a.v. de benodigde geheugenruimte en rekentijd. De tableaus zijn vaak gevuld met vele 0 en en het is eigenlijk overbodig om hiervoor ruimte te reserveren.

14 6 HOOFDSTUK. LINEAIRE OPTIMALISERING (DEEL ) In een iteratie kiezen we eerst de variabele die in de basis gaat komen, daarna de variabele die de basis gaat verlaten en tenslotte bepalen we de nieuwe basisoplossing. De variabele x k die in de basis gaat komen moet een negatief element in de onderste rij hebben, d.w.z. de gereduceerde kosten zijn negatief: v k := p T BB a k p k < 0. Meestal kiezen we voor de pivotkolom de kolom waarvan het getal v k het meest negatief is. Als we geen tableau hebben, dan moeten we de waarde p T B B a k p k berekenen. Daarvoor hebben we B nodig. Als we B hebben, dan is het eenvoudig om p T B B a k p k uit te rekenen en na te gaan of dit al of niet negatief is (als al deze getallen niet-negatief zijn, dan is de huidige oplossing optimaal). Om de variabele te bepalen die de basis gaat verlaten, moeten we nagaan welke basisvariabele het eerst negatief wordt als we x k vanaf 0 steeds groter maken. Hiervoor moeten we de quotiënten nemen van {B b} i en {B a k } i, voor zover dit laatste getal positief is, en van deze quotiënten de kleinste nemen (als alle getallen {B a k } i niet-positief zijn, dan is er een oneindige oplossing). Als i = r behoort bij het kleinste quotiënt, dan geldt voor de nieuwe oplossing: x k = {B b} r {B a k } r en x i = {B b} i {B a k } i x k voor de overige basisvariabelen. We zullen aangeven hoe we de verschillende getallen die we nodig hebben gaan berekenen. Daarbij gaan we eerst na hoe B berekend wordt. Laat B nieuw de nieuwe basismatrix zijn en B oud de oude. Dan geldt dat B nieuw uit B oud wordt verkregen door de r-de kolom van B oud te vervangen door de kolom a k, d.w.z. (zie Vraag.) B nieuw = B oud E, waarbij E de eenheidsmatrix is met in de r-de kolom de vector B oud a k. Noteren we B oud a k met a k, dan kunnen we schrijven: 0 a k a k 0 0 E =. 0 0 a mk 0 De relatie B nieuw = B oud E maakt het mogelijk om op een efficiënte manier de inverse van B nieuw uit de inverse van B oud te bepalen, immers Bnieuw = E B oud. Er geldt (zie Vraag.3) dat 0 a k a 0 0 rk 0 a k a 0 0 rk E = a. rk 0 0 a mk a 0 rk

15 .. IMPLEMENTATIE ASPECTEN 7 waarbij het element a in de r-de rij (en r-de kolom) staat. Omdat ook E slechts in één kolom rk van de eenheidsmatrix verschilt, kan deze worden opgeborgen als vector: we onthouden de r-de vector van E en het getal r. E heet de elementaire matrix. Laat B t de basismatrix zijn na t iteraties en laat B t van B t verschillen in de r-de kolom, die vervangen wordt door de kolom a k. Dan geldt B t = B t E t, waarbij E t de eenheidsmatrix is met in de r-de kolom de vector B t a k. Omdat we starten met als basis de eenheidsmatrix, d.w.z. B 0 = I, geldt B t = E E E t, zodat B t = Et Et E E. Dus in iedere iteratie kan de inverse van de basis worden geschreven als het product van elementaire matrices. Vandaar de naam productvorm van de inverse. Voor de verdere berekeningen is het handig eerst na te gaan hoe de vermenigvuldiging van een vector c met de elementaire matrix E verloopt. Dit kan zijn c T E, de navermenigvuldiging, of E c, de voorvermenigvuldiging. De r-de vector van E, d.w.z. de vector die in het algemeen geen eenheidskolom is, noteren we met g. Navermenigvuldiging 0 g g 0 0 c T E = (c, c,..., c m ) g r 0 0 g m 0 Dus c T E wordt uit c verkregen door c r te vervangen door m i= c ig i. Voorvermenigvuldiging 0 g 0 0 c 0 g 0 0 c E... c = = g r c r g m 0 c m = (c, c,..., c r, m i= c ig i, c r+,, c m ). c + g c r c g c + g c r c g = + c g r c r 0 r. g r c m + g m c r Dus E c wordt uit c verkregen door eerst de r-de component van c gelijk aan 0 te maken en dan bij deze vector c r keer de vector g op te tellen. Bepaling duale variabelen v j In de t-de iteratie berekenen we eerst p T B B t, en wel op de volgende manier. Bepaal eerst, met navermenigvuldiging, u T = p T B E t. Bepaal vervolgens, eveneens met navermenigvuldiging, u T Et, etc. Op deze wijze berekenen we in t stappen p T BB t = p T BEt Et E E. c m g m

16 8 HOOFDSTUK. LINEAIRE OPTIMALISERING (DEEL ) Vervolgens kunnen eenvoudig voor iedere niet-basisvariabele x j de getallen v j = p T BBt a j p j worden berekend. Van de niet-basisvariabele x j = (x B ) r, die net een niet-basisvariabele is geworden, weten we dat v j > 0: voor deze variabele kunnen we de berekening dus overslaan. Bepaling kolom g die de elementaire matrix geeft Laat in de t-de iteratie de pivotkolom de kolom bij x k zijn. Dan moet eerst a k = B t a k = E t E t E E a k worden bepaald. Deze vector krijgen we door de vector a k t keer voor te vermenigvuldigen, met E, E tot en met E t. Als a k 0, dan stoppen we met als conclusie dat het probleem een onbegrensde oplossing heeft. Als dat niet het geval is, dan bepalen we op de gewone manier de pivotrij. Daarvoor moeten we in iedere iteratie het rechterlid b mee transformeren. Dit geeft in iteratie t één voorvermenigvuldiging met Et om de waarde b te updaten. Hiermee kan dan de pivotrij r worden bepaald en daarmee g t, de g in de t-de iteratie: ( g t = Update van de inverse van de basis a k a rk, a k a,, rk a rk,, a ) T mk. a rk In iedere iteratie komt er een elementaire matrix bij die we moeten onthouden, d.w.z. de bijbehorende vector g en de component r moeten we onthouden. Als het aantal iteraties groot wordt geeft dit problemen. Het is dan verstandig om af en toe een herinversie uit te voeren, d.w.z. expliciet B uit te rekenen als product van de elementaire matrices: B t = Et Et E E. Vervolgens kan hier in volgende iteraties weer op worden teruggerekend : deze Bt dezelfde rol als B0 = I in de eerste iteraties. vervult dan Algoritme. De (t + )-ste iteratie van de productvorm algoritme Invoer: De elementaire matrices E, E,..., E t, gegeven door de vectoren g, g,..., g t en de getallen r, r,..., r t. Uitvoer: De elementaire matrix E t+, gegeven door de vector g t+ en het getal r t+ ; of de conclusie dat de huidige oplossing optimaal is; of de conclusie dat er een oneindige optimale oplossing is.. Update b door voorvermenigvuldiging met de elementaire matrix E t.. Bepaal u T = p T B B door herhaalde navermenigvuldiging met Et, Et tot en met E.

17 .. IMPLEMENTATIE ASPECTEN 9 3. Bepaal voor de niet-basisvariabelen x j (behalve die er het laatst bij is gekomen) de duale variabelen v j = u T a j p j. 4. Als alle v j s niet-negatief zijn: de oplossing is optimaal en stop. Anders: Kies k zdd. v k v j voor alle niet-basisvariabelen x j. 5. Bepaal a k = B a k door herhaalde voorvermenigvuldiging met E, E tot en met E t. 6. Als a k 0: er is een oneindige oplossing en stop. { Anders: bepaal pivotrij r zdd. = min a ik }. > 0 b r a rk 7. Bepaal de vector g t+ en de component r t+ die E t+ vastleggen. b i a ik Oplossing duale probleem Uit de algemene theorie van de lineaire optimalisering volgt dat v B = 0, v T N = pt B B N p T N de oplossing van het duale probleem is. Voorbeeld. Beschouw het volgende LP-probleem: 4x + x + x 3 = ; x, x 0 max x + 4x x + x 4 = ; x 3, x 4 0 x + 3x + x 5 = ; x 5 0. Iteratie : De basisvariabelen zijn x 3, x 4 en x 5, en E 0 = I. b = (,, ) T ; u = (0, 0, 0) T. 4 v = (0, 0, 0) = ; v = (0, 0, 0) 0 4 = 4. 3 k = (bij x ); a = a = (4,, ) T ; min{ 4,, } = en r = (bij x 4 ); g = ( 4,, ) T. Iteratie : De basisvariabelen zijn x 3, x en x b = 0 + = ; ut = (0,, 0)E = (0,, 0). 8 4 v = (0,, 0) 0 4 = 4; k = (bij x ); a = E a = = min{ 4,, 8 3 } = en r = (bij x 3 ); g = (, 0, 3 )T.

18 0 HOOFDSTUK. LINEAIRE OPTIMALISERING (DEEL ) Iteratie 3: De basisvariabelen zijn x, x en x 5. 0 b = = ; ut = (4,, 0)E E = (7,, 0)E = (7, 7, 0) v 4 = (7, 7, 0) 0 = 7; k = 4 (bij x 4). a 4 = E E a 4 = E = E 0 = 4 0 =. 4 min{,, 4 } = en r 3 = 3 (bij x 5 ). g 3 = (, 4, 4 )T. Iteratie 4: De basisvariabelen zijn x, x en x 4. b = + 3 = u T = (4,, 0)E 3 E E = (4,, 7 4 )E v 3 = ( 35 8, 0, 7 4 ) 0 0 = E 3 = ( 35 8,, 7 4 )E = ( 35 8, 0, 7 4 ). Het huidige tableau is optimaal. De optimale oplossing luidt x B = b en x N = 0, d.w.z. x = 3, x = 3, x 4 =, x 3 = x 5 = 0. Het duale probleem luidt: 4u + u + u 3 min u + u + u 3 u + 3u 3 4 u, u, u 3 0 met als optimale oplossing u = 35 8, u = 0, u 3 = 7 4. Vergelijking gewone en herziene simplex methode. Laten we uitgaan van een LP-probleem met n variabelen en m ongelijkheden.. Een gewoon simplex tableau heeft m + rijen en n + kolommen. Per iteratie moeten de pivotkolom en pivotrij worden bepaald (complexiteit O(n) resp. O(m)) en moeten alle elementen van het tableau worden aangepast (complexiteit O(nm)). De complexiteit van een iteratie van de herziene simplex methode is minstens O(nm) (alleen stap 3 heeft al deze complexiteit). De winst van de herziene simplex methode zit in feite in de geheugenopslag. Deze is in de gewone simplex methode O(nm) en in de herziene simplex methode (als we na hoogstens m iteraties een herinverzie doen) O(m ). In de meeste practische problemen is n vele malen groter dan m, zodat dit een aanzienlijk verschil geeft.

19 .3. GEVOELIGHEIDSANALYSE Verder zijn er nog geavanceerde technieken, die we hier niet zullen behandelen, die verdere voordelen aan de herziene simplex methode geven. Deze betreffen het gebruik van de spaarzaamheid, d.w.z. dat de meeste elementen in de vectoren 0 zijn, en LU-decompositie. Vraag. Laat zien dat als x k in de basis komt op plaats r, dan geldt: B nieuw = B oud E, waarbij E de eenheidsmatrix is met in de r-de kolom de vector B oud a k. Vraag.3 Toon aan dat als x k in de basis komt op plaats r, de bijbehorende elementaire matrix E de eenheidsmatrix is, waarin de r-de kolom vervangen is door een kolom met op plaats r het element a rk en op de plaatsen i r de elementen a ik a. rk..3 Opgaven Opgave. Bepaal met de simplex methode voor begrensde variabelen een optimale oplossing van { } x + x + x 3 6; 0 x 3 max x + x + x 3. x x + x 3 ; 0 x 3 Opgave. Bepaal met de herziene simplex methode een optimale oplossing van x + x + x 3 4; max x + x x 3 x + x x 3 6; x, x, x 3 0. x + x 5; Geef ook het duale probleem en de optimale oplossing ervan..3 Gevoeligheidsanalyse In deze paragraaf zullen we onderzoeken hoe veranderingen in de gegevens van het het probleem doorwerken in de optimale oplossing. We zullen de volgende veranderingen bespreken:. veranderingen in één coëfficiënt van de doelfunctie.. veranderingen in één coëfficiënt van het rechterlid. 3. veranderingen in meer coëfficiënten van het rechterlid of doelfunctie. 4. veranderingen in een kolom van een niet-basisvariabele. 5. toevoegen van een nieuwe activiteit (variabele). 6. parametrische programmering. Voor deze technieken zie bijvoorbeeld: M.S. Bazaraa, J.J. Jarvis and H.D. Sherali, Linear programming and network flows, Wiley, 990.

20 HOOFDSTUK. LINEAIRE OPTIMALISERING (DEEL ) Beschouw het LP-probleem in de gedaante max j p jx j met de volgende beperkingen: j a ijx j b i, i I, met b i 0 voor alle i I ; j a ijx j b i, i I, met b i < 0 voor alle i I ; j a ijx j = b i, i I 3, met b i 0 voor alle i I 3 ; x j 0, j =,,..., n. Door niet-negatieve verschilvariabelen y i, i I I, en schijnvariabelen z i, i I I 3, in te voeren schrijven we het stelsel in de vorm: j a ijx j + y i = b i, i I ; j a ijx j y i + z i = b i, i I ; j a ijx j +z i = b i, i I 3 ; x j 0, j =,,..., n; y i 0, i I I ; z i 0, i I I 3. Al deze variabelen stoppen we in één grote vector x, die we opsplitsen in een vector van basisvariabelen x B en een vector van niet-basisvariabelen x N. Het optimale tableau heeft de gedaante: x N x B B b B N x 0 p T B B b p T B B N p T N x B = B b 0 u N = p T B B N p T N 0, waarbij de niet-negativiteit niet hoeft te gelden voor de elementen in de kolommen van de schijnvariabelen..3. Veranderingen in één coëfficiënt van de doelfunctie Veranderingen in de doelfunctie hebben geen invloed op de toelaatbaarheid: B blijft een goede basismatrix, maar wel kan de niet-negativiteit van u N in gevaar komen. Voor iedere coëfficiënt p j van de doelfunctie kunnen we onder- en bovengrenzen berekenen waarvoor de huidige oplossing x B = B b, x N = 0 nog steeds optimaal is. Stel p j wordt vervangen door p j + λ, d.w.z. in plaats van de vector p hebben we de vector p met { p pi als i j; i = p j + λ als i = j. Laat e i de i-de eenheidsvector zijn. We onderscheiden de volgende twee gevallen: { p a. x j is een basisvariabele, zeg x j = (x B ) k, zodat: N = p N ; p B = p B + λe k. u N = (p B) T B N (p N) T = {p B + λe k } T B N p T N = u N + λ(e k ) T B N = u N + λ{b N} k. u N is dus de oude vector plus λ maal de k-de rij van het tableau. Hiervoor moet de nietnegativiteit gelden, waaruit eenvoudig het bereik van λ is te bepalen. We merken weer op dat de niet-negativiteit niet nodig is voor de coëfficiënten die behoren bij de z-variabelen.

21 .3. GEVOELIGHEIDSANALYSE 3 b. x j is een niet-basisvariabele, zeg x j = (x N ) k, zodat: { p N = p N + λe k ; p B = p B. u N = (p B) T B N (p N) T = (p B ) T B N {p T N + λe k } T = u N λ(e k ) T. Voor de niet-negativiteit van u N moet dus gelden λ (u N) k, d.w.z. de huidige oplossing blijft optimaal voor p j p j + (u N ) k..3. Veranderingen in één coëfficiënt van het rechterlid Veranderingen in het rechterlid hebben geen invloed op de niet-negativiteit van u N, echter wel op die van x B = B b. Ook nu kunnen we voor iedere coëfficiënt b i van het rechterlid onder- en bovengrenzen bepalen waarvoor de huidige basis nog steeds een optimale basis is, met wel andere waarden voor de basisvariabelen. Stel b j wordt vervangen door b j + λ, d.w.z. in plaats van de vector b hebben we de vector b met b i = { bi als i j b j + λ als i = j. Als i I, dan beschouwen we y i als de bij de i-de gelijkheid behorende variabele; als i I I 3, dan is z i de bijbehorende variabele. Indien i I, dan is het rechterlid -b i. We onderscheiden weer de volgende twee gevallen: a. De bij de j-de gelijkheid behorende variabele is een basisvariabele, zeg op plaats k: Dan is B k = e j, zodat geldt: B b = B {b + λe j } = B b + λb B k = B b + λe k. Voor de niet-negativiteit moet dus gelden: λ {B b} k, d.w.z. de huidige oplossing blijft optimaal voor b j b j (x B ) k. b. De bij de j-de gelijkheid behorende variabele is een niet-basisvariabele, zeg op plaats k: Dan is N k = e j, zodat geldt: B b = B {b + λe j } = B b + λb N k. B b is dus de oude vector plus λ maal de k-de kolom van het tableau. Hiervoor moet de niet-negativiteit gelden, waaruit het bereik van λ volgt..3.3 Veranderingen in meer coëfficiënten van het rechterlid (of doelfunctie) Veronderstel dat het rechterlid van b verandert in b = b + b. Ook deze verandering heeft geen invloed op de niet-negativiteit van u N, echter wel op die van B b. Laat x 0 de optimale oplossing van het oorspronkelijke probleem zijn en x i een optimale oplossing voor het probleem met b vervangen door b + max i e i, waarbij max i de maximale waarde (als ( b) i 0) of de minimale waarde (als ( b) i < 0) van λ is, zoals die volgens de methode van de vorige paragraaf gevonden kan worden. Omdat B in alle gevallen de bijbehorende basismatrix is, geldt Bx i = b + max i e i, i m. Veronderstel dat ( b) i = λ i max i met λ i 0, i m en m i= λ i. Laat λ 0 = m i= λ i, max 0 = 0 en beschouw x = m i=0 λ ix i. Dan geldt: x 0 en Bx = m i=0 λ ibx i = m i=0 λ i(b + max i e i ) = b + m i= λ i( max i e i ) = b + b = b.

22 4 HOOFDSTUK. LINEAIRE OPTIMALISERING (DEEL ) B blijft dus een optimale basismatrix. Deze regel, dat de basis optimaal blijft voor veranderingen die (maximaal) convexe combinaties zijn van de maximale veranderingen van de componenten b i, heet de 00%-regel. Opmerking Op analoge wijze is af te leiden dat de huidige oplossing optimaal blijf voor veranderingen in de doelfunctie die (maximaal) convexe combinaties zijn van de maximale veranderingen van de componenten p j. Vraag.4 a. Los met de simplex methode het volgende probleem op: { x + x 3 8; max x + x + 3x 3 x + x + x 3 = 8; x, x, x 3 0 }. b. Voer de gevoeligheidsanalyse uit op: - de coëfficiënten van x en x uit de doelfunctie; - de beide coëfficiënten van het rechterlid..3.4 Veranderingen in een kolom van een niet-basisvariabele Veronderstel dat een kolom van A verandert in de vector a en dat deze kolom behoort bij de k-de niet-basisvariabele (x N ) k. Dit heeft - voor de controle op toelaatbaarheid en optimaliteit - alleen gevolgen voor de waarde van (u N ) k (ga dit zelf na). Uit het simplex tableau volgt dat de nieuwe waarde, zeg (u N ) k, voldoet aan (u N ) k = p T B B a (p N ) k. Er geldt dat p T B B = u T, immers (analoog aan wat we hebben gedaan bij verandering in één coëfficiënt van het rechterlid): als de bij de j-de gelijkheid behorende variabele een basisvariabele is, zeg op plaats k, d.w.z. B k = e j, ofwel e k = B j, dan geldt: u j = (u B ) k = 0 en ook {p T BB } j = p T BB j = p T Be k = (p B ) k = 0; als de bij de j-de gelijkheid behorende variabele een niet-basisvariabele is, zeg op plaats k, d.w.z. N k = e j, dan geldt: u j = (u N ) k = p T BB N k (p N ) k = p T BB e j 0 = {p T BB } j. We kunnen dus schrijven: (u N ) k = u T a (p N ) k, waaruit volgt dat de waarde (u N ) k eenvoudig te berekenen is. Indien (u N ) k 0, dan is de huidige oplossing nog steeds optimaal; indien (u N ) k < 0, dan moet deze kolom als pivotkolom worden gekozen en moet er verder worden geïtereerd. In het tableau moet dan de oude k-de kolom worden vervangen door B a. Om deze nieuwe kolom te berekenen moeten we dus B kennen. De matrix B kan uit het simplex tableau worden afgelezen en wel als volgt:

23 .3. GEVOELIGHEIDSANALYSE 5 a. Als de variabele bij de i-de beperking (y i als i I, anders z i ) een niet-basisvariabele is en hoort bij de k-de kolom van het tableau, dan geldt N k = e i, dus B N k = B e i = {B } i, d.w.z. de i-de kolom van B is de k-de kolom van het tableau. b. Als de variabele bij de i-de beperking een basisvariabele is en hoort bij het k-de element van de basis, dan geldt B k = e i, dus B B k = B e i, dus e k is de i-de kolom van B..3.5 Toevoegen van een nieuwe activiteit/variabele Het toevoegen van een nieuwe activiteit met kolom a en coëfficiënt p in de doelfunctie kan op dezelfde wijze worden ingepast in de methode als het veranderen van een kolom van een niet-basisvariabele: beschouw de variabele van deze activiteit in het huidige probleem als een niet-basisvariabele met in de kolom incl. de onderste rij allemaal nullen, en vervang deze door B a resp. u T a p. Voorbeeld.3 Beschouw het volgende LP-probleem: x + x 3 5; x 0 max x + x + x 3 x + x 3 ; x 0 x x + 3x 3 = ; x 3 0. Het optimale simplex tableau van dit probleem is: x z z 3 y y x 0-3 x x We zullen de volgende veranderingen bekijken:. de coëfficiënten van de variabelen x en x in de doelfunctie;. de coëfficiënten b en b van het rechterlid; 3. een nieuwe kolom voor de variabele x.. De coëfficiënten van de x en x in de doelfunctie: p : λ : de huidige oplossing blijft optimaal voor p + = 3. p : (, 5 ) + λ(, 3 ) 0, d.w.z. λ : de huidige oplossing blijft optimaal voor p = 0.. De coëfficiënten van b en b in de doelfunctie: b : (, 3, 5) + λ(, 3, ) 0, d.w.z. λ : de huidige oplossing blijft optimaal voor b 5 = 4. b : (, 3, 5) + λ(, 0, 0) 0, d.w.z. λ : de huidige oplossing blijft optimaal voor b + = 3 (merk op dat de tweede beperking in de standaardschrijfwijze luidt: x x 3 y + z = ). 3. Veronderstel vervolgens dat de kolom van x wordt veranderd in a = (0, 0, ). Dan geldt: (u N ) = u T a (p N ) = ( 5, 0, )(0, 0, )T =, dus het tableau is niet meer optimaal. Uit het tableau volgt B :

24 6 HOOFDSTUK. LINEAIRE OPTIMALISERING (DEEL ) B = Het nieuwe tableau wordt:, dus B a = =. 0 y 3 x x z z 3 y 0 3 x x y z z 3 y x - - x 6-0 x x De optimale oplossing is: x =, x = 6, x 3 = 5 met waarde. De duale oplossing is: u = 3, u =, u 3 =..3.6 Parametrische programmering Bij parametrische programmering beschouwen we i.p.v. een vaste vector, zoals de vector p in de doelfunctie, een vector die de som is van een vaste vector en een parameter, zeg λ, maal een andere vaste vector. Doen we dit voor de doelfunctie, dan wordt het parametrisch LP-probleem: max{(p + λq) T x Ax b; x 0} (.7) Als we het rechterlid parametriseren, dan beschouwen we het probleem max{p T x Ax b + λc; x 0} (.8) Parametrische programmering van de doelfunctie We beschouwen probleem (.7) en we gaan uit van een optimaal tableau voor de oorspronkelijke doelfunctie p T x met bijbehorende optimale basis B. Dan is x B = B b onveranderd, dus nog steeds een toelaatbare oplossing. Voor de gewijzigde u N, zeg u N is de gewijzigde, geldt: u N = (p B + λq B ) T B N (p N + λq N ) T = u N + λ(qbb T N qn). T Om in te zien of de huidige oplossing ook optimaal is, moeten we nagaan voor welke waarden van λ de vector u N 0 is. Daartoe nemen we vanaf het eerste simplex tableau naast pt x ook q T x als rij mee in de simplex tableaus. In het tableau van basis B is nu eenvoudig na te gaan tot welke waarde, vanaf 0, λ kan stijgen zonder de optimaliteit in gevaar te brengen. Voor zekere waarde van λ en voor een zekere niet-basisvariabele, zeg (x N ) j, zal (u N ) j + λ(qbb T N qn) T j gelijk aan 0 zijn en bij verdere stijging negatief worden. Zo n kolom j wordt dan pivotkolom, waarna we een pivotoperatie uitvoeren en nagaan hoever λ verder kan stijgen, etc. Op analoge manier kunnen we vanuit λ = 0 de parameter λ laten dalen, steeds negatiever maken en telkens de optimaliteit onderzoeken. We zullen dit demonstreren in onderstaand voorbeeld.

25 .3. GEVOELIGHEIDSANALYSE 7 Voorbeeld.4 { max ( λ)x + ( λ)x + ( 3 + λ)x 3 x + x + x 3 5; x, x 0 x + x 3x 3 ; x 3 0 }. Het optimale tableau voor λ = 0 staat hieronder (de kolom van de z is weggelaten, want deze doet niet meer ter zake). De rij bij p T x noemen we u(p) en de rij bij q T x heet u(q). De optimale waarde van de parametrische functie noemen we z(λ). y x x 3 y 3 * 3 - x 5 u(p) u(q) Dit tableau is optimaal voor λ met bijbehorende oplossing: x = 5, x = x 3 = 0 en z(λ) = 0 5λ. y x x 3 y x - - *3 u(p) u(q) - -4 Dit tableau is optimaal voor λ 9 4 met bijbehorende oplossing: x =, x = x 3 = 0 en z(λ) = 4 λ. y y x x x u(p) u(q) Dit tableau is optimaal voor 9 4 λ 3 met bijbehorende oplossing: x = x = 0, x 3 = 3 en z(λ) = + 3 λ. 4 3 y x x y x 3 5 u(p) u(q) 5 3 Dit tableau is optimaal voor λ 3 met bijbehorende oplossing: x = x = 0, x 3 = 5 en z(λ) = 5 + 5λ. Stelling. z(λ) is een stuksgewijze lineaire, convexe functie van λ. Bewijs Uit bovenstaande methode volgt dat z(λ) op intervallen een lineaire functie is. We zullen nu de convexiteit aantonen. Kies λ en λ, en laat λ = αλ + ( α)λ, waarbij α [0, ]. Veronderstel dat x en x optimale oplossingen zijn bij λ, resp. λ, en laat x een optimale oplossing bij λ zijn. We moeten bewijzen dat z(λ) αz(λ ) + ( α)z(λ ). αz(λ ) + ( α)z(λ ) = α(p + λ q) T x + ( α)(p + λ q) T x α(p + λ q) T x + ( α)(p + λ q) T x = { p + {αλ + ( α)λ }q } T x = (p + λq) T x = z(λ).

26 8 HOOFDSTUK. LINEAIRE OPTIMALISERING (DEEL ) Parametrische programmering van het rechterlid We beschouwen nu probleem (.8) en we gaan weer uit van een optimaal tableau voor het oorspronkelijke rechterlid b met bijbehorende optimale basis B. Dan is u T N = pt B B N p T N onveranderd, dus nog steeds een duaal toelaatbare oplossing. Voor de gewijzigde primale oplossing, zeg x B, geldt x B = B (b + λc) = B b + λb c. Om in te zien of de huidige oplossing ook toelaatbaar is, moeten we nagaan voor welke waarden van λ de vector B b+λb c 0 is. Daartoe nemen we vanaf het eerste simplex tableau naast b ook c als kolom mee in de simplex tableaus. In het tableau van basis B is nu eenvoudig na te gaan tot welke waarde, vanaf 0, λ kan stijgen zonder de toelaatbaarheid in gevaar te brengen. Voor zekere waarde van λ en voor een zekere basisvariabele, zeg (x B ) i, zal B b + λb c 0 gelijk aan 0 zijn en bij verdere stijging negatief worden. Zo n rij i wordt dan pivotrij, waarna we een pivotoperatie uitvoeren en nagaan hoever λ verder kan stijgen, etc. Hiervoor gebruiken we een andere versie van de simplex methode, de zogenaamde duale simplex methode. De duale simplex methode is in feite de gewone simplex methode, maar dan toegepast op het duale probleem. Deze zal later in sectie.4 worden behandeld, maar we vermelden nu reeds zonder bewijs hoe een iteratie verloopt. Algoritme. Een iteratiestap van de duale simplex methode Invoer: Een duaal toelaatbaar tableau met elementen b en d voor het getransformeerde rechterlid resp. de getransformeerde doelfunctie en met A voor de elementen in het inwendige. Uitvoer: Een duaal toelaatbaar tableau met elementen b, d en A, verkregen door transformatie uit het vorige tableau; of de conclusie dat de huidige oplossing optimaal is; of de conclusie dat het probleem ontoelaatbaar is.. Als b i 0 voor alle i: ga naar stap 7.. Kies als pivotrij een rij r, behorende bij een basisvariabele met b r < Als de pivotrij geen negatieve elementen bevat: het LP-probleem is ontoelaatbaar (STOP). { } d 4. Bepaal de pivotkolom k zdd. d k a = min j j rk a rj a rj < Voer een pivotoperatie uit: Verwissel de variabelen (x B ) r en (x N ) k. b r := b r a ; b i rk a rj := a rj a rk 6. Ga naar stap. := b i b ra ik a, i r; d k := d k rk a ; d j rk, j k; a ik := a ik, i r; a ij := a ij a rj a ik a rk := d j a rj d k a, j k. rk a rk, j k, i r; a rk := a. rk 7. De optimale oplossing is gevonden: de basisvariabelen krijgen de waarde van de corresponderende b i s, de overige variabelen hebben de waarde 0; de waarde van het optimum is gelijk aan b m+. De duale oplossing is op de bekende wijze af te leiden uit de onderste rij.

27 .3. GEVOELIGHEIDSANALYSE 9 Op analoge manier kunnen we vanuit λ = 0 de parameter λ laten dalen, steeds negatiever maken en telkens de optimaliteit onderzoeken. We zullen dit demonstreren in onderstaand voorbeeld. Voorbeeld.5 { max x + 3x x + x 6 λ; x 0 x + x 6 + λ; x 0 }. Het optimale tableau voor λ = 0 staat hieronder (voor het rechterlid hebben we nu twee kolommen: de getransformeerde b en c ). b c y y x - 3 x x De optimale oplossing van dit tableau luidt: x = λ, x = 4 met waarde 4 λ. Dit tableau is optimaal voor λ. Voor λ > wordt het rechterlid in de eerste rij negatief: de eerste rij wordt pivotrij en de kolom van y de pivotkolom. b c y x y x 6 - x Optimaal tableau voor λ > met oplossing: x = 0, x = 6 λ en waarde 8 3λ. Voor λ > 6 wordt het rechterlid in de tweede rij negatief. Omdat er in de tweede rij geen negatief element staat, is er geen pivotkolom: voor λ > 6 is het probleem ontoelaatbaar. Stelling. De doelfunctie z(λ) is een stuksgewijze lineaire, concave functie van λ. Bewijs Uit bovenstaande methode volgt dat z(λ) op intervallen een lineaire functie is. We zullen nu de concaviteit aantonen. Kies λ en λ, en laat λ = αλ + ( α)λ, waarbij α [0, ]. We moeten bewijzen dat z(λ) αz(λ ) + ( α)z(λ ) en doen dat via het duale probleem. Veronderstel dat u en u optimale oplossingen van het duale probleem zijn bij λ, resp. λ, en laat u een optimale oplossing bij λ zijn. αz(λ ) + ( α)z(λ ) = α(b + λ c) T u + ( α)(b + λ c) T u α(b + λ c) T u + ( α)(b + λ c) T u = { b + {αλ + ( α)λ }c } T u = (b + λc) T u = z(λ). Vraag.5 Bepaal voor alle waarden van λ de optimale oplossing van het LP-probleem max { ( λ)x + (3 λ)x x + x 6; x 0 x + x 6; x 0 }.

28 0 HOOFDSTUK. LINEAIRE OPTIMALISERING (DEEL ).3.7 Opgaven Opgave.3 Beschouw het volgende LP-probleem: max 4x x 3x 3 x x + x 3 4; x 0 x + x x 3 = ; x 0 x x + x 3 ; x 3 0. a. Bepaal een optimale oplossing met de simplex methode. b. Wat is de optimale oplossing als een variabele x 4 wordt toegvoegd met in de doelfunctie de coëfficiënt - en in de drie beperkingen resp. de coëfficiënten -, 0 en. Beantwoord deze vraag zonder het nieuwe probleem van vooraf aan op te lossen, maar vanuit het in onderdeel a verkregen optimale tableau. Opgave.4 Beschouw het volgende LP-probleem: max x + 5x x 4; x 0 x 3; x 0 x + x 6;. a. Bepaal een optimale oplossing met de simplex methode. b. Bepaal, uitgaande van het in onderdeel a gevonden optimale tableau, een optimale oplossing van hetzelfde probleem met daaraan toegevoegd een derde variabele: x + 3x 3 4; x 0 max x + 5x + 9x 3 x + x 3 3; x 0 x + x + x 3 6; x 3 0 c. Los voor alle waarden van λ het volgende parametrisch LP-probleem op: x 4; x 0 max ( + λ)x + 5x x 3; x 0. x + x 6; d. Los voor alle waarden van λ het volgende parametrisch LP-probleem op: x 4; x 0 max x + 5x x 3 + λ; x 0. x + x 6; Opgave.5 Beschouw het toevoegen van een rij aan een reeds opgelost LP-probleem, waarin B de optimale basismatrix is. Veronderstel dat de extra rij van de vorm a T m+ x b m+ is, en dat als de.

29 .4. DE DUALE EN DE PRIMALE-DUALE SIMPLEX METHODE kolom ( van de verschilvariabele ) y m+ aan de basis matrix wordt toegevoegd deze de gedaante B 0 B = heeft. a m+ ( ) a. Toon aan dat B B 0 = is. a m+ B b. Beschouw het volgende LP-probleem: x + x ; x 0 max x + 3x x 4x 5; x 0. x + x 3; x + x 6; Los dit probleem op en bepaal vanuit deze oplossing de optimale oplossing van het probleem waaraan als extra beperking is toegevoegd: x + 3x 5. Gebruik voor extra pivot stappen de duale simplex methode..4 De duale en de primale-duale simplex methode.4. De duale simplex methode In de simplex methode hebben we (in fase II) steeds een toelaatbaar hoekpunt van het LPprobleem. Zodra de bijbehorende duale oplossing toelaatbaar is, zijn beide oplossingen optimaal. De duale simplex methode doet iets omgekeerds: we hebben steeds een toelaatbaar hoekpunt van het duale LP-probleem en zodra de bijbehorende oplossing van het oorspronkelijke probleem toelaatbaar is, zijn beide oplossingen optimaal. Deze omgekeerde aanpak is in de volgende gevallen zinvol:. Als er niet eenvoudig een toelaatbaar hoekpunt van (.) is te vinden, maar wel van (.4). Dit laatste is bijvoorbeeld het geval als p 0 (zie verder).. Bij parametrische programmering van het rechterlid (zie vorige paragraaf) of als - nadat een LP-probleem is opgelost, zeg met de gewone simplex methode - het rechterlid b wordt vervangen door b, waarbij we hopen dat het nieuwe optimum niet ver van het oude is verwijderd. We vervangen dan in het optimale tableau bij basismatrix B de eerste kolom door B b. Als B b 0, dan is de huidige oplossing reeds optimaal, en anders voeren we enkele stappen van de duale simplex methode uit om de nieuwe optimale oplossing te vinden. 3. Als, nadat het LP-probleem is opgelost, er extra voorwaarden worden gesteld waar de optimale LP-oplossing niet aan voldoet (zie Opgave.5). Dit wordt ook gebruikt bij bepaalde methoden om geheeltallige lineaire optimaliseringsproblemen op te lossen (zie het volgende hoofdstuk). De duale simplex methode is in 954 ontwikkeld door Beale en Lemke, onafhankelijk van elkaar. Zie resp. E.M.L. Beale, An alternative method for linear programming, Proceedings of the Cambridge Philosophical Society 50 (954) en C.E. Lemke, The dual method for solving the linear programming problem, Naval Research Logistics Quarterly (954)

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord).

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord). Tentamen Optimalisering (IN2805-I) Datum: 3 april 2008, 14.00 17.00. Docent: Dr. J.B.M. Melissen Naam: Studienummer: 1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist

Nadere informatie

BESLISKUNDE 2 EN 3 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

BESLISKUNDE 2 EN 3 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN BESLISKUNDE 2 EN 3 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN VOORJAAR 2007 Voorwoord College Najaar 2004 Het derdejaarscolleges Besliskunde 2 en 3 zijn een vervolg op het tweedejaarscollege Besliskunde 1.

Nadere informatie

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 10 Begrensde variabelen Han Hoogeveen, Utrecht University Begrensde variabelen (1) In veel toepassingen hebben variabelen zowel een ondergrens als een bovengrens:

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 10 Leo van Iersel Technische Universiteit Delft 23 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 23 november 2016 1 / 40 Vraag Ik heb het deeltentamen niet

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 (1) Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Gerhard Woeginger Thu 1+2 Aud 1+4 Gerhard Woeginger Clicker session Tue 7+8 Aud 6+15 Gerhard Woeginger

Nadere informatie

Branch-and-Bound en Cutting Planes

Branch-and-Bound en Cutting Planes Branch-and-Bound en Cutting Planes Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft 2 Polynomiaal algoritme

Nadere informatie

3.2 Vectoren and matrices

3.2 Vectoren and matrices we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 5 Leo van Iersel Technische Universiteit Delft 2 oktober 206 Leo van Iersel (TUD) TW2020 Optimalisering 2 oktober 206 / 3 Dualiteit Dualiteit: Elk LP probleem heeft een

Nadere informatie

Bijlage A Simplex-methode

Bijlage A Simplex-methode Dee bijlage hoort bij Beter beslissen, Bijlage A Simplex-methode Verreweg de meeste LP-problemen worden opgelost met behulp van het ogenoemde Simplex-algoritme, in ontwikkeld door G.B. Dantig. De meeste

Nadere informatie

OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN VOORJAAR 2003 Inhoudsopgave 1 Inleiding 1 1.1 Wat is Operations Research?.............................. 1 1.2 Overzicht van de te behandelen

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 3 Leo van Iersel Technische Universiteit Delft 21 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 21 september 2016 1 / 36 LP: Lineair Programmeren min x 1 2

Nadere informatie

TU/e 2DD50: Wiskunde 2

TU/e 2DD50: Wiskunde 2 TU/e 2DD50: Wiskunde 2 Enkele mededelingen Instructies (vandaag, 10:45 12:30) in vier zalen: Zaal Aud 10 Pav b2 Pav m23 Ipo 0.98 voor studenten met achternaam beginnend met letters A tot en met D met letters

Nadere informatie

Samenvatting college 1-12

Samenvatting college 1-12 Samenvatting college 1-12 Probleemformulering Duidelijk definiëren van beslissingsvariabelen Zinvolle namen voor variabelen bv x ij voor ingrediënt i voor product j, niet x 1,..., x 20 Beschrijving van

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 14 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 14 september 2016 1 / 30 Modelleren van LP en ILP problemen

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

Lineaire programmering

Lineaire programmering Lineaire programmering Hans Maassen kort naar Inleiding Besliskunde van J. Potters [Pot]. en Methods of Mathematical Economics van J. Franklin [Fra]. Lineaire programmering is het bepalen van het maximum

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur.

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur. Universiteit Utrecht Faculteit Wiskunde en Informatica Examen Optimalisering op maandag 18 april 2005, 9.00-12.00 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf

Nadere informatie

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen Tentamen Optimalisering (IN2520) Datum: 5 november 2004, 14.00 17.00. Docent: Dr. J.B.M. Melissen Veel succes! 1 Deze opgave bestaat uit 15 tweekeuzevragen. Per goed antwoord krijg je 2 punten. a. Dynamisch

Nadere informatie

Tie breaking in de simplex methode

Tie breaking in de simplex methode Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.

Nadere informatie

Tentamen: Operationele Research 1D (4016)

Tentamen: Operationele Research 1D (4016) UITWERKINGEN Tentamen: Operationele Research 1D (4016) Tentamendatum: 12-1-2010 Duur van het tentamen: 3 uur (maximaal) Opgave 1 (15 punten) Beschouw het volgende lineaire programmeringsprobleem P: max

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3.

1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3. 1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3. Een LP probleem heeft n>2 variabelen en n+2 constraints.

Nadere informatie

TU/e 2DD50: Wiskunde 2

TU/e 2DD50: Wiskunde 2 TU/e 2DD50: Wiskunde 2 Enkele mededelingen Tussentoets: 26 november, tijdens de instructies Tentamenstof: LP; Simplex; dualiteit (= colleges 1 4) Bij de tussentoets mag een eenvoudige (niet programmeerbare)

Nadere informatie

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk.

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Netwerkanalyse (H3) Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Deze problemen kunnen vaak als continu LP probleem worden opgelost. Door de speciale structuur

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 2 Leo van Iersel Technische Universiteit Delft 9 september 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 september 2015 1 / 23 Huiswerk Huiswerk 1 is beschikbaar op

Nadere informatie

Tie breaking in de simplex methode

Tie breaking in de simplex methode Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 13 Leo van Iersel Technische Universiteit Delft 9 december 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 december 2015 1 / 13 Vraag Wat moet ik kennen en kunnen voor

Nadere informatie

Taak 2: LP: simplex en sensitiviteitsanalyse Voorbeeld uitwerking

Taak 2: LP: simplex en sensitiviteitsanalyse Voorbeeld uitwerking Taak 2: LP: simplex en sensitiviteitsanalyse Voorbeeld uitwerking. Sensitiviteitsanalyse (a) Als de prijs van legering 5 daalt, kan het voordeliger worden om gebruik te maken van deze legering. Als de

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : j.a.hoogeveen@uu.nl Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Student assistenten

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

CTB1002 deel 1 - Lineaire algebra 1

CTB1002 deel 1 - Lineaire algebra 1 CTB100 deel 1 - Lineaire algebra 1 College 5 5 februari 014 1 Opbouw college Vandaag behandelen we hoofdstuk 1.7 en deel van 1.8 Voor de pauze: hoofdstuk 1.7 Na de pauze: hoofdstuk 1.8 Verschillende notaties

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte

Nadere informatie

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014 Lineaire Algebra TW1205TI, 12 februari 2014 Contactgegevens Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http:

Nadere informatie

Lineaire Optimilizatie Extra sessie. 19 augustus 2010

Lineaire Optimilizatie Extra sessie. 19 augustus 2010 Lineaire Optimilizatie Extra sessie 19 augustus 2010 De leerstof Handboek: hoofdstuk 2 t.e.m. 8 (incl. errata) Slides (zie toledo) Extra opgaven (zie toledo) Computersessie: Lindo syntax en output Wat

Nadere informatie

te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector

te vermenigvuldigen, waarbij N het aantal geslagen Nederlandse munten en B het aantal geslagen buitenlandse munten zijn. Het resultaat is de vector Les 3 Matrix product We hebben gezien hoe we matrices kunnen gebruiken om lineaire afbeeldingen te beschrijven. Om het beeld van een vector onder een afbeelding te bepalen hebben we al een soort product

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 23 september 2015 Leo van Iersel (TUD) Optimalisering 23 september 2015 1 / 19 Mededelingen Maandag 28 september: deadline huiswerk

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel.

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel. Grafen Grafen Een graaf bestaat uit een verzameling punten (ook wel knopen, of in het engels vertices genoemd) en een verzameling kanten (edges) of pijlen (arcs), waarbij de kanten en pijlen tussen twee

Nadere informatie

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen.

Ruimtewiskunde. college. Stelsels lineaire vergelijkingen. Vandaag UNIVERSITEIT TWENTE. Stelsels lineaire vergelijkingen. college 4 collegejaar college build slides Vandaag : : : : 16-17 4 29 maart 217 38 1 2 3.16-17[4] 1 vandaag Vectoren De notatie (x 1, x 2,..., x n ) wordt gebruikt voor het punt P met coördinaten (x 1,

Nadere informatie

SPECIALE LINEAIRE MODELLEN

SPECIALE LINEAIRE MODELLEN Hoofdstuk 7 SPECIALE LINEAIRE MODELLEN 7.1 Unimodulariteit en totale unimodulariteit Vele combinatorische optimaliseringsproblemen kunnen worden beschreven als het maximaliseren van een lineaire functie

Nadere informatie

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 1 Inhoudsopgave 1 Transport problemen 3 2 Definities en stellingen

Nadere informatie

Faculteit der Economie en Bedrijfskunde

Faculteit der Economie en Bedrijfskunde Faculteit der Economie en Bedrijfskunde Op dit voorblad vindt u belangrijke informatie omtrent het tentamen. Lees dit voorblad voordat u met het tentamen begint! Tentamen: Operational Research 1D (4016)

Nadere informatie

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken).

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken). 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A. Grafentheorie Vraag. Neem drie knooppunten i, j en k. d(i, k) = het minimum aantal takken in een keten tussen i en k Vraag.2 het minimum aantal takken in een keten

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 21 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 21 oktober 2015 1 / 20 Deze week: algoritmes en complexiteit

Nadere informatie

3 Wat is een stelsel lineaire vergelijkingen?

3 Wat is een stelsel lineaire vergelijkingen? In deze les bekijken we de situatie waarin er mogelijk meerdere vergelijkingen zijn ( stelsels ) en meerdere variabelen, maar waarin elke vergelijking er relatief eenvoudig uitziet, namelijk lineair is.

Nadere informatie

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b,

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b, UITWERKINGEN 1. Gegeven in R 3 zijn de punten P = (1, 1, ) t en Q = ( 2,, 1) t en het vlak V gegeven door de vergelijking 2x 1 x 2 + x 3 = 1. Zij l de lijn door P loodrecht op V en m de lijn door Q loodrecht

Nadere informatie

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005 Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 08-04-2005 1 Transportprobleem Onderdeel a Fabriek 1 kan 120 ton staal fabriceren in 40 uur. Voor fabriek 2 is dit 150

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Lineaire vergelijkingen

Lineaire vergelijkingen 1/24 VU Numeriek Programmeren 2.5 Charles Bos Vrije Universiteit Amsterdam c.s.bos@vu.nl, 1A40 8 april 2013 2/24 Overzicht Overzicht Onderwerpen & Planning Practicum Literatuur Taal Terugblik & Huiswerk

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 16 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 16 november 2016 1 / 28 Vandaag Integer Linear Programming (ILP)

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

Hoofdstuk 13: Integer Lineair Programmeren

Hoofdstuk 13: Integer Lineair Programmeren Hoofdstuk 13: Integer Lineair Programmeren Vandaag: Wat is Integer Lineair Programmeren (ILP)? Relatie tussen ILP en LP Voorbeeld 1: Minimum Spanning Tree (MST) Voorbeeld 2: Travelling Salesman Problem

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 11 Leo van Iersel Technische Universiteit Delft 25 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 25 november 2015 1 / 28 Vandaag Vraag Voor welke problemen

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Vandaag Netwerkstroming: definitie en toepassing Het rest-netwerk Verbeterende paden Ford-Fulkerson algoritme Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp Toepassing: koppelingen

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

Voorbeeld simplexmethode. Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 10, 3x 1 + x 2-2x 3 8, en x 1, x 2, x 3 0.

Voorbeeld simplexmethode. Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 10, 3x 1 + x 2-2x 3 8, en x 1, x 2, x 3 0. Voorbeeld simplexmethode Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 10, 3x 1 + x 2-2x 3 8, en x 1, x 2, x 3 0. Voer slackvariabelen (x 4, x 5 ) in: Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 28 september 2016 Leo van Iersel (TUD) Optimalisering 28 september 2016 1 / 18 Dualiteit Dualiteit: Elk LP probleem heeft een bijbehorend

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

INHOUDSOPGAVE LEERGANG BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

INHOUDSOPGAVE LEERGANG BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN INHOUDSOPGAVE LEERGANG BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN TEN GELEIDE Deze Leergang Besliskunde bevat de dictaten die ik heb geschreven voor de diverse besliskundecolleges die door mij

Nadere informatie

Overzicht. Lineaire vergelijkingen. Onderwerpen & Planning. Doel. VU Numeriek Programmeren 2.5

Overzicht. Lineaire vergelijkingen. Onderwerpen & Planning. Doel. VU Numeriek Programmeren 2.5 VU Numeriek Programmeren 25 Charles Bos Vrije Universiteit Amsterdam Tinbergen Institute csbos@vunl, A40 Onderwerpen & Planning Practicum Literatuur Taal Terugblik & Huiswerk 2 april 202 /26 2/26 Onderwerpen

Nadere informatie

Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie

Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Tentamen: Convexe Analyse en Optimalisering Opleiding: Bacheloropleiding Econometrie Vakcode: 64200 Datum:

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 28 september 2016 Leo van Iersel (TUD) Optimalisering 28 september 2016 1 / 18 Dualiteit Dualiteit: Elk LP probleem heeft een bijbehorend

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 11 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 11 november 2015 1 / 22 Mededelingen Huiswerk 2 nagekeken Terug

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 26 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober 2016 1 / 28 Deze week: analyseren van algoritmes Hoe

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d.

1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d. 1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d. een toewijzingsprobleem. 2. Het aantal toegelaten hoekpunten in een

Nadere informatie

Linalg.nb 1. Werk het notebook aandachtig door en maak de (genummerde) oefeningen aan het einde van elke sectie. Succes!

Linalg.nb 1. Werk het notebook aandachtig door en maak de (genummerde) oefeningen aan het einde van elke sectie. Succes! Linalg.nb Lineaire Algebra Andr Heck AMSTEL Instituut, Universiteit van Amsterdam Werk het notebook aandachtig door en maak de (genummerde) oefeningen aan het einde van elke sectie. Succes! Å Introductie

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Hoofdstuk 3 : Determinanten

Hoofdstuk 3 : Determinanten (A5D) Hoofdstuk 3 : Determinanten Les : Determinanten Definitie 3. De determinant van de [2 x 2]-matrix A = ( a c det(a) = ad bc. b ) is een getal met waarde d a b Notatie : det(a) = = ad bc c d Voorbeeld

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 () Tussentoets 26 november, tijdens de instructies Zaal: paviljoen (study hub) Time: 90min Tentamenstof: colleges 4 (LP; Simplex; dualiteit; complementaire slackness) Oude tentamens:

Nadere informatie

Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica

Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica Tentamen Optimalisering (2DD15) Vrijdag 24 juni 2011, 9:00 12:00 uur Het tentamen bestaat uit zeven opgaven. Bij elke opgave staat het

Nadere informatie

Matrices en Grafen (wi1110ee)

Matrices en Grafen (wi1110ee) Matrices en Grafen (wi1110ee) Electrical Engineering TUDelft September 1, 2010 September 1, 2010 Inleiding Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http:

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

Modellen en Simulatie Speltheorie

Modellen en Simulatie Speltheorie Utrecht, 20 juni 2012 Modellen en Simulatie Speltheorie Gerard Sleijpen Department of Mathematics http://www.staff.science.uu.nl/ sleij101/ Program Optimaliseren Nul-som matrix spel Spel strategie Gemengde

Nadere informatie

K.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x.

K.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. K.0 Voorkennis y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. y = -4x + 8 kan herschreven worden als y + 4x = 8 Dit is een lineaire vergelijking met twee variabelen. Als je

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Functies van vectoren

Functies van vectoren Functies van vectoren Alexander Ly Psychological Methods University of Amsterdam 15 September 2014 Overview 1 Notatie 2 Overview 1 Notatie 2 Matrices Een matrix schrijven we vaak met een hoofdletter A.

Nadere informatie

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j FLIPIT JAAP TOP Een netwerk bestaat uit een eindig aantal punten, waarbij voor elk tweetal ervan gegeven is of er wel of niet een verbinding is tussen deze twee. De punten waarmee een gegeven punt van

Nadere informatie

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n.

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. . Oefen opgaven Opgave... Gegeven zijn de lijnen l : 2 + λ m : 2 2 + λ 3 n : 3 6 4 + λ 3 6 4 a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. b) Bepaal de afstand tussen die lijn

Nadere informatie

Tentamen Inleiding Speltheorie 29-10-2003

Tentamen Inleiding Speltheorie 29-10-2003 entamen Inleiding Speltheorie 9-0-003 Dit tentamen telt 5 opgaven die in 3 uur moeten worden opgelost. Het maximaal te behalen punten is 0, uitgesplitst naar de verschillende opgaven. Voor het tentamencijfer

Nadere informatie

Uitwerkingen oefenopdrachten or

Uitwerkingen oefenopdrachten or Uitwerkingen oefenopdrachten or Marc Bremer August 10, 2009 Uitwerkingen bijeenkomst 1 Contact Dit document is samengesteld door onderwijsbureau Bijles en Training. Wij zijn DE expert op het gebied van

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound Algoritmiek 011/11 College 11 Elfde college algoritmiek 1 april 011 Dijkstra en Branch & Bound 1 Algoritmiek 011/11 Kortste paden Gegeven een graaf G met gewichten op de takken, en een beginknoop s. We

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Rekenen aan wortels Werkblad =

Rekenen aan wortels Werkblad = Rekenen aan wortels Werkblad 546121 = Vooraf De vragen en opdrachten in dit werkblad die vooraf gegaan worden door, moeten schriftelijk worden beantwoord. Daarbij moet altijd duidelijk zijn hoe de antwoorden

Nadere informatie

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur.

Universiteit Utrecht Betafaculteit. Examen Discrete Wiskunde II op donderdag 6 juli 2017, uur. Universiteit Utrecht Betafaculteit Examen Discrete Wiskunde II op donderdag 6 juli 2017, 13.30-16.30 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf op elk ingeleverd

Nadere informatie

BESLISKUNDE 3 L.C.M. KALLENBERG

BESLISKUNDE 3 L.C.M. KALLENBERG BESLISKUNDE 3 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN versie november 2010 Voorwoord De voorkennis van dit vak is het tweedejaarscollege Besliskunde 1. Het derdejaarscollege Besliskunde 2 is niet noodzakelijk,

Nadere informatie

Unitaire en Hermitese transformaties

Unitaire en Hermitese transformaties Hoofdstuk 11 Unitaire en Hermitese transformaties We beschouwen vervolgens lineaire transformaties van reële en complexe inproductruimten die aan extra eigenschappen voldoen die betrekking hebben op het

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

en-splitsingen: een aantal alternatieven worden parallel toegepast, of-splitsingen: van een aantal alternatieven wordt er één toegepast,

en-splitsingen: een aantal alternatieven worden parallel toegepast, of-splitsingen: van een aantal alternatieven wordt er één toegepast, Kansrekening voor Informatiekunde, 25 Les 8 Proces analyse Veel processen laten zich door netwerken beschrijven, waarin knopen acties aangeven en opdrachten langs verbindingen tussen de knopen verwerkt

Nadere informatie

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound Algoritmiek 013/11 College 11 Elfde college algoritmiek 1 mei 013 Dijkstra, Gretige algoritmen en Branch & Bound 1 Algoritmiek 013/11 Voorbeeld -1- A B C D E F G H 9 7 5 A B C D E F G H 0 9 9 7 5 A B C

Nadere informatie