Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University

Maat: px
Weergave met pagina beginnen:

Download "Optimalisering en Complexiteit, College 10. Begrensde variabelen. Han Hoogeveen, Utrecht University"

Transcriptie

1 Optimalisering en Complexiteit, College 10 Begrensde variabelen Han Hoogeveen, Utrecht University

2 Begrensde variabelen (1) In veel toepassingen hebben variabelen zowel een ondergrens als een bovengrens: l j x j u j. Neem aan dat l j >. De ondergrens kun je modelleren als x j x j l j 0; de Simplex methode houdt hier impliciet rekening mee (via de ratio regel). De bovengrens x j u j kun je opnemen als extra beperking in Ax = b. Nadeel: het aantal beperkingen neemt sterk toe; de looptijd van het algoritme wordt hoofdzakelijk bepaald door het aantal vergelijkingen en veel minder door het aantal variabelen. Efficiëntere aanpak: houd impliciet rekening met zowel de ondergrens als de bovengrens. Dit leidt tot de Simplex methode voor begrensde variabelen.

3 Begrensde variabelen (2) Je kunt weer bewijzen dat een eindig optimum wordt aangenomen in een TBO. Neem voorlopig aan dat je een TBO kent. In een TBO zijn er weer m basisvariabelen; er geldt weer B = (a B1, a B2,..., a Bm ). De niet-basisvariabelen hebben een waarde die gelijk is aan hun ondergrens dan wel bovengrens (net als vroeger, maar toen had je alleen een ondergrens van 0). Uitgaande van een TBO, herformuleer het probleem (net als vanouds) door de doelstellingsfunctie en de basisvariabelen uit te drukken in de niet-basisvariabelen. Het probleem wordt dan: minimaliseer z onder de voorwaarden z + j R (z j c j )x j = z 0 x Bi + j R y ijx j = b i l j x j u j voor i = 1,..., m voor j = 1,..., n

4 Begrensde variabelen (3) Om onderscheid te maken tussen de niet-basisvariabelen die op hun ondergrens staan en de niet-basisvariabelen die op hun bovengrens staan splitsen we de indexverzameling R op. R 1 is de verzameling die de indices bevat van de niet-basisvariabelen die op hun ondergrens staan. R 2 is de verzameling die de indices bevat van de niet-basisvariabelen die op hun bovengrens staan. Dit levert de volgende vergelijkingen op z + j R 1 (z j c j )x j + j R 2 (z j c j )x j = z 0 x Bi + j R 1 y ij x j + j R 2 y ij x j = b i (i = 1,..., m) Stelling. De huidige TBO is optimaal indien 1 z j c j 0 voor alle j R 1 2 z j c j 0 voor alle j R 2 Indien dit niet het geval is, dan moet je itereren. Hierbij moet weer een niet-basisvariabele een andere waarde krijgen.

5 Iteratie begrensde variabelen (1) Bepaal eerst de waarden van de huidige basisvariabelen en waarde van de doelstellingsfunctie uit de vergelijkingen; vul in x j = l j voor alle j R 1 en x j = u j voor alle j R 2. Gebruik de volgende notatie: ẑ is de waarde van de doelstellingsfunctie in de huidige TBO; b i is de waarde van x Bi in de huidige TBO. N.B.: er geldt niet langer ẑ = z 0 en b i = b i, aangezien niet alle basisvariabelen waarde 0 hebben. Bepaal de niet-basisvariabele x k die het meeste oplevert k arg max{max j R 1 (z j c j ), max j R 2 ( (z j c j )}

6 Iteratie begrensde variabelen (2) Stel dat k R 1 : x k staat nu op zijn ondergrens, en we verhogen x k met 0. Uitgaande van een verhoging met, bereken de nieuwe waarden van de variabelen op grond van de vergelijkingen. De niet-basisvariabelen houden dezelfde waarde, behalve x k. x k l k + b i b i y ik voor i = 1,..., m ẑ ẑ (z k c k ) Kies maximaal, onder de voorwaarde dat je blijft voldoen aan de onder- en bovengrenzen. l k + u k l Bi b i y ik u Bi voor i = 1,..., m Voer de iteratie uit op basis van deze conclusie (komt later).

7 Iteratie begrensde variabelen (3) Stel dat k R 2 : x k staat nu op zijn bovengrens, en we verlagen x k met 0. Uitgaande van een verlaging met, bereken de nieuwe waarden van de variabelen op grond van de vergelijkingen. De niet-basisvariabelen houden dezelfde waarde, behalve x k. x k u k b i b i + y ik voor i = 1,..., m ẑ ẑ + (z k c k ) Kies maximaal, onder de voorwaarde dat je blijft voldoen aan de onder- en bovengrenzen. l k u k l Bi b i + y ik u Bi voor i = 1,..., m Voer iteratie uit.

8 Iteratie begrensde variabelen (4) Verdere actie afhankelijk van de grens waar tegenaan gelopen is. 1 = u k l k. x k blijft een niet-basisvariabele, maar hij gaat op zijn andere grens. De basis blijft gelijk; je hoeft de vergelijkingen niet te herformuleren. Pas de waarden b i en ẑ aan. 2 De waarde van komt van de eis l Br b i ± y ik u Br. x k in de basis in plaats van x Br. Herformuleer de vergelijkingen door te pivoteren op y rk. x Br gaat op zijn onder- dan wel bovengrens, afhankelijk van of b i ± y ik gelijk wordt aan l Br of u Br. Pas de waarden b i en ẑ aan.

9 Iteratie met tableau Vervang RHS door RHS; hieronder komen de waarden van de basisvariabelen te staan in plaats van z 0 en b i (i = 1,..., m). Zet onder x j weer (z j c j ) op de nulde rij en y j eronder. Wederom geldt dat bij een correct tableau onder x Bi een 0 op de nulde rij staat en e i daaronder. Zet boven iedere niet-basisvariabele x j een l als j R 1 en een u als j R 2. Aan de hand van de nulde rij kun je controleren of een bewezen optimum hebt. Wanneer je x k in de basis brengt dan vind je y k op de rijen 1,..., m onder x k en je vindt b onder RHS. De grenzen voor de variabelen staan niet in het tableau. N.B. Pas indien nodig de vergelijkingen aan door te pivoteren, maar niet onder RHS; de waarden daar moet je handmatig aanpassen. Reken de juiste waarden uit door in te vullen.

10 Bepaling begin TBO Ideale situatie: A bevat de eenheidsmatrix; De waarden van de beoogde basisvariabelen zijn toegelaten. De spelingsvariabelen zijn kandidaat om in de basis te gaan. Kies voor de niet-basisvariabelen of ze op hun ondergrens of bovengrens staan. Reken de waarden van de beoogde basisvariabelen uit. Indien een spelingsvariabele een negatieve waarde heeft, dan voeg je een kunstmatige variabele in die het tegenovergestelde is van die spelingsvariabele. Wanneer je nog ergens een eenheidsvector tekort komt, dan voeg je die toe met een plus of een min teken; kies dit zodanig dat de waarde van die kunstmatige variabele 0 is. Pas de twee-fasen methode toe.

11 Voorbeeld Simplex begrensde variabelen Probeer het onderstaande probleem op te lossen met de Simplex methode voor begrensde variabelen. Minimaliseer z = x 1 + 2x 2 2x 3 x 4 o.v. 2x 1 x 2 + x 3 2x 4 6 x 1 + 2x 2 x 3 + x 4 8 x 1 + x 2 x x x x x 4 12 Begin TBO: Probeer x 5, x 6, x 7 als basisvariabelen. Zet x 1, x 2, x 4 op hun ondergrens en x 3 op zijn bovengrens. Reken x 5, x 6, x 7 uit: x 5 = 7, x 6 = 8 en x 7 = 6. Voeg kunstmatige variabele x 8 0 toe aan de derde beperking.

12 Voorbeeld Na invoering van x 5, x 6, x 7 en x 8 ziet het probleem er als volgt uit. z = x 1 + 2x 2 2x 3 x 4 2x 1 x 2 + x 3 2x 4 + x 5 = 6 x 1 + 2x 2 x 3 + x 4 + x 6 = 8 x 1 + x 2 x 3 x 7 + x 8 = 3 0 x x x x 4 12 x 5, x 6, x 7, x 8 0 Stel het tableau op voor de eerste fase. De doelstellingsfunctie is minimaliseer z = x 8.

13 Begintableau l l u l l x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 RHS hulprij z x x x En nu?

14 Iteratie (1) Kies ervoor om x 3 te verlagen (x 1 en x 2 leveren net zoveel op, maar dit komt goed uit). Het blijkt dat x 8 uit de basis gaat; deze wordt op zijn ondergrens gezet. Updaten tableau levert: l l l l l x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 RHS z x x x TBO gevonden; eerste fase afgelopen. Ga door met tweede fase.

15 Iteratie (2) Voeg de oorspronkelijke doelstellingsfunctievergelijking toe. Reken ẑ uit. Het eerste tableau van de tweede fase luidt: l l l l x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS hulprij z x x x Wat nu?

16 Iteratie (3) We kiezen er voor om x 1 te verhogen (x 4 had ook gekund). Het blijkt dat x 1 op zijn bovengrens wordt gezet. Je hoeft niet te pivoteren (basis blijft gelijk), maar je moet wel de waarden onder RHS aanpassen. Het nieuwe tableau luidt: u l l l x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS z x x x Wat nu?

17 Iteratie (4) Je kunt de waarde van de doelstellingsfunctie verlagen door x 4 te verhogen; dit levert 1 op per eenheid verhoging. x 6 verdwijnt uit de basis en wordt op zijn ondergrens gezet. Updaten tableau en RHS aanpassen geeft u l l l x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS z x x x Wat nu?

TU/e 2DD50: Wiskunde 2

TU/e 2DD50: Wiskunde 2 TU/e 2DD50: Wiskunde 2 Enkele mededelingen Instructies (vandaag, 10:45 12:30) in vier zalen: Zaal Aud 10 Pav b2 Pav m23 Ipo 0.98 voor studenten met achternaam beginnend met letters A tot en met D met letters

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 3 Leo van Iersel Technische Universiteit Delft 21 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 21 september 2016 1 / 36 LP: Lineair Programmeren min x 1 2

Nadere informatie

l e x e voor alle e E

l e x e voor alle e E Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met

Nadere informatie

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord).

1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord). Tentamen Optimalisering (IN2805-I) Datum: 3 april 2008, 14.00 17.00. Docent: Dr. J.B.M. Melissen Naam: Studienummer: 1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 10 Leo van Iersel Technische Universiteit Delft 23 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 23 november 2016 1 / 40 Vraag Ik heb het deeltentamen niet

Nadere informatie

Branch-and-Bound en Cutting Planes

Branch-and-Bound en Cutting Planes Branch-and-Bound en Cutting Planes Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft 2 Polynomiaal algoritme

Nadere informatie

Optimalisering en Complexiteit, College 14. Geheeltallige LPs en Planning bij Grolsch. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 14. Geheeltallige LPs en Planning bij Grolsch. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 14 Geheeltallige LPs en Planning bij Grolsch Han Hoogeveen, Utrecht University Branch-and-bound voor algemene ILPs (1) Neem even aan dat je een minimaliseringsprobleem

Nadere informatie

TU/e 2DD50: Wiskunde 2

TU/e 2DD50: Wiskunde 2 TU/e 2DD50: Wiskunde 2 Enkele mededelingen Tussentoets: 26 november, tijdens de instructies Tentamenstof: LP; Simplex; dualiteit (= colleges 1 4) Bij de tussentoets mag een eenvoudige (niet programmeerbare)

Nadere informatie

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : j.a.hoogeveen@uu.nl Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Student assistenten

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 () Tussentoets 26 november, tijdens de instructies Zaal: paviljoen (study hub) Time: 90min Tentamenstof: colleges 4 (LP; Simplex; dualiteit; complementaire slackness) Oude tentamens:

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 (1) Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Gerhard Woeginger Thu 1+2 Aud 1+4 Gerhard Woeginger Clicker session Tue 7+8 Aud 6+15 Gerhard Woeginger

Nadere informatie

BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN Voorwoord Dit vak is een voortzetting van het tweedejaarscollege Besliskunde. Een aantal andere mathematische beslissingsproblemen komt aan de orde en

Nadere informatie

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk.

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Netwerkanalyse (H3) Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Deze problemen kunnen vaak als continu LP probleem worden opgelost. Door de speciale structuur

Nadere informatie

1 Vervangingsstrategie auto

1 Vervangingsstrategie auto Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 28-03-2002 1 Vervangingsstrategie auto Onderdeel a Zij V = {0, 1, 2, 3, 4, 5, 6}, waarbij knoop i staat voor het einde

Nadere informatie

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015

Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015 Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 23 september 2015 Leo van Iersel (TUD) Optimalisering 23 september 2015 1 / 19 Mededelingen Maandag 28 september: deadline huiswerk

Nadere informatie

Lineaire Optimilizatie Extra sessie. 19 augustus 2010

Lineaire Optimilizatie Extra sessie. 19 augustus 2010 Lineaire Optimilizatie Extra sessie 19 augustus 2010 De leerstof Handboek: hoofdstuk 2 t.e.m. 8 (incl. errata) Slides (zie toledo) Extra opgaven (zie toledo) Computersessie: Lindo syntax en output Wat

Nadere informatie

1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3.

1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3. 1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3. Een LP probleem heeft n>2 variabelen en n+2 constraints.

Nadere informatie

Hoofdstuk 13: Integer Lineair Programmeren

Hoofdstuk 13: Integer Lineair Programmeren Hoofdstuk 13: Integer Lineair Programmeren Vandaag: Wat is Integer Lineair Programmeren (ILP)? Relatie tussen ILP en LP Voorbeeld 1: Minimum Spanning Tree (MST) Voorbeeld 2: Travelling Salesman Problem

Nadere informatie

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen Tentamen Optimalisering (IN2520) Datum: 5 november 2004, 14.00 17.00. Docent: Dr. J.B.M. Melissen Veel succes! 1 Deze opgave bestaat uit 15 tweekeuzevragen. Per goed antwoord krijg je 2 punten. a. Dynamisch

Nadere informatie

Begrenzing van het aantal iteraties in het max-flow algoritme

Begrenzing van het aantal iteraties in het max-flow algoritme Begrenzing van het aantal iteraties in het max-flow algoritme Het oplossen van het maximum stroom probleem met behulp van stroomvermeerderende paden werkt, maar het aantal iteraties kan aardig de spuigaten

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 26 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober 2016 1 / 28 Deze week: analyseren van algoritmes Hoe

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 16 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 16 november 2016 1 / 28 Vandaag Integer Linear Programming (ILP)

Nadere informatie

Lineaire programmering

Lineaire programmering Lineaire programmering Hans Maassen kort naar Inleiding Besliskunde van J. Potters [Pot]. en Methods of Mathematical Economics van J. Franklin [Fra]. Lineaire programmering is het bepalen van het maximum

Nadere informatie

Tie breaking in de simplex methode

Tie breaking in de simplex methode Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.

Nadere informatie

ffl een willekeurige LP in standaard vorm kan omzetten ffl het bij een basis toebehorend tableau en de basisoplossing kan berekenen ffl de simplex alg

ffl een willekeurige LP in standaard vorm kan omzetten ffl het bij een basis toebehorend tableau en de basisoplossing kan berekenen ffl de simplex alg Grafentheorie en Operationele Research 158070 Handout Operationele Research gedeelte 1 Inleiding 1.1 Inhoud Het Operationele Research gedeelte van het vak 'Grafentheorie en Operationele Research' houdt

Nadere informatie

Faculteit der Economie en Bedrijfskunde

Faculteit der Economie en Bedrijfskunde Faculteit der Economie en Bedrijfskunde Op dit voorblad vindt u belangrijke informatie omtrent het tentamen. Lees dit voorblad voordat u met het tentamen begint! Tentamen: Operational Research 1D (4016)

Nadere informatie

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005 Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 08-04-2005 1 Transportprobleem Onderdeel a Fabriek 1 kan 120 ton staal fabriceren in 40 uur. Voor fabriek 2 is dit 150

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 27 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ l.j.j.v.iersel@gmail.com

Nadere informatie

Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica

Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica Tentamen Optimalisering (2DD15) Vrijdag 24 juni 2011, 9:00 12:00 uur Het tentamen bestaat uit zeven opgaven. Bij elke opgave staat het

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken).

A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken). 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A. Grafentheorie Vraag. Neem drie knooppunten i, j en k. d(i, k) = het minimum aantal takken in een keten tussen i en k Vraag.2 het minimum aantal takken in een keten

Nadere informatie

Geheeltallige programmering

Geheeltallige programmering Geheeltallige programmering In een LP probleem zijn alle variabelen reëel. In een geheeltallig probleem blijven doelfunctie en constraints lineair, maar zijn de variabelen geheeltallig. LP: IP: BIP: MIP:

Nadere informatie

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST College 12 Twaalfde college complexiteit 11 mei 2012 Overzicht, MST 1 Agenda voor vandaag Minimum Opspannende Boom (minimum spanning tree) als voorbeeld van greedy algoritmen Overzicht: wat voor technieken

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Bijlage A Simplex-methode

Bijlage A Simplex-methode Dee bijlage hoort bij Beter beslissen, Bijlage A Simplex-methode Verreweg de meeste LP-problemen worden opgelost met behulp van het ogenoemde Simplex-algoritme, in ontwikkeld door G.B. Dantig. De meeste

Nadere informatie

Getaltheorie groep 3: Primitieve wortels

Getaltheorie groep 3: Primitieve wortels Getaltheorie groep 3: Primitieve wortels Trainingsweek juni 2008 Inleiding Voor a relatief priem met m hebben we de orde van a modulo m gedefinieerd als ord m (a) = min { n Z + a n 1 (mod m) }. De verzameling

Nadere informatie

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6.

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6. Overzicht 1. Definities 2. Basisalgoritme 3. Label setting methoden 4. Label correcting methoden 5. Ondergrenzen 6. Resultaten Kortste Pad Probleem 1 Definities Een graaf G = (V, E) bestaat uit een verzameling

Nadere informatie

TI83-werkblad. Vergelijkingen bij de normale verdeling

TI83-werkblad. Vergelijkingen bij de normale verdeling TI83-werkblad Vergelijkingen bij de normale verdeling 1. Inleiding Een normale verdeling wordt bepaald door de constanten µ en σ. Dit blijkt uit het voorschrift van de verdelingsfunctie van de normale

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Bespreking van het examen Complexe Analyse (tweede zittijd)

Bespreking van het examen Complexe Analyse (tweede zittijd) Bespreking van het examen Complexe Analyse (tweede zittijd) Bekijk ook de bespreking van het examen van de eerste zittijd (op Toledo). Het valt hier op dat de scores op sommige vragen wel heel slecht zijn.

Nadere informatie

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran Aanvulling aansluitingscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de Aansluitingscursus staan. Die onderwerpen zijn: complexe getallen en volledige

Nadere informatie

Dag van de wiskunde 22 november 2014

Dag van de wiskunde 22 november 2014 WISKUNDIGE UITDAGINGEN MET DE TI-84 L U C G H E Y S E N S VRAGEN/OPMERKINGEN/ peter.vandewiele@telenet.be TOEPASSING 1: BODY MASS INDEX Opstarten programma en naamgeven! Peter Vandewiele 1 TOEPASSING 1:

Nadere informatie

Optimalisering en Complexiteit, College 2. Han Hoogeveen, Utrecht University

Optimalisering en Complexiteit, College 2. Han Hoogeveen, Utrecht University Optimalisering en Complexiteit, College 2 Han Hoogeveen, Utrecht University Inhoud vandaag Inhoud: Uitleg methode Bespreking oude opdracht: Bezorgen wenskaarten Slides staan al op het web www.cs.uu.nl/docs/vakken/opt/colleges.html

Nadere informatie

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument Complexiteit 2017/05 College 5 Vijfde college complexiteit 21 februari 2017 Selectie Toernooimethode Adversary argument 1 Complexiteit 2017/05 Opgave 28 Gegeven twee oplopend gesorteerde even lange rijen

Nadere informatie

Enkele uitbreidingen op het simplexalgoritme

Enkele uitbreidingen op het simplexalgoritme Enkele uitbreidingen op het simplexalgoritme Stageverslag Rovecom Moniek Messink 2 oktober 2014 Enkele uitbreidingen op het simplexalgoritme Stageverslag Rovecom Masterscriptie Wiskunde 2 oktober 2014

Nadere informatie

Local search. Han Hoogeveen. 21 november, 2011

Local search. Han Hoogeveen. 21 november, 2011 1 Local search Han Hoogeveen 21 november, 2011 Inhoud vandaag 2 Inhoud: Uitleg methode Bespreking oude opdrachten: ˆ Bezorgen wenskaarten ˆ Roosteren tentamens Slides staan al op het web www.cs.uu.nl/docs/vakken/opt/colleges.html

Nadere informatie

Handleiding. Haalbaarheidsanalyse. Technische informatie. - Internet Explorer vanaf versie 8. - Mozilla Firefox vanaf versie 13

Handleiding. Haalbaarheidsanalyse. Technische informatie. - Internet Explorer vanaf versie 8. - Mozilla Firefox vanaf versie 13 Handleiding Haalbaarheidsanalyse Technische informatie De door Vermogensdidact geleverde tools werken correct onder Windows met de browsers: - Internet Explorer vanaf versie 8 - Mozilla Firefox vanaf versie

Nadere informatie

4 Positieve en niet-negatieve lineaire algebra

4 Positieve en niet-negatieve lineaire algebra 4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,

Nadere informatie

Voorbeeld simplexmethode. Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 10, 3x 1 + x 2-2x 3 8, en x 1, x 2, x 3 0.

Voorbeeld simplexmethode. Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 10, 3x 1 + x 2-2x 3 8, en x 1, x 2, x 3 0. Voorbeeld simplexmethode Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 10, 3x 1 + x 2-2x 3 8, en x 1, x 2, x 3 0. Voer slackvariabelen (x 4, x 5 ) in: Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2006 2007, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Verzamelingen:

Nadere informatie

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen Worteltrekken modulo een priemgetal: van klok tot cutting edge Roland van der Veen Modulorekenen Twee getallen a en b zijn gelijk modulo p als ze een veelvoud van p verschillen. Notatie: a = b mod p Bijvoorbeeld:

Nadere informatie

Spider Solitaire is NP-Compleet

Spider Solitaire is NP-Compleet Spider Solitaire is NP-Compleet Kenneth Verstraete 21 april 2016 1 Inleiding Spider Solitaire is een populair kaartspel dat alleen gespeeld wordt. Het werd/wordt standaard bij o.a. Microsoft Windows meegeleverd.

Nadere informatie

Statistiek: Het sommatieteken. 25 oktober dr. Brenda Casteleyn

Statistiek: Het sommatieteken. 25 oktober dr. Brenda Casteleyn Statistiek: Het sommatieteken 25 oktober 2015 dr. Brenda Casteleyn 1. Theorie Het sommatieteken wordt gebruikt om een som verkort voor te stellen. 1) Optelling van waarden met een bepaalde beginwaarde

Nadere informatie

Examenvragen D0H45 (Lineaire optimalizatie)

Examenvragen D0H45 (Lineaire optimalizatie) Examenvragen D0H45 (Lineaire optimalizatie) Tijdstip: Vrijdag 3 februari 2012 vanaf 09.00 uur tot 12.00 uur Er zijn vier opgaven. Achter de opgaven zitten de bladzijden die u kunt gebruiken om uw antwoord

Nadere informatie

Een combinatorische oplossing voor vraag 10 van de LIMO 2010

Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Stijn Vermeeren (University of Leeds) 16 juni 2010 Samenvatting Probleem 10 van de Landelijke Interuniversitaire Mathematische Olympiade 2010vraagt

Nadere informatie

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound Algoritmiek 011/11 College 11 Elfde college algoritmiek 1 april 011 Dijkstra en Branch & Bound 1 Algoritmiek 011/11 Kortste paden Gegeven een graaf G met gewichten op de takken, en een beginknoop s. We

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound Algoritmiek 013/11 College 11 Elfde college algoritmiek 1 mei 013 Dijkstra, Gretige algoritmen en Branch & Bound 1 Algoritmiek 013/11 Voorbeeld -1- A B C D E F G H 9 7 5 A B C D E F G H 0 9 9 7 5 A B C

Nadere informatie

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Rick van der Zwet 8 december 2010 Samenvatting Dit schrijven zal uitwerkingen van opgaven behandelen uit het boek [JS2009]

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

OPDRACHT Opdracht 2.1 Beschrijf in eigen woorden wat het bovenstaande PSD doet.

OPDRACHT Opdracht 2.1 Beschrijf in eigen woorden wat het bovenstaande PSD doet. Les C-02: Werken met Programma Structuur Diagrammen 2.0 Inleiding In deze lesbrief bekijken we een methode om een algoritme zodanig structuur te geven dat er gemakkelijk programmacode bij te schrijven

Nadere informatie

Stabiele koppelingen (Engelse titel: Stable Matchings)

Stabiele koppelingen (Engelse titel: Stable Matchings) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Stabiele koppelingen (Engelse titel: Stable Matchings) Verslag ten behoeve van het

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

Leeswijzer bij het college Functies en Reeksen

Leeswijzer bij het college Functies en Reeksen Leeswijzer bij het college Functies en Reeksen Erik van den Ban Najaar 2012 Introductie eze leeswijzer bij het dictaat Functies en Reeksen (versie augustus 2011) heeft als doel een gewijzigde opbouw van

Nadere informatie

Snel starten met de VSGO-GIP in Testweb

Snel starten met de VSGO-GIP in Testweb Snel starten met de VSGO-GIP in Testweb WAAR? Je vindt testweb op de volgende website: testweb.bsl.nl kies aan de rechterkant (in het groene kader) voor: Direct inloggen Testweb Vroegsignalering INLOGGEN

Nadere informatie

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013

Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 1 Inhoudsopgave 1 Transport problemen 3 2 Definities en stellingen

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Combinatorische Optimalisatie, 2013 Week 1 20-02-2013 Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Opgave 1.16 Bewijs dat elke graaf een even aantal punten

Nadere informatie

Netwerkdiagram voor een project. AON: Activities On Nodes - activiteiten op knooppunten

Netwerkdiagram voor een project. AON: Activities On Nodes - activiteiten op knooppunten Netwerkdiagram voor een project. AON: Activities On Nodes - activiteiten op knooppunten Opmerking vooraf. Een netwerk is een structuur die is opgebouwd met pijlen en knooppunten. Bij het opstellen van

Nadere informatie

1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d.

1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d. 1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d. een toewijzingsprobleem. 2. Het aantal toegelaten hoekpunten in een

Nadere informatie

Modelleren C Appels. Christian Vleugels Sander Verkerk Richard Both. 2 april 2010. 1 Inleiding 2. 3 Data 3. 4 Aanpak 3

Modelleren C Appels. Christian Vleugels Sander Verkerk Richard Both. 2 april 2010. 1 Inleiding 2. 3 Data 3. 4 Aanpak 3 Modelleren C Appels Christian Vleugels Sander Verkerk Richard Both 2 april 2010 Inhoudsopgave 1 Inleiding 2 2 Probleembeschrijving 2 3 Data 3 4 Aanpak 3 5 Data-analyse 4 5.1 Data-analyse: per product.............................

Nadere informatie

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Rick van der Zwet 13 november 2010 Samenvatting Dit schrijven zal uitwerkingen van opgaven behandelen uit het boek [JS2009]

Nadere informatie

Derde college complexiteit. 7 februari Zoeken

Derde college complexiteit. 7 februari Zoeken College 3 Derde college complexiteit 7 februari 2017 Recurrente Betrekkingen Zoeken 1 Recurrente betrekkingen -1- Rij van Fibonacci: 0,1,1,2,3,5,8,13,21,... Vanaf het derde element: som van de voorgaande

Nadere informatie

NUMERIEKE METHODEN VOOR DE VAN DER POL VERGELIJKING. Docent: Karel in t Hout. Studiepunten: 3

NUMERIEKE METHODEN VOOR DE VAN DER POL VERGELIJKING. Docent: Karel in t Hout. Studiepunten: 3 NUMERIEKE METHODEN VOOR DE VAN DER POL VERGELIJKING Docent: Karel in t Hout Studiepunten: 3 Over deze opgave dien je een verslag te schrijven waarin de antwoorden op alle vragen zijn verwerkt. Richtlijnen

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn Statistiek: Spreiding en dispersie 6/12/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie Met spreiding willen we in één getal uitdrukken hoe verspreid de gegevens zijn: in hoeveel

Nadere informatie

De partitieformule van Euler

De partitieformule van Euler De partitieformule van Euler Een kennismaking met zuivere wiskunde J.H. Aalberts-Bakker 29 augustus 2008 Doctoraalscriptie wiskunde, variant Communicatie en Educatie Afstudeerdocent: Dr. H. Finkelnberg

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

Examen PC 2 Financiële Rekenkunde

Examen PC 2 Financiële Rekenkunde Examen PC 2 Financiële Rekenkunde Instructieblad Examen : Professional Controller 2 leergang 8 Vak : Financiële Rekenkunde Datum : 18 december 2014 Tijd : 14.00 15.30 uur Deze aanwijzingen goed lezen voor

Nadere informatie

Excel. Inleiding. Het meest gebruikte spreadsheet programma is Excel.

Excel. Inleiding. Het meest gebruikte spreadsheet programma is Excel. Excel Inleiding Het woord computer betekent zoiets als rekenmachine. Daarmee is is eigenlijk aangegeven wat een computer doet. Het is een ingewikkelde rekenmachine. Zelf voor tekstverwerken moet hij rekenen.

Nadere informatie

6.3.2 We moeten onderzoeken of de volgende bewering juist is of niet: x [ P (x ) Q (x )] xp(x ) xq(x ). De bewering is onjuist:

6.3.2 We moeten onderzoeken of de volgende bewering juist is of niet: x [ P (x ) Q (x )] xp(x ) xq(x ). De bewering is onjuist: 6.3.2 We moeten onderzoeken of de volgende bewering juist is of niet: x [ P (x ) Q (x ) xp(x ) xq(x ). De bewering is onjuist: Kies als tegenvoorbeeld: P (x ):x 2 > 0enQ (x ):x>0, voor U = R Dan geldt:

Nadere informatie

RSA. F.A. Grootjen. 8 maart 2002

RSA. F.A. Grootjen. 8 maart 2002 RSA F.A. Grootjen 8 maart 2002 1 Delers Eerst wat terminologie over gehele getallen. We zeggen a deelt b (of a is een deler van b) als b = qa voor een of ander geheel getal q. In plaats van a deelt b schrijven

Nadere informatie

4051CALC1Y Calculus 1

4051CALC1Y Calculus 1 4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 j.t.vanessen@tudelft.nl Slides op http://homepage.tudelft.nl/v9r7r/

Nadere informatie

DESIGN BY PERFORMANCE IS EEN SOFTWARE GEDREVEN METHODE OM DE GEBOUWDE OMGEVING TE OPTIMALISEREN. INZENDING ARC-AWARDS INNOVATIE

DESIGN BY PERFORMANCE IS EEN SOFTWARE GEDREVEN METHODE OM DE GEBOUWDE OMGEVING TE OPTIMALISEREN. INZENDING ARC-AWARDS INNOVATIE DESIGN BY PERFORMANCE IS EEN SOFTWARE GEDREVEN METHODE OM DE GEBOUWDE OMGEVING TE OPTIMALISEREN. INZENDING ARC-AWARDS INNOVATIE IN EXTREEM KORTE TIJD BESLISSINGEN NEMEN OP BASIS VAN FEITEN ARCHITECTONISCH

Nadere informatie

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS Algoritmiek 2016/Dynamisch Programmeren Tiende college algoritmiek 14 april 2016 Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS 1 Algoritmiek 2016/Dynamisch Programmeren Houtzaagmolen

Nadere informatie

Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.

Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden. 1 Formules gebruiken Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Formules gebruiken Inleiding Verkennen Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN VOORJAAR 2003 Inhoudsopgave 1 Inleiding 1 1.1 Wat is Operations Research?.............................. 1 1.2 Overzicht van de te behandelen

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Basisvaardigheden Microsoft Excel

Basisvaardigheden Microsoft Excel Basisvaardigheden Microsoft Excel Met behulp van deze handleiding kun je de basisvaardigheden leren die nodig zijn om meetresultaten van een practicum te verwerken. Je kunt dan het verband tussen twee

Nadere informatie

Wiskundige beweringen en hun bewijzen

Wiskundige beweringen en hun bewijzen Wiskundige beweringen en hun bewijzen Analyse (en feitelijk de gehele wiskunde) gaat over het bewijzen van beweringen (proposities), d.w.z. uitspraken waaraan de karakterisering waar of onwaar toegekend

Nadere informatie