Onderzoeksmethoden II: introductie multilevel analyse

Maat: px
Weergave met pagina beginnen:

Download "Onderzoeksmethoden II: introductie multilevel analyse"

Transcriptie

1 Onderzeksmethden II: intrductie multilevel analyse Vraf: Verschillende niveaus in één analyse bereken. Multilevel: bijvrbeeld alles met schlen. L1: leerlingen in de schlen selecteren. L2: schlen in grepen selecteren. L3: verschillende grepen/regi s in Eurpa kiezen. Dit kan p basis van bijvrbeeld schlkarakteristieken f het SES van de schl. Straks SES berekenen in vrbeeld. Geclusterde data. Resultaat: lineair mdel niet meer kunnen gebruiken aanpassen lineair mixed mdel. Brede tepassing: multi level analyse. 1. Data met afhankelijke bservaties 1.1 Afhankelijk Wanneer zijn bservaties niet nafhankelijk? Er zijn in het algemeen twee situaties waarin zich dit vrdet. Expliciete afhankelijkheid: De data wrdt (met pzet) z verzameld, zdat de bservaties niet nafhankelijk zijn. Bijvrbeeld: Eerst trekken we een steekpref van schlen: daarna trekken we in elke schl een steekpref van leerlingen, van elke leerling verzamelen we scren ivm begrijpen lezen. We meten de bleddruk van een patiënt elke dag gedurende tien weken. In een experiment zijn er 4 cndities: elk subject drlpt 4 cndities. Lezen met muziek. Lezen met harde muziek. Lezen terwijl er gepraat wrdt. Lezen als het helemaal stil is. En dit bij 1 persn testen dus de scres zullen afhankelijk zijn van elkaar. Bijvrbeeld turven bij haperingen! Prbleem Bijvrbeeld 20x de lengte van een persn meten afhankelijk! Randm kiezen. Op een rijtje zetten: randm dr elkaar: nafhankelijk. Je weet wel in welke range het ngeveer zit. Allerlei vrmen van afhankelijkheid. Bijvrbeeld bleddruk van een patiënt wrdt gedurende 10 weken gemeten. Niet afhankelijk. Persn met persnseffect. Andere patiënt 10w eken vlgen. Bijvrbeeld dag 1= lage bleddruk mensen uit het publiek hun bleddruk meten = nafhankelijk van elkaar. Bijvrbeeld bij schlen leerlingen zitten in klassen met sms uitstekende leraar = niveaus kunnen verschillen tussen de leraren. Vrtest. Interventie (actie/placeb).

2 Psttest. Ng testen blijft effect duren. Randm schlen selecteren (kathlieke net wel selecteren) ± 100 schlen. Randm leerlingen kiezen, maar meestal klasgewijs ±25 leerlingen. Klas f schleffect zijn mgelijk evenals het leraareffect. Hiermee rekening huden tijdens de analyse. Multi level analyse: afhankelijke data creëren. Impliciete afhankelijkheid Ongewenste mstandigheden vervuilen de data: Data mtrent alchlgebruik (en misbruik) in een grte (randm) steekpref wrdt verzameld p basis van interviews; vijf verschillende interviews (elk met hun eigen stijl) wrden ingezet m de interviews af te nemen. Passief. Suggestief. 5 types van alchlmisbruik. Te veel vervuiling van het intervieweffect. Data mtrent depressie wrdt verzameld in een grte (randm) steekpref ver een peride van 10 dagen; de laatste twee dagen zijn grijs en regenachtig. Gemiddelde scres lager p de laatste twee dagen. Inwisselbaarheid Onafhankelijke bservaties zijn inwisselbaar; niet nafhankelijk bservaties niet. 1.2 Verschillende types niet nafhankelijkheid Geclusterde data Smmige bservaties hren van nature bijeen: f ng: ze behren tt dezelfde cluster f grep. De clusters f grepen zijn randm gekzen: alle bservaties die tt cluster f grep behren gaan autmatisch deel uit maken van de steekpref. Vrbeeld: een gezin, een gebit, een kppel Observaties die behren tt dezelfde cluster f grep zijn niet nafhankelijk. Hiërarchische data Steekpreftrekking vindt plaats p verschillende niveaus (levels); de niveaus zijn genest in elkaar. Vrbeeld: schlen en leerlingen, klinische centra en patiënten, West-Eurpa en de bedrijven met hun werknemers Sms zijn de bservaties niet perfect genest: een werknemer werkt vr meer dan 1 bedrijf, f een patiënt wrdt behandeld in meerdere centra; men nemt dit partial nesting f partial crssing. De bservaties binnen eenzelfde niveau zijn niet nafhankelijk. Gematchte data Men vertrekt van een bestaande set van nafhankelijke bservaties; vr elke bservatie gaat men p zek naar een gelijkaardige bservatie. Delicaat m grep die medicijnen krijgt te vergelijken met een cntrlegrep (tenzij je er 2000 hebt). Vrbeeld: case cntrl studies: Men vertrekt van een randm steekpref van patiënten. Vr elke patiënt zekt men een andere patiënt met een gelijkaardig prfiel (matching); p die manier bekmt men telkens paren. Van elk paar wrdt er 1 patiënt tegewezen aan de cntrle grep, terwijl de andere patiënt wrdt tegewezen aan de behandelingsgrep. Matching kan gebeuren p basis van 1 dimensie (bijvrbeeld leeftijd), maar k (en vaker) p basis van verschillende criteria (leeftijd, geslacht, berep, etc.) 1-1 matching versus 1-N matching.

3 Observaties die werden bekmen via matching zijn gelijkaardig en daarm zijn nafhankelijk. Lngitudinale data Data gemeten ver de tijd tijd speelt een rl. Lngitudinale data bekmt men wanneer men bij dezelfde bservaties gegevens verzameld gedurende een bepaalde tijdsperide. De nderzeksvragen spitsen zich drgaans te p het verlp in de tijd. Vrbeeld: bij leerlingen neemt men een rekentest af, en dit 4 maal: bij het begin van het 5 de leerjaar, en bij het begin en einde van het 6 de leerjaar; we bekmen 4 metingen p 4 tijdsmmenten. Lngitudinale data kan k wrden beschuwd als hiërarchische data: de individuele metingen zijn het eerste niveau, de individuen zelf het tweede niveau (hewel de tijdspunten hier vaak vastliggen, en drgaans niet randm gekzen wrden). Observaties van hetzelfde individu zijn niet nafhankelijk van elkaar. Opmerking: de terminlgie zals hier gepresenteerd is niet universeel en de termen wrden vaak dr elkaar gebruikt. 1.3 Het prbleem met niet-nafhankelijke data Vr het standaard lineair mdel is niet nafhankelijke data prblematisch. Vanuit een technisch gpunt: het standaard lineair mdel insisteert dat de errrtermen (en dus de bservaties) nafhankelijk zijn; z niet, is het mdel niet valide. Vanuit een cnceptueel gpunt: De accuraatheid van schattingen (en nze cnfidentie) wrdt gecapteerd dr standaardfuten van de regressiecëfficiënten. Het lineair mdel verndersteld dat er N nafhankelijk bservaties zijn bij het berekenen van de standaardfut (meer crrect: N-p 1, eenmaal de vrijheidsgraden in rekening wrden gebracht). Indien de bservaties afhankelijk (en dus gecrreleerd) zijn, zijn er in feite minderen dan N nafhankelijke bservaties, en de geschatte standaardfuten zijn daardr klein. De standaardfuten bepalen de p waarden, en dus besluiten die we trekken p basis van de data. 3 assumpties Verwachte waarde is 0. Futtermen dezelfde vr iedereen. Futtermen vr iedereen gelijk zijn = prbleem. Tetst steunt p nafhankelijkheid, tets cmpleet verkeerd als je dit negeert. 1.4 He lssen we het prbleem p? Er zijn verschillende benaderingen: Gecrrigeerde f rbuuste standaardfuten: Indien nze enige zrg is: (meer) crrecte standaardfuten verkrijgen vr een standaard lineair mdel, dan zijn er methdes m de standaardfuten te crrigeren vr het feit dat de bservaties niet nafhankelijk zijn. Deze crrecties zijn gebaseerd p het werk Huber en White en wrden vaak Huber White gecrrigeerde standaardfuten genemd. Omwille van de ABA vrm van de frmule die wrdt gebruikt m ze te berekenen spreekt men k van sandwich estimatrs. Standaardfuten meer rbuust maken waardr fut grter wrdt en p waarde stijgt. De fixed effects benadering Men kan in het mdel rekening huden met de grepen f clusters dr expliciet een variabele in het mdel p te nemen die aangeeft uit welke grep f cluster een bservatie kmt; p die manier verdwijnt het prbleem van de afhankelijkheid : we huden expliciet rekening met het feit dat de data kmen uit

4 verschillende grepen/clusters, en de futtermen (gecrrigeerd vr het grepseffect) zijn pnieuw nafhankelijk. Vrbeeld: m te cntrleren vr het effect van de J schlen waaruit de leerlingen afkmstig zijn, kan men J 1 hulpvariabelen tevegen aan het mdel: vr elke schl zal er een specifieke regressiecëfficiënt berekend wrden. De factr schl wrdt hier als fixed beschuwd: de cnclusies zijn enkel geldig vr deze J schlen, niet vr alle schlen. We vegen predictr (categrisch) te = additinele teveging. Categrische variabele hercderen = explsie van variabelen. Schl = fixed (ligt vast); dus wanneer we pnieuw den met = schlen resultaten alleen vr deze schlen. De mixed effects benadering Analg met de fixed effects benadering, maar de grep/cluster variabele wrdt als randm beschuwd: De niveaus van de randm factr zijn slechts een steekpref uit de vlledige ppulatie. De cnclusies achteraf slaan p de vlledige ppulatie. De verige cvarianten / factren wrden als fixed beschuwd. We hebben zwel randm als fixed effecten in eenzelfde mdel: we verkrijgen een mixed effects mdel. De data analyse is een stuk meer gecmpliceerd, en maakt gebruikt van een uitbreiding van het standaard lineair mdel: de lineair mixed mdel. Je met niet hercderen! He variëren de schlen? Variatie van randm effecten is hier schlvariabele. Veralgemenen naar andere schlen is mgelijk. 1.5 De vele gezichten van de mixed - effects mdellen Mixed effects mdellen zijn ntwikkeld in verschillende disciplines, elk met hun eigen benaming en nmenclatuur: Randm effects mdels, randm effects ANOVA (statistiek, ecnmetrie) Variance cmpnent smel (statistiek) Hierarchical lineair mdels (nderwijskunde, scilgie) Cntextuals effects mdels (scilgie) Randm cefficient mdels (ecnmetrie) Repeated measures mdel, repeated measures ANOVA (experimentele psychlgie) Hewel ze grtendeels equivalent zijn, verschillen ze van elkaar in termen van: Mtivatie en ntatie. Assupties mtrent de randm effecten. Schattingsmethde. 1.6 Sftware vr mixed - mdels MLwiN 2: rigineel ntwikkeld dr Gldstein nder de naam MLn. HLM 7: veel gebruikt in USA. Mplus SAS (Prc Mixed): zeer flexibel, zeer gede dcumentatie. SPSS (Mixed): redelijk beperkt, slecht gedcumenteerd. R 2. De linear mixed mdel Een eenwegs randm - effects ANOVA mdel Het mdel genteerd in de klassiek effect ANOVA ntatie. Het effect mdel kan als vlgt wrden geschreven vr een bservatie j, in niveau i:.

5 : een intercept. : het (randm) effect van niveau/level i van de randm factr A. : de (randm) futterm. De variaties en wrden variance cmpnents genemd. Vrbeeld: 6 subjecten, 3 scres per subject Is er een effect van de (randm) factr subject? We beschuwen subject als een fixed factr. SPSS GLM univariate: subject als fixed factr. We beshuwen subject al seen randm factr SPSS GLM univariate; subject al seen randm factr Klassieke ANOVA benadering We beschuwen subject als een randm factr He kunnen we berekenen p basis van deze utput: Vreerst, we weten dat = MSE 1 = 2,5. Tepassing van de regels mtrent de verwachtingsperatr leert ns dat E(MSA) = Hieruit vlgt: Dit vrbeeld van de ANOVA benadering m te berekenen. 1 de gemiddelde kwadratische fut (Eng. Mean squared errr (M.S.E.)) van de vrspelling.

6 In meer cmplexe mdellen wrdt dit schier nmgelijk. We beschuwen subject als een randm factr Variance cmpnents mdel SPSS GLM variance cmpnents Subject als een randm factr. ANOVA (f MINQUE) benadering m variantie cmpnenten te berekenen We beschuwen subject als een randm factr Mderne benadering via (restricted) maximul likelihd. SPSS mixed mdels univariateµ Het mdel in mderne ntatie Het mdel in de Laird ware ntatie: : de (fixed) intercept = 1 : de fixed effect (cnstante regressr) : de randm effect cëfficiënt vr subject i (de afwijking van dit subject tv de intercept). = 1 de randm effect (cnstante regressr) : de (randm) errr term (de afwijking van de j scre van subject i tv het subject gemiddelde). De variatie cmpnenten De twee variantie cmpnenten in dit mdel zijn: ( We gaan er drgaans van uit dat de randm effect cëfficiënten niet gecrreleerd en nrmaal verdeeld zijn: 2.2 De structuur van de linear mixed mdel De linear mixed mdel in Laird Ward ntatie: is de scre p de respns variabele vr de j de van bservaties die behren tt subject/cluster/grep i = 1,2,, N. zijn de scres p de p regressren vr bservatie i; ze wrden als (fixed) cnstanten beschuwd. In vele mdellen wrden een cnstante term tegevegd; nemt men de intercept. De regressiecëfficiënten zijn de fixed effect cëfficiënten, en zijn dezelfde vr elk subject / cluster /grep. zijn de randm effect cëfficiënten vr subject / cluster/ grep i; de randm effect cëfficiënten wrden beschuwd als randm variabelen, en niet als parameters (net zals de futtermen.

7 zijn de randm effect regressren; ze zijn vaak een subset van de fixed regressren; drgaans wrdt een randm intercept term tegevegd en wrdt een randm intercept genemd. is de randm futterm vr de j de bservatie van subject / cluster i. Stchastische assumpties van de lineair mixed mdel (ptineel) De gebruikelijke assumpties vr de randm effect cëfficiënten: De gebruikelijke assumpties vr de futtermen: Het mdel in matrix ntatie Het Laird mdel in matrix ntatie: Met vr de bservaties van de i- de cluster: is de respnsvectr is de mdel matrix vr de fixed effects. is vectr van fixed effect cëfficiënten. is mdel matrix vr de randm effects. is vectr van randm effect cëfficiënten. is vectr van futtermen. Of vr alle clusters. Stchastische assumpties in matrix ntatie (ptineel) De randm effect cëfficiënten: en zijn nafhankelijk vr De futtermen: en zijn nafhankelijk vr D bevat q(q+1)/2 parameters; bevat elementen De variantie cmpnenten De elementen van D en de elementen van (vr elk i) nemen we cllectief de variantie cmpnenten (variance cmpnents) Vrbeeld

8 Op subject niveau: Vlledig mdel: 2.3 Parameterschatting Schatten van de fixed cëfficiënten. Indien we vernderstellen dat D en (en dus V) gekend zijn, dan is de weighted least ) squares schatter (gegeven een symmetrische gewicht matrix W) gelijk is aan: Waarbij de gewicht matrix gelijk is aan:. In de praktijk meten we V eerst schatten, dan berekenen, pnieuw V schatten, herberekenen, enzvrt; men nemt deze methden reweighted least squares. Een alternatief is m alle parameters simultaan te schatten via (restricted) maximum likelihd. Schatten van de variantie cmpnenten (ptineel) Simultaan schatten van alle parameters in het mdel. Dit is de mderne benadering. Twee methdes die wrden gebruikt in de mderne benadering zijn: Maximum likelihd (ML). Restricted maximum likelihd (REML). 2.4 Tetsen van hyptheses in een linear mixed mdel Tetsen mtrent de fixed effects. In de praktijk hanteert men een t statistiek vr tetsen van de vrm en een F statistiek vr mdelvergelijkingen. Helaas is dit een simplificatie (mdat V nbekend is). Daarm is het vaak ndig een crrectie dr te veren; sms kan dit dr het aantal vrijheidsgraden bij te stellen; enkele veel gebruikte methdes zijn: De cntainment methde (vaak de default in sftware). Satterhwaite s apprximatin Kenward and Rger apprximatin. Let wel: vr grte datasets met vele clusters maakt dit weinig uit. Mderne benaderingen hanteren een Bayesiaanse methde.

9 Tetsen mtrent variantie cmpnenten. Een typische hypthese is dat de variantie van een randm cëfficiënt gelijk is aan nul:. Veel sftware pakketen rapprteren hiervr een Wald z tets. Helaas is dit nzin: aan een belangrijke assumptie vr deze tetsen is hier niet vldaan: namelijk dat de parameter (nder de nulhypthese) niet p de grens mag liggen van de parameterruimte. Een alternatief is de likelihd rati test: Ok hier stelt zich het grensprbleem. Het lijkt niettemin tch behrlijk te werken indien (dit is de default bij de meeste multilevel analyses, maar niet bij bijvrbeeld lngitudinale analyses). Misschien beter vermijden? 3. Multilevel analyse Overzicht In het bijznder in de nderwijskunde (denk leerlingen in schlen ) is het gebruik van linear mixed mdels vr de analyse van hiërarchische data bijznder ppulair. Wanneer nderzekers in de sciale wetenschappen de term multilevel analyse hanteren, dan bedelen ze drgaans de tepassing van de (mderne versie van) linear mixed mdels p hiërarchische data. Typisch vr dit type data is het scherp nderscheid tussen de verschillende niveaus f levels; bijvrbeeld het leerling niveau en het schl niveau (met leerlingen genest binnen de schl). De data bevat vaak variabelen p leerling niveau en p schl niveau; één van de vrdelen van een multilevel analyse is dat beide srten variabelen simultaan in dezelfde analyse kunnen betrkken wrden. 3.2 Vrbeeld: de high schl and beynd dataset Data in verband met de high schl and beynd survey uitgeverd in studenten (level 1) uit 160 schlen (level 2, 70 kathlieke en 90 publieke) namen deel. Een selectie de van variabalen in de dataset: 2 Schl: de schl van de student (factr met 160 niveaus). 3 Clustervariabelen, geeft aan in welke schl een leerling zit SES: sciaal ecnmische status van de student mach: (math achievement) scres p een wiskunde test Meanses: gemiddelde SES per schl Sectr: factr met twee niveaus 1 = public 2 = cathlic schlvariabele Cses: SES van de student gecentreerd binnen elke schl leerling-variabele variabelen die we gaan gebruiken p leerling-niveau p schlniveau Relatie tussen SES en uitkmstvariabelen zal sterk differentiëren Variatie tussen schlen; hiermee rekening huden. y mach SES x 2 Plitiek gevelige dataset want berekend de cntrversiële SES. 3 Bepaald de structuur van de analyse.

10 Veel variatie tussen de schlen, kunnen we dit verklaren? In 1 schl gemiddelde berekenen vr SES = meanses Centreren van schl per schl (=0). Per schl berekenen. Onderzeksvragen Het del van deze studie was na te gaan p welke manier de wiskundescre van de studenten samenhangt met de sciaal ecnmische status; de belangrijkste variabelen p studentniveau zijn: mach: de afhankelijke variabele SES: de belangrijkste predictr in deze studie Deze relatie kan best variëren ver schlen. Indien er variatie is ver schlen, kunnen we dan schl karakteristieken vinden die deze variatie verklaren? We zullen hier gebruik maken van twee variabelen: Sectr Meanses Mdel 1: een randm effect neway ANOVA Dit wrdt vaan het lege mdel genemd daar het geen predictren bevat, maar enkel de geneste structuur reflecteert. Er zijn geen niveau -1 (student) f niveau -2 (schl) predictren. Dit kmt vereen met het vlgende mdel: is algemeen gemiddelde vr alle schlen. is de afwijking f de variatie tussen de schlen. de futterm f de variantie binnen de schl. We hebben één fixed effect: de intercept. We hebben één randm effect: die de afwijking van schl j tegenver het ppulatiegemiddelde reflecteert, en daarnaast de (randm) futterm het schlgemiddelde reflecteert. Er zijn in dit mdel twee variantie cmpnenten: : de variantie van de randm intercept. : de variantie van studenten binnen dezelfde schl. die de afwijking van individu i uit schl j tegenver Extra Alleen structuur znder SPSS variabele. Daarna cmplexer maken en dan terug meer simpel. i = leerlingen j = schlen ij= scre vr 1 leerling uit 1 schl. Binnen schlen kijken wat het effect is = b (met index j=schl) = randm effect. Fixed effect met = zelfde vr iedereen. Randm effect met b = verschillende vr iedereen. Kijken he grt de verschillen zijn? De tussen de schlen variantie =. Binnen elke schl zijn er ng verschillen. De variantie binnen eenzelfde schl = futterm =. SPSS utput Dataset maken in SPSS dr vlgende stappen: Analyse Mixed mdels Linear (cntinue afhankelijke variabele en niet binair. Wat is de clustervariabele (subject variabele). Schl subjects. Bij + regi k regi tevegen.

11 Wat is de afhankelijke variabele + predictren? mach = afhankelijke variabele (dependent). Min : niet gebruiken. Cses: cntinue variabele = cvariate. Meanses: cntinue variabele = cvariate. Sectr: categrische variabele = factr. Fixed: fixed effect ingeven OF Randm: randm effect Mdel fitten znder predictren: fixed + include intercept. Randm: schl clustervariabele cmbinatins + include intercept + cvariance type: unstructured kiezen. Statistics: parameter estimates OK Cvariance parameters Estimates f fixed effects. Estimates f cvariance parameters. 12, = (idee van gemiddelde scre) Is deze cëfficiënt gelijk aan 0? Nee! Dus significant! 39, = variantie van j 8, = randm effect (variantie ervan) Variantie binnen de schl > variantie tussen de schl znder rekening te huden met andere variabelen. Heel klein = geen schleffect. P - waarde berekenen = 8,614 = 39,148 He kleiner het getal, he meer gelijkend de schlen zijn. Er zijn telkens twee delen: Een fixed effects deel (estimates f fixed effects) Een variance cmpnents deel (estimates f cvariance parameters) Interpretatie Bij de fixed effects staat enkel de intercept ( = ); dit is de geschatte gemiddelde scre p de wiskundetest ver alle schlen heen. Bij de variantie cmpnenten vinden we: = 8,614 = 39,148 De variantie tussen de schlen is (in dit mdel) aanzienlijk kleiner dan de variantie binnen de shclen; er zijn dan k ng geen predictren in het mdel pgenmen. De intra class crrelatin cefficient (ICC) vr deze data is:

12 Dit is de prprtie variantie te wijten aan het schl effect (in het algemeen nemt men dit het cluster effect). Mdel 2: één level 1 predictr We behuden de fixed intercept en de randm intercept. We vegen één level 1 predictr te: SES. Ten beheve van de interpretatie van de fixed intercept zullen we eerst SES centreren binnen enkel schl (per schl trekken we het schlgemiddelde af vr alle SES scres binnen die schl) 4. Dit geeft het vlgende mdel: Dr het centreren van SES zal pnieuw de geschatte gemiddelde scre p wiskunde reflecteren in de ppulatie. Er zijn ng steeds twee variantie cmpnenten: : de variantie van de randm intercept : de futvariantie van de binnen schl regressies SPSS utput Dataset maken in SPSS dr vlgende stappen: Idem mdel 1 Fixed effect Cses tevegen bij mdel. De rest = Mdellen (zie verder) Output: Verder: Estimate intercept: niet veel veranderd. SES variabele gecentreerd mdat intercept gelijk zu blijven! Estimates f cvariance ~ mdel 1 2,19 (significant) Alle scres: SES en wiskunde hebben verband: slecht vr een schl. Cses neemt met 1 eenheid te dan wiskunde Interpretatie Op basis van het significante effect van de fixed variabele cses (sciaalecnmische status gecentreerd binnen de schl) besluiten we dat er (aldus dit mdel) een psitief verband bestaat tussen cses (de relatieve sci - ecnmische status binnen de schl) en de wiskunde scre (mach). Vr elke stijging met e en eenheid vr sciaal - ecnmische status, stijgt de verwachte scre p de wiskunde test met , en dit (aldus dit mdel) in alle schlen. De tabel met de randm effecten tnt dat de futvariantie van het mdel lichtjes is gedaald (van naar ). De tabel met de randm effecten tnt k dat de extra fixed variabele de variantie tussen de schlen niet verklaart (de variantie stijgt zelfs lichtjes van naar 8.672). 4 Gecentreerd!

13 Mdel 3: randm intercept + slpe vr cses We behuden de fixed en randm effecten uit mdel 2. We laten nu echter de slpe van cses (de sterkte van het effect van cses p mach) variëren van schl tt schl. Dit geeft het vlgende mdel: Dit mdel heeft vier variantie cmpnenten: : de variantie van de randm intercept : de variantie van de randm slpe (van cses) : de cvariantie tussen de binnen schl intercepts en slpes. : de futvariantie van de binnen schl regressies SPS utput Dataset maken in SPSS dr vlgende stappen: Daarnet regressielijn vr iedereen gelijk, maar dit is niet realistisch. Elke schl heeft andere regressielijn. Bereken variantie hellingsgraad. Variantie gemiddelde scres =. Relatie wiskunde en SES. Alles wat verblijft aparte variantie. Aparte regressielijn. Randm cses tevegen. Tabelletjes Output: Estimates fixed effects: zijn ngeveer gelijk gebleven. Estimates f cvariance parameters: meer infrmatie: 36, variantie van de futen 5 8, cvariantie tussen intercept en slpe 6 0, variantie van de regressiecëfficiënt b1 7 UN= unstructured: laat te m cvariantie te schatten. Best wel belangrijke parameter. Interpretatie De standaardfut p de schatting van het fixed effect van cses wrdt iets grter, maar het effect blijft significant. De variantie van de randm slpe vr cses is relatief klein (0.694), en lijkt dus minder van belang: het effect van cses lijkt niet heel sterk te variëren van schl tt schl. Zwel de variantie van de randm intercept per schl (8.681) als de futvariantie (37.700) blijven van dezelfde rde als in de eerste twee analyses. 5 Alles wat niet verklaard is. 6 ~ crrelatie; z ged als nul. 7 Klein getal.

14 Er is (in dit mdel) een licht psitieve cvariantie tussen de intercepts en de slpes van cses (0.047) (he hger de intercept, he grter de slpe). Mdel 4: 1 level 2 predictr We behuden alle fixed en randm effecten uit mdel 3, maar vegen een eerste level-2 predictr te: meanses, f de gemiddelde sciaal ecnmische status per schl. Dit geeft het vlgende mdel: In een multilevel cntext is het wel vaker z dat de gemiddelde scre binnen een cluster van een predictr (hier meanses) meer van belang is dan de individuele scre p deze predictr (hier cses); men nemt dit het cntext effect. De variantie cmpnenten blijven gelijk aan deze van mdel 3. SPSS utput Dataset maken in SPSS dr vlgende stappen: Extra predictr tevegen. Fixed predictr tevegen. Meanses Fixed cses en meanses mdel. Oké. Uitkmsten. Output: Estimates meanses: Psitief. He hger scre meanses, he hger scre p wiskunde in het algemeen. Vrij grt getal. Tename +1 bij meanses dan tename 5,89 p wiskunde. Meanses: significant (0,000). Estimates f cvariance parameters: -0, nu wel negatief. Interpretatie Het fixed effect van meanses is significant: p schlen met een hgere gemiddelde sciaal - ecnmische status wrdt hger gescrd p de wiskunde test; vr elk stijging met een eenheid p meanses stijgt de verwachte scre p de wiskunde test met

15 De variantie van de intercept tussen de schlen (2.693) is sterk gedaald tegenver het vrig mdel (8.680); aangezien meanses de enige predictr is die er bij kwam in vergelijking met mdel 3 kunnen we stellen dat deze predictr een grt deel van de intercept variantie pslrpt f verklaart. Het is altijd het streefdel van een nderzeker m de randm cluster varianties (hier tussen schlen) z veel mgelijk te verklaren dr de ndige level-2 predictren in het mdel p te nemen. De cvariantie tussen de intercepts en slpes is (in dit mdel) nu negatief (he grter de intercept, he zwakker de slpe). Mdel 5: interactie tussen level 1 en level 2 predictr We behuden alle fixed en randm effecten uit mdel 4. We vegen de interactie tussen meanses en cses te. Dit geeft het vlgende mdel: De interactieterm reflecteert de hypthese dat de invled van cses afhangt van meanses (en mgekeerd). Bemerk dat cses een level-1 predictr is, terwijl meanses een level-2 predictr is; dch in een multilevel analyse is dit geen prbleem. De variantie cmpnenten zijn dezelfde als in mdel 4. SPSS utput Dataset maken in SPSS dr vlgende stappen: Fixed. Cses (met shift) en meanses factrial cses * meanses. Oké Ouput: Cses * meanses (interactie) niet significant in dit mdel. Wrdt significant want mdel ng niet cmpleet. Cnditineel afhankelijk van het mdel. Sectr belangrijke variabele maar wrdt hier ng niet bij gerekend. Interpretatie Bij de fixed effects kunnen we aflezen dat (in dit mdel!) de interactie tussen cses en meanses niet significant is (p = 0.372). De waarden vr de verige fixed effecten zijn nauwelijks gewijzigd. Ok de variantie cmpnenten zijn nageneg ngewijzigd gebleven. Mdel 6: tweede level 2 predictr. We behuden alle fixed en randm effecten uit mdel 5. We vegen de level-2 predictr sectr te (1=Public, 2=Cathlic). We vegen meteen k de interactie tussen cses en sectr te. We bekmen het vlgende mdel:.

16 De variantie cmpnenten zijn dezelfde als in mdel 5. SPSS utput: Dataset maken in SPSS dr vlgende stappen: Sectr tevegen en sectr *cses (interactie) tevegen.! Geen index j = hetzelfde getal vr alle factren. Structuren gelijk. Randm = intercept = gemiddelde scre per schl. Slpe = variantie van de schl per schl (alleen factren). Meanses = schlvariantie Fixed Cses *sectr Cses Sectr Meanses Cses * meanses = 3 hfdeffecten en 2 interactie effecten SPSS utput Hfdeffecten geven hellingsgraad. T = est/std. Errr en is hier extreem grt (60,848). Intercept = gemiddelde schlen die behren tt sectr (13,354509). Cses = Regressiehelling. Als rest =0 (1,302366) stijging met 1,3 wanneer meanses=0 en sectr=2= kathliek. Cses * meanses 1,04 = significant. Effect meanses 5,33 als cses =0 wanneer +1 bij dan hellingsgraad + 1,03. 5,33 + waarde cses x 1,03. Hellingsgraad vr kathliek = 1,03. Publiek 1,03 + 1,64! Verband sterker. Verschil tussen sectren is sterk significant. Kathliek is referentieniveau. Meer dan verdubbeling (slecht nieuws vr publieke schlen). Wanneer SES meer invled heeft dan slecht vr schlen. 5,33 + waarde cses x1,03

17 Interpretatie Bij de fixed effecten zien we dat de nieuw tegevegde interactie tussen cses en sectr significant is (p < 0.05): Het effect van cses is psitief zwel bij de Public als de Cathlic schlen; echter, het effect van cses is veel sterker bij de Public schlen (slpe: = ) dan bij de Cathlic schlen (slpe: ). De interactie tussen cses en meanses is in dit mdel wel signficant (in tegenstelling tt mdel 5): indien meanses = 0 is er een psitief effect van cses (slpe: ); echter vr elke stijging met een eenheid vr meanses, stijgt de slpe vr cses met Dus indien meanses=2, is de (geschatte) slpe vr cses = Bij de variantie cmpnenten merken we dat de variantie vr de randm slpe van cses (0.101) ng kleiner is gewrden; de cvariantie tussen de intercept en de slpe is nu pnieuw psitief. Mdel 7: znder randm slpe vr cses Nu we alle predictren en interactietermen die we vrp hadden gesteld in het mdel hebben pgenmen, kunnen we prberen het mdel wat te vereenvudigen. Bij de fixed effecten is er weinig speelruimte, want alle effecten zijn significant. Bij de variantie cmpnenten lijkt het zinvl m de randm slpe van cses te laten vallen. Hierdr krijgen we pnieuw slechts 2 variantie cmpnenten (de variantie van de intercept, en de futvariantie). Het verwijderen van de randm slpe heeft z ged als geen enkele invled p de rest van het mdel; de cnclusies en interpretaties van mdel 6 blijven dan k behuden. SPSS utput Dataset maken in SPSS dr vlgende stappen: Fixed mdel = gelijk. Estimates f cvariance parameters: Residual: 36,76609 Futterm; ng veel nverklaarde variantie. Intercept: 2, Kleiner want betere verklaring p schlniveau. Mdelbuwstrategie Een typische strategie bij het pstellen van een mdel in een multilevel analyse met twee niveaus: We beginnen met een mdel met enkel een intercept en een randm intercept vr de cluster (het lege mdel ); we berekenen de ICC (cluster - effect). We vegen geleidelijk level-1 predictren te, samen met de randm slpes die daar bij hren

18 We vegen geleidelijk level-2 predictren te. We vegen interacties te tussen de level-1 en level-2 predictren in de hp een deel van de randm slpe varianties te kunnen verklaren. Nadat alle fixed effects in het mdel zijn pgenmen, laten we de (duidelijk) niet - significante effecten weg (1 per 1) Eenmaal het fixed - effects deel van het mdel definitief is, laten we de (relatief) kleine randm intercepts/slpes weg, zlang het geen effect heeft p de rest van het mdel. Heel typisch vr multilevel. Zeken naar wat er in randm met en wat in fixed met! Leeg mdel. Fixed tevegen. Randm tevegen.

Onderzoeksmethoden II: structurele vergelijkingsmodellen deel 2

Onderzoeksmethoden II: structurele vergelijkingsmodellen deel 2 Onderzeksmethden II: structurele vergelijkingsmdellen deel 2 1. Latente variabelen mdellen Cntinue latente variabelen (p interval niveau). Categrische latente variabelen (nminaal / rdinaal). Explratief

Nadere informatie

VERSLAG PRACTICUM 6 Pattern Recognition. PCA

VERSLAG PRACTICUM 6 Pattern Recognition. PCA VERSLAG PRACTICUM 6 Pattern Recgnitin. PCA Niclaas Heyning 0152447 Sjerd kerkstra 0445061 Inleiding Bij deze pdracht is het de bedeling de werking van Principal Cmpnent Analyse (PCA) te bestuderen. Er

Nadere informatie

Analytische boekhouding

Analytische boekhouding Analytische Bekhuding Analytische bekhuding 1 Vrbereiding... 2 1.1 Dssier instellingen... 2 1.2 Analytische rekeningen maken... 3 2 Analytisch beken... 4 2.1 Kppeling... 5 2.2 Bekingsvrstellen (mdellen)...

Nadere informatie

TOELICHTING KOSTEN MOZAÏEKBEHEER OPEN GRASLAND

TOELICHTING KOSTEN MOZAÏEKBEHEER OPEN GRASLAND STICHTING COLLECTIEF AGRARISCH NATUURBEHEER SCAN TOELICHTING KOSTEN MOZAÏEKBEHEER OPEN GRASLAND BESCHRIJVING De ksten mzaïekbeheer zijn een vergeding vr de ksten die p bedrijfsniveau gemaakt wrden vr het

Nadere informatie

Huiswerk Informatie voor alle ouders

Huiswerk Informatie voor alle ouders Nummer 6 mei 2010 Huiswerk Infrmatie vr alle uders Huiswerk en efening Ged leren lezen en rekenen is belangrijk, want je hebt deze vaardigheden in het dagelijks leven veral ndig. Kinderen ged leren lezen

Nadere informatie

Veel gestelde vragen huurbeleid 18 oktober 2012

Veel gestelde vragen huurbeleid 18 oktober 2012 Veel gestelde vragen huurbeleid 18 ktber 2012 Algemeen: 1. Waarm kmt er een nieuw huurbeleid? Een aantal ntwikkelingen heeft ervr gezrgd dat wij ns huurbeleid hebben aangepast. Deze ntwikkelingen zijn:

Nadere informatie

Pestprotocol. 1 Achtergrond. 1.1 Uitgangspunt. 1.2 Pesten in het cluster-4-onderwijs. Onderwijs. Pestprotocol Versie: 1.0 Datum: 20 mei 2014

Pestprotocol. 1 Achtergrond. 1.1 Uitgangspunt. 1.2 Pesten in het cluster-4-onderwijs. Onderwijs. Pestprotocol Versie: 1.0 Datum: 20 mei 2014 Pestprtcl Onderwijs Pestprtcl Versie: 1.0 Datum: 20 mei 2014 1 Achtergrnd 1.1 Uitgangspunt Beleid tegen pesten valt binnen het veiligheidsbeleid van Yulius Onderwijs. Ons uitgangspunt is dat nze schl een

Nadere informatie

Genderloopbaankloof: enkele voorzetten vanuit Persephone vzw, organisatie van vrouwen met een handicap of invaliderende chronische ziekte

Genderloopbaankloof: enkele voorzetten vanuit Persephone vzw, organisatie van vrouwen met een handicap of invaliderende chronische ziekte Genderlpbaanklf: enkele vrzetten vanuit Persephne vzw, rganisatie van vruwen met een handicap f invaliderende chrnische ziekte De genderlpbaanklf verdient aandacht van de beleidsmakers en de sciale partners.

Nadere informatie

Getallen 1 is een programma voor het aanleren van de basis rekenvaardigheden (getalbegrip).

Getallen 1 is een programma voor het aanleren van de basis rekenvaardigheden (getalbegrip). Getallen 1 Getallen 1 is een prgramma vr het aanleren van de basis rekenvaardigheden (getalbegrip). Delgrep Rekenen en Wiskunde Getallen 1 Getallen 1 is geschikt vr grep 7 en 8 van de basisschl en de eerste

Nadere informatie

Beleidsplan directe instructie : 1. Verantwoording 2. Doelstellingen 3. Model 4. Kijkwijzer 5. -Werkwijze en tijdsplanning.

Beleidsplan directe instructie : 1. Verantwoording 2. Doelstellingen 3. Model 4. Kijkwijzer 5. -Werkwijze en tijdsplanning. Beleidsplan directe instructie : 1. Verantwrding 2. Delstellingen 3. Mdel 4. Kijkwijzer 5. -Werkwijze en tijdsplanning 1 Verantwrding: Wij willen binnen het nderwijs dat wij geven rekening huden met de

Nadere informatie

Plaatsingsrichtlijnen Dr. Nassau College

Plaatsingsrichtlijnen Dr. Nassau College Plaatsingsrichtlijnen Dr. Nassau Cllege vr schljaar 2014-2015 Plaatsingsrichtlijnen p het Dr. Nassau Cllege In de kmende jaren zal de Cit eindtets in het basisnderwijs niet meer afgenmen wrden in februari,

Nadere informatie

Maak van 2015 jouw persoonlijk professionaliseringsjaar

Maak van 2015 jouw persoonlijk professionaliseringsjaar Maak van 2015 juw persnlijk prfessinaliseringsjaar en wrd Nlc erkend Register Lpbaanprfessinal (RL) Nlc erkend Register Lpbaanprfessinal (RL) Deze status wrdt bereikt na certificering dr het nafhankelijke

Nadere informatie

HOW TO REVIEW THE LITERATURE AND CONDUCT ETHICAL STUDIES

HOW TO REVIEW THE LITERATURE AND CONDUCT ETHICAL STUDIES HOW TO REVIEW THE LITERATURE AND CONDUCT ETHICAL STUDIES The literature review Het is belangrijk m te bepalen wat anderen al ver het prbleem geleerd hebben vr je het zelf bestudeerd. Het idee van een literatuurstudie

Nadere informatie

Gedragsprotocol Samenwerkingsschool Balans. Wat is het gedragsprotocol? Uitgangspunt. Pesten of plagen?

Gedragsprotocol Samenwerkingsschool Balans. Wat is het gedragsprotocol? Uitgangspunt. Pesten of plagen? Gedragsprtcl Samenwerkingsschl Balans Wat is het gedragsprtcl? Het gedragsprtcl vrmt de verklaring van het schlbestuur, de directie, de leerkrachten, de leerlingen en de uders waarin is vastgelegd dat

Nadere informatie

Opbrengsten VSO Panta Rhei College schooljaar 2014-2015

Opbrengsten VSO Panta Rhei College schooljaar 2014-2015 Opbrengsten VSO Panta Rhei Cllege schljaar 2014-2015 Inleiding Iedere schl heeft tt taak nderwijs te bieden waarbij de leerlingen kennis, vaardigheden en hudingen verwerven. Uitgangspunt vr dat aanbd zijn

Nadere informatie

Pestprotocol basisschool Pieter Wijten

Pestprotocol basisschool Pieter Wijten Pestprtcl basisschl Pieter Wijten Basisschl Pieter Wijten werkt aan een veilig schlklimaat waarin kinderen respectvl met elkaar mgaan. Ze hanteert drie principes: Ik zrg ged vr mezelf Ik zrg ged vr de

Nadere informatie

Tips Digiduif. 1. U logt in op digiduif met uw e-mail adres en wachtwoord.

Tips Digiduif. 1. U logt in op digiduif met uw e-mail adres en wachtwoord. Tips Digiduif 1. U lgt in p digiduif met uw e-mail adres en wachtwrd. 2. U kiest de knp instellingen. Op de vlgende pagina s kunt u allerlei zaken invullen en aanpassen die bij uw accunt hren. Tevens zit

Nadere informatie

Visietekst BuO Type 3 Onderwijs en begeleiding aan kinderen met ernstige emotionele- en /of gedragsproblemen

Visietekst BuO Type 3 Onderwijs en begeleiding aan kinderen met ernstige emotionele- en /of gedragsproblemen Visietekst BuO Type 3 Onderwijs en begeleiding aan kinderen met ernstige emtinele- en /f gedragsprblemen Schljaar 2009-2010 Welkm jij. Jij, helemaal jezelf. Nieuw vr ns, nbekend, ged zals je bent. Wij

Nadere informatie

VAN OUDERCOMITÉ NAAR OUDERRAAD

VAN OUDERCOMITÉ NAAR OUDERRAAD VAN OUDERCOMITÉ NAAR OUDERRAAD Sinds 1 september 2004 kan elke schl een uderraad prichten vlgens het participatiedecreet. Het schlbestuur is verplicht m een uderraad p te richten als 10% van de uders er

Nadere informatie

Verbanden 3. Doelgroep Verbanden 3. Omschrijving Verbanden 3

Verbanden 3. Doelgroep Verbanden 3. Omschrijving Verbanden 3 Verbanden 3 Verbanden 3 besteedt aandacht aan het pstellen van tabellen, frmules en grafieken. Er zijn k uitbreidingen van de subdmeinen statistiek en rijen en reeksen. Delgrep Verbanden 3 Verbanden 3

Nadere informatie

CMD EVALUATIE STAGEBEDRIJVEN 2014

CMD EVALUATIE STAGEBEDRIJVEN 2014 CMD EVALUATIE STAGEBEDRIJVEN 2014 Inhud Respns... 1 Samenvatting van de resultaten... 1 Vragen ver de pleiding... 2 Vragen ver de stagiair... 3 Wat ziet u als sterke punten van de pleiding CMD?... 4 Wat

Nadere informatie

DYSCALCULIE. Naam:... Adres:... Postcode:... Woonplaats:... Geboortedatum:... Naam:... Adres:... Postcode:... Woonplaats:... Telefoonnummer:...

DYSCALCULIE. Naam:... Adres:... Postcode:... Woonplaats:... Geboortedatum:... Naam:... Adres:... Postcode:... Woonplaats:... Telefoonnummer:... 1 DYSCALCULIE Vragenfrmulier nderwijsgeschiedenis rekenvaardigheid vr schl Graag vraag ik u m de vlgende vragen z vlledig mgelijk te beantwrden (in zverre dat kan). Ok vraag ik u de uitgeverde handelingsplannen

Nadere informatie

Begeleidende tekst bij de presentatie Ieder kind heeft recht op Gedifferentieerd RekenOnderwijs.

Begeleidende tekst bij de presentatie Ieder kind heeft recht op Gedifferentieerd RekenOnderwijs. Begeleidende tekst bij de presentatie Ieder kind heeft recht p Gedifferentieerd RekenOnderwijs. Dia 1 Opmerking vr de presentatr: in het geval u tijd te krt kmt, kunt u de blauwe tekst als ptineel beschuwen

Nadere informatie

De kans is groot dat uw testament niet voldoet aan uw wensen, geen gebruik maakt van

De kans is groot dat uw testament niet voldoet aan uw wensen, geen gebruik maakt van Testamenten check Streep dr wat niet van tepassing is VRAAG 1 Is uw testament van vóór 2003? De kans is grt dat uw testament niet vldet aan uw wensen, geen gebruik maakt van de mgelijkheden sinds de invering

Nadere informatie

Chic, zo n gedragspatroongrafiek!

Chic, zo n gedragspatroongrafiek! Chic, z n gedragspatrngrafiek! Leerdelen: De leerlingen kunnen nder begeleiding de verwevenheid tussen ecnmische, sciale en eclgische aspecten in duurzaamheidsvraagstukken herkennen. De leerlingen krijgen

Nadere informatie

Nieuwsbrief 3: Special De Wet werk en zekerheid en het inrichten van regionale vervangingscentra.

Nieuwsbrief 3: Special De Wet werk en zekerheid en het inrichten van regionale vervangingscentra. Nieuwsbrief 3: Special De Wet werk en zekerheid en het inrichten van reginale vervangingscentra. Frans Thmassen, directeur Onderwijs & Jeugd en EduStaf www.bmcimplementatie.nl De Wet werk en zekerheid

Nadere informatie

BETER IN BEDRIJF. Voel je Beter in Bedrijf! Uw organisatie Beter in Bedrijf. Verzuimbegeleiding & Arboadvies

BETER IN BEDRIJF. Voel je Beter in Bedrijf! Uw organisatie Beter in Bedrijf. Verzuimbegeleiding & Arboadvies BETER IN BEDRIJF Vel je Beter in Bedrijf! Uw rganisatie Beter in Bedrijf Verzuimbegeleiding & Arbadvies Beter in Bedrijf levert, naast reguliere arbdienstverlening, vral maatwerk in verzuimbegeleiding

Nadere informatie

Het Nieuwe Werken: hieperdepiep hoera? De rol van de OR bij de invoering van Het Nieuwe Werken

Het Nieuwe Werken: hieperdepiep hoera? De rol van de OR bij de invoering van Het Nieuwe Werken Het Nieuwe Werken: hieperdepiep hera? De rl van de OR bij de invering van Het Nieuwe Werken De kans is grt dat er in uw rganisatie al wrdt gesprken ver de invering van Het Nieuwe Werken. En z niet, dan

Nadere informatie

BEGELEIDING LEERLINGEN MET DYSCALCULIE

BEGELEIDING LEERLINGEN MET DYSCALCULIE BEGELEIDING LEERLINGEN MET DYSCALCULIE Begeleiding van leerlingen met ernstige rekenprblemen en/f dyscalculie Delen en uitgangspunten Binnen het Veluws Cllege Crtenbsch hanteren wij het Prtcl Ernstige

Nadere informatie

Pestprotocol. Uitleg van de petten van de Kanjertraining VOOR ALLE KINDEREN VOOR HET GEPESTE KIND

Pestprotocol. Uitleg van de petten van de Kanjertraining VOOR ALLE KINDEREN VOOR HET GEPESTE KIND Pestprtcl Dit pestprtcl bestaat uit 4 delen:vr alle kinderen, vr het gepeste kind, vr de pester en, vr de uders. Deze partijen zijn allemaal betrkken bij een situatie waarin gepest wrdt. Uitleg van de

Nadere informatie

Beslissingsondersteunende instrumenten. Criteria 2016. September 2015 Stichting Kwaliteit in Basis GGZ

Beslissingsondersteunende instrumenten. Criteria 2016. September 2015 Stichting Kwaliteit in Basis GGZ Beslissingsndersteunende instrumenten September 2015 Stichting Kwaliteit in Basis GGZ Beslissingsndersteunende instrumenten Inleiding Stichting Kwaliteit in Basis GGZ gelft dat de mentale zrg in Nederland

Nadere informatie

Gevarieerde Spelling is een programma voor het leren van de belangrijkste spellingregels van het Nederlands.

Gevarieerde Spelling is een programma voor het leren van de belangrijkste spellingregels van het Nederlands. GEVARIEERDE SPELLING Gevarieerde Spelling is een prgramma vr het leren van de belangrijkste spellingregels van het Nederlands. Delgrep Gevarieerde Spelling Gevarieerde Spelling is bedeld vr leerlingen

Nadere informatie

OVERSTAP 4VMBO- 4HAVO 2016-2017. Bertrand Russell College havo en vwo

OVERSTAP 4VMBO- 4HAVO 2016-2017. Bertrand Russell College havo en vwo OVERSTAP 4VMBO- 4HAVO 2016-2017 Bertrand Russell Cllege hav en vw Overstap vmb naar 4-hav infrmatie 2016-2017 Waarm drstrmen naar 4hav? Stel, je zit in 4 VMBO-t. Je haalt gede resultaten, het ziet ernaar

Nadere informatie

Gouda, februari 2012. Team en schoolleiding Goejanverwelleschool.

Gouda, februari 2012. Team en schoolleiding Goejanverwelleschool. Guda, februari 2012. Team en schlleiding Gejanverwelleschl. Pestprtcl Pesten is een ernstig verschijnsel. Het kmt p alle schlen vr, k p de Gejanverwelleschl! Juist in deze tijd, met de mderne mgelijkheden

Nadere informatie

Communicatie voor beleid Interactie (raadplegen, dialoog, participatie) en procescommunicatie; betrokkenheid, betere besluiten en beleid

Communicatie voor beleid Interactie (raadplegen, dialoog, participatie) en procescommunicatie; betrokkenheid, betere besluiten en beleid Samenvatting BEELDEN OVER COMMUNICATIE TEYLINGEN Bevindingen gesprekken ver Cmmunicatie, raad- en cllegeleden, rganisatie en samenleving In deze ntitie zijn de resultaten van zwel de gesprekken van 9 ktber

Nadere informatie

LOGBOEK van: klas: 1

LOGBOEK van: klas: 1 LOGBOEK van: klas: 1 Inhudspgave Inleiding en inhud van het lgbek Wat is de maatschappelijke stage? Delen van de maatschappelijke stage Waar de je maatschappelijke stage? Kaders waarbinnen de maatschappelijke

Nadere informatie

Projectcyclusbeheer: een handige tool bij het uitbouwen van een werking

Projectcyclusbeheer: een handige tool bij het uitbouwen van een werking Prjectcyclusbeheer: een handige tl bij het uitbuwen van een werking Inhud Bij het starten met een Brede Schl is het, na het verkennen van partners en mgelijkheden, belangrijk m structureel de werking uit

Nadere informatie

D i e n s t v e r l e n i n g s d o c u m e n t

D i e n s t v e r l e n i n g s d o c u m e n t D i e n s t v e r l e n i n g s d c u m e n t Ons kantr hudt zich bezig met financiële dienstverlening en heeft zich gespecialiseerd in schade- en levensverzekeringen en is daarbij actief p de zakelijkeen

Nadere informatie

Onze school gebruikt hierbij naast het SPCO veiligheidplan, in ieder geval de volgende hulpmiddelen:

Onze school gebruikt hierbij naast het SPCO veiligheidplan, in ieder geval de volgende hulpmiddelen: Graaf Jan van Mntfrtschl Beleid ter vrkming en/f regulering van pestgedrag 1. 1 Inleiding: Iedere schl heeft een veilig schlklimaat ndig. Op de Graaf Jan van Mntfrtschl zijn wij ns ervan bewust dat veiligheid

Nadere informatie

De volgende kenmerken die betrekking hebben op de algemene ontwikkeling kunnen wijzen op een ontwikkelingsvoorsprong.

De volgende kenmerken die betrekking hebben op de algemene ontwikkeling kunnen wijzen op een ontwikkelingsvoorsprong. 1 Checklist kinderen met een ntwikkelingsvrsprng (grep 1 en 2). De vlgende kenmerken die betrekking hebben p de algemene ntwikkeling kunnen wijzen p een ntwikkelingsvrsprng. mndelinge taalvaardigheid gede

Nadere informatie

Zorg op K.S.T.S. Temse-Velle

Zorg op K.S.T.S. Temse-Velle Zrg p K.S.T.S. Temse-Velle Beste uders, De zrgwerking p nze schl bestaat al heel wat jaren en is vrtdurend in beweging. Enerzijds mdat de wetgeving i.v.m. zrg verandert, anderzijds mdat leerlingzrg zelf

Nadere informatie

Zijn in de aanvraag bijlagen genoemd en zijn die bijgevoegd? Zo ja, welke? Nummer desgewenst de bijlagen.

Zijn in de aanvraag bijlagen genoemd en zijn die bijgevoegd? Zo ja, welke? Nummer desgewenst de bijlagen. Checklist berdeling adviesaanvraag 1. De adviesaanvraag Heeft de r een adviesaanvraag gehad? Let p: een rapprt is in principe geen adviesaanvraag. Met een adviesaanvraag wrdt bedeld: het dr de ndernemer

Nadere informatie

Stel uw inkomen zeker, sluit een arbeidsongeschiktheidsverzekering af

Stel uw inkomen zeker, sluit een arbeidsongeschiktheidsverzekering af Stel uw inkmen zeker, sluit een arbeidsngeschiktheids af Eindelijk geniet u van een heerlijke skivakantie. En natuurlijk verkmt het u niet, want u bent een ervaren skiër. Maar laat dat ngeluk nu net in

Nadere informatie

Rietschans College Overgangsnormen 2013-2014

Rietschans College Overgangsnormen 2013-2014 Rietschans Cllege Overgangsnrmen 2013-2014 Deel 1 vmb Deel 2 hav/vw 1 Inhudspgave Inhudspgave... 2 Deel 1 Overgangsnrmen 2013-2014 vmb... 3 ALGEMEEN BEVORDERING PER LEERJAAR... 3 Bevrdering van vmb-tl

Nadere informatie

DYSLEXIE. Naam:... Adres:... Postcode:... Woonplaats:... Geboortedatum:... Naam:... Adres:... Postcode:... Woonplaats:... Telefoonnummer:...

DYSLEXIE. Naam:... Adres:... Postcode:... Woonplaats:... Geboortedatum:... Naam:... Adres:... Postcode:... Woonplaats:... Telefoonnummer:... 1 DYSLEXIE Vragenfrmulier nderwijsgeschiedenis lees- en spellingsvaardigheid Graag vraag ik u m de vlgende vragen z vlledig mgelijk te beantwrden (in zverre dat kan). Ok vraag ik u de uitgeverde handelingsplannen

Nadere informatie

Werkwoordspelling op maat

Werkwoordspelling op maat Werkwrdspelling p maat Muiswerk Werkwrdspelling p maat besteedt aandacht aan het hele algritme van de spelling van regelmatige werkwrden en k aan de verleden tijd van nregelmatige werkwrden. Delgrepen

Nadere informatie

BELANGENVERENIGING PENSIOENGERECHTIGDEN PFZW KEUZEMOGELIJKHEID TUSSEN LAAG-PENSIOEN

BELANGENVERENIGING PENSIOENGERECHTIGDEN PFZW KEUZEMOGELIJKHEID TUSSEN LAAG-PENSIOEN BELANGENVERENIGING PENSIOENGERECHTIGDEN PFZW KEUZEMOGELIJKHEID TUSSEN HOOG-LAAG LAAG-PENSIOEN f f LAAG -HOOG HOOG-PENSIOEN Vr pensiengerechtigden die de 65-jarige leeftijd ng niet bereikt hebben U kunt

Nadere informatie

Documentatie. KERN Timemanagement

Documentatie. KERN Timemanagement Dcumentatie KERN Timemanagement Versie 2.0 28 mei 2010 Inhud KERN en Kerninfrmatie.nl... 3 Inleiding KERN uren... 3 KERN urenregistratie: de input... 5 Aanwezigheid van medewerkers bekijken... 10 Samenvatting...

Nadere informatie

Academiejaar 2013-2014 PSYCHOMETRIE LESSEN + NOTA S. 0. Psychometrie. Dr. Wilfried De Corte Door: Delfien Vansteelandt

Academiejaar 2013-2014 PSYCHOMETRIE LESSEN + NOTA S. 0. Psychometrie. Dr. Wilfried De Corte Door: Delfien Vansteelandt 0. Psychmetrie Academiejaar 2013-2014 LESSEN + NOTA S PSYCHOMETRIE Dr. Wilfried De Crte Dr: Delfien Vansteelandt 0 Inhudspgave 0. PSYCHOMETRIE 1 Verantwrdelijk lesgevers 1 Leerstf 1 Vragen? 1 Situering

Nadere informatie

Dyslexie, Dyscalculie & Spellingsbegeleiding

Dyslexie, Dyscalculie & Spellingsbegeleiding Dyslexie, Dyscalculie & Spellingsbegeleiding Dyslexie en dyscalculie en spellingsbegeleiding p het Carlus Clusius Cllege Zwlle Signalering en Begeleiding dyslectische / dyscalculische leerlingen Dyslexie:

Nadere informatie

Godsdienstige stellingname collega

Godsdienstige stellingname collega Gdsdienstige stellingname cllega Je werkt p een penbare basisschl en hebt kinderen van verschillende natinaliteiten in je grep. Een van je cllega's draagt een hfddek. De kinderen uit haar grep scren ged

Nadere informatie

Beleidsregels voorziening jobcoaching Participatiewet 2015

Beleidsregels voorziening jobcoaching Participatiewet 2015 Beleidsregels vrziening jbcaching Participatiewet 2015 1-7-2015 Jbcaching Reginale beleidsregels jbcaching Participatiewet regi Achterhek Inleiding Jbcaching gaat ver het ndersteunen van mensen bij het

Nadere informatie

PESTEN. Deze folder is een hulpmiddel voor jou en je kind om samen te leren over pesten en hoe je dit kan stoppen.

PESTEN. Deze folder is een hulpmiddel voor jou en je kind om samen te leren over pesten en hoe je dit kan stoppen. PESTEN Deze flder is een hulpmiddel vr ju en je kind m samen te leren ver pesten en he je dit kan stppen. WAT IS PESTEN? Pesten is iemand anders bewust bedreigen, bang maken, uitdagen, uitschelden f pijn

Nadere informatie

Het Muiswerkprogramma Basisgrammatica bestrijkt de grammatica die nodig is voor het leren van de Nederlandse spelling en zinsbouw.

Het Muiswerkprogramma Basisgrammatica bestrijkt de grammatica die nodig is voor het leren van de Nederlandse spelling en zinsbouw. BASISGRAMMATICA Het Muiswerkprgramma Basisgrammatica bestrijkt de grammatica die ndig is vr het leren van de Nederlandse spelling en zinsbuw. Delgrepen Basisgrammatica Het cmputerprgramma Basisgrammatica

Nadere informatie

Voorbeeld oefentypes online e-learningmodules CommArt Int.

Voorbeeld oefentypes online e-learningmodules CommArt Int. Vrbeeld efentypes nline e-learningmdules CmmArt Int. In dit dcument wrdt verwezen naar de specifieke inhud van een van nze e- learningmdules. De efentypes wrden echter gebruikt in alle e-learningmdules

Nadere informatie

Cursussen CJG. (samenwerking tussen De Meerpaal en het onderwijs in Dronten) Voortgezet Onderwijs

Cursussen CJG. (samenwerking tussen De Meerpaal en het onderwijs in Dronten) Voortgezet Onderwijs Cursussen CJG (samenwerking tussen De Meerpaal en het nderwijs in Drnten) Vrtgezet Onderwijs 1 Faalangst (vrtgezet nderwijs) Faalangsttraining is vr jngeren die gespannen zijn en (te) veel nadenken ver

Nadere informatie

Onderzoeksrapport Bedrijvenkring Oldebroek

Onderzoeksrapport Bedrijvenkring Oldebroek Onderzeksrapprt Bedrijvenkring Oldebrek AIDA Cmmunicatie 6 juni 2014 Inhudspgave Samenvatting 4 1. Inleiding 5 2. Prbleemanalyse 6 2.1 Aanleiding van het prbleem 6 2.2 Het krachtenveld 6 2.3 Wat mest nderzcht

Nadere informatie

EVALUATIE TER STATE. Marion Matthijssen, Marn van Rhee. Centrum voor Onderzoek en Statistiek (COS) juli 2005. In opdracht van Raad van State

EVALUATIE TER STATE. Marion Matthijssen, Marn van Rhee. Centrum voor Onderzoek en Statistiek (COS) juli 2005. In opdracht van Raad van State EVALUATIE TER STATE Marin Matthijssen, Marn van Rhee Centrum vr Onderzek en Statistiek (COS) juli 2005 In pdracht van Raad van State Centrum vr Onderzek en Statistiek (COS) Auteur: Marin Matthijssen en

Nadere informatie

De Ultieme Sollicitatie Gids.

De Ultieme Sollicitatie Gids. De Ultieme Sllicitatie Gids. Ha Aanstaande Superheld! Hierbij een mie verzameling met nuttige infrmatie. Lees het dr en kijk wat je eruit kunt halen. Sms staan er bepaalde tips f acties dubbel in. Dat

Nadere informatie

Muiswerk Verbanden 2 besteedt aandacht aan het rekenen met grafieken en tabellen.

Muiswerk Verbanden 2 besteedt aandacht aan het rekenen met grafieken en tabellen. Verbanden 2 Muiswerk Verbanden 2 besteedt aandacht aan het rekenen met grafieken en tabellen. Delgrep Verbanden 2 Verbanden 2 is bedeld vr leerlingen in klas 1-4 van het vmb en in klas 1-3 van hav/vw.

Nadere informatie

depressie wat kun je doen als iemand in je omgeving een depressie heeft?

depressie wat kun je doen als iemand in je omgeving een depressie heeft? depressie raakt iedereen wat kun je den als iemand in je mgeving een depressie heeft? INHOUD Inleiding 4 De Depressie Vereniging 5 Tips vr naasten van mensen met een depressie 6 Het prbleem erkennen 6

Nadere informatie

Als uitgangspunt zijn er drie wensen waar jij uit kunt kiezen:

Als uitgangspunt zijn er drie wensen waar jij uit kunt kiezen: Stap 2 Wat ga je den? Je gaat een wens kiezen ver wat jij anders wilt in het met elkaar mgaan. Daarna kies je twee manieren waarp jullie die wens gaan waarmaken. Je schrijft k ng p welke kwaliteiten en

Nadere informatie

INHOUD. Hoofdstuk 1 Inleiding 2

INHOUD. Hoofdstuk 1 Inleiding 2 INHOUD Hfdstuk 1 Inleiding 2 Hfdstuk 2 Wat hudt die extra begeleiding in? 4 LWOO Praktijknderwijs Wie kmt ervr in aanmerking? Wie beslist daarver? Hfdstuk 3 Wat hudt het nderzek van het COB in? 7 Welke

Nadere informatie

Wat zijn de specifieke omstandigheden van deze locatie waar, bij inpassing van de voorziening, rekening mee gehouden moet worden?

Wat zijn de specifieke omstandigheden van deze locatie waar, bij inpassing van de voorziening, rekening mee gehouden moet worden? Omgevingsscan Achtergrnd prject De gemeente Drdrecht heeft het plan pgevat de prblematiek rndm (merendeels verslaafde) dak- en thuislze mensen in haar stad aan te pakken. In dit kader heeft de gemeente

Nadere informatie

Stap 1. Wat wil jij?

Stap 1. Wat wil jij? Stap 1. Hi Iemand heeft het idee dat jij wel wat supprt kunt gebruiken. Dat kunnen je uders zijn, een vriend/vriendin een therapeut f iemand anders die ju ged kent. Die iemand wil graag dat jij hulp krijgt

Nadere informatie

Meldcode bij een vermoeden van kindermishandeling voor scheidingsbegeleiders [versie 28-04-2009]

Meldcode bij een vermoeden van kindermishandeling voor scheidingsbegeleiders [versie 28-04-2009] 1 Algemeen Meldcde bij een vermeden van kindermishandeling vr scheidingsbegeleiders [versie 28-04-2009] 1.1 Iedere ScS Scheidingsspecialist, ScS Zandkasteelcach, ScS OKEE-cach, hierna te nemen scheidingsbegeleider,

Nadere informatie

Succesvol samenwerken met ouders. Onderzoek Ouderbetrokkenheid. Bundel in te kijken in de leraarskamer. http://flob.sint-niklaas.

Succesvol samenwerken met ouders. Onderzoek Ouderbetrokkenheid. Bundel in te kijken in de leraarskamer. http://flob.sint-niklaas. Onderzek Ouderbetrkkenheid V.U. : Lieve Van Daele, Grte Markt 1, 9100 Sint-Niklaas Succesvl samenwerken met uders Bundel in te kijken in de leraarskamer http://flb.sint-niklaas.be ONDERZOEK GOK-PROJECT

Nadere informatie

1. Opstellen van de enquête

1. Opstellen van de enquête Tips vr enquêtes: meten = weten = actie Een enquête is meer dan een vragenlijstje. Het is een ideaal cmmunicatie- en drukkingsmiddel m milieuprblemen te registreren en aan te kaarten in de media f bij

Nadere informatie

Vergaderen Informatieblad (VP) IEV1 Bladzijde 1 van 7. Vergaderen

Vergaderen Informatieblad (VP) IEV1 Bladzijde 1 van 7. Vergaderen Vergaderen Infrmatieblad (VP) IEV1 Bladzijde 1 van 7 Vergaderen Vergaderen Infrmatieblad (VP) IEV1 Bladzijde 2 van 7 Vergaderen Elke vergadering kent een vaste structuur en een vaste vlgrde. Deze structuur

Nadere informatie

Obesitas Een onderschatte bedreiging: Publieke perceptie van obesitas in Europa

Obesitas Een onderschatte bedreiging: Publieke perceptie van obesitas in Europa Obesitas Een nderschatte bedreiging: Publieke perceptie van besitas in Eurpa SAMENVATTING PER LAND BELGIË Uitgeverd dr Opinium, een nafhankelijk bureau vr strategische inzichten, in samenwerking met de

Nadere informatie

Prospectbeheer : Te exporteren adressen

Prospectbeheer : Te exporteren adressen Prspectbeheer : Te exprteren adressen 2 Inhudstafel 1. Inleiding: Te exprteren adressen p3 2. Wat verstaan we nder een gekwalificeerd adres? p4 2.1 Particulier=eindklant 2.2 Bestuurder verbnden aan een

Nadere informatie

Voorbehouden en risicovolle handelingen binnen het primair onderwijs. Protocol Medisch Handelen

Voorbehouden en risicovolle handelingen binnen het primair onderwijs. Protocol Medisch Handelen Vrbehuden en risicvlle handelingen binnen het primair nderwijs Prtcl Medisch Handelen J.C. v.d. Wal September 2013 INHOUD Inleiding... 3 1 De leerling wrdt ziek p schl... 4 2 Het verstrekken van medicatie

Nadere informatie

Producten en prijzen 2012

Producten en prijzen 2012 TypeWrld Pstbus 38 2410 AA Bdegraven Nederland Tel. 0172-65 09 83 Fax 0172-61 83 15 www.instruct.nl instruct@instruct.nl België www.instruct.be instruct@instruct.be Prducten en prijzen 2012 TypeWrld Leren

Nadere informatie

VERHOUDINGEN 2. Doelgroep Verhoudingen 2. Omschrijving Verhoudingen 2

VERHOUDINGEN 2. Doelgroep Verhoudingen 2. Omschrijving Verhoudingen 2 VERHOUDINGEN 2 Muiswerk Verhudingen 2 bestrijkt de uitbreiding van de basisvaardigheden van het rekenen met verhudingen, breuken en prcenten. Dit zijn de regels en vaardigheden die in het vmb en de nderbuw

Nadere informatie

Samenvattend rapport Operationeel Leidinggevenden

Samenvattend rapport Operationeel Leidinggevenden Samenvattend rapprt Operatineel Leidinggevenden Organisatie: Bevragingsperide: Rapprtdatum: ttaal 25/11/2014-24/12/2014 27/01/2015 He situeert u dit rapprt? Dit rapprt bevat het glbale verzicht van de

Nadere informatie

Werkblad ontwikkelwijzer Gouden Standaard

Werkblad ontwikkelwijzer Gouden Standaard Werkblad ntwikkelwijzer Guden Standaard Beeld van de leerling Vraag Opmerkingen/antwrden Actie He brengen wij nze leerlingen in beeld? (met g p telating tt gymnasiumstrm) Op welke manier maken wij ptimaal

Nadere informatie

Start duurzame inzetbaarheid

Start duurzame inzetbaarheid Start duurzame inzetbaarheid Een praktijkcasus Dr: Rlf Weijers, Pauline Miedema Hewel duurzame inzetbaarheid een veelbesprken thema is, blijft het lastig m het cncreet te maken en er handen aan veten aan

Nadere informatie

De economie van criminaliteit toegepast op oneerlijk studiegedrag

De economie van criminaliteit toegepast op oneerlijk studiegedrag UNIVERSITEIT ANTWERPEN Academiejaar 2010 2011 FACULTEIT TOEGEPASSTE ECONOMISCHE WETENSCHAPPEN De ecnmie van criminaliteit tegepast p neerlijk studiegedrag LIES PEETERS Masterpref vrgedragen tt het bekmen

Nadere informatie

PEST PROTOCOL. Prins Willem-Alexanderschool

PEST PROTOCOL. Prins Willem-Alexanderschool PEST PROTOCOL Prins Willem-Alexanderschl Wat is een pestprtcl? Een pestprtcl is een aantal vereenkmsten ver het tegengaan van pesten. Een afspraak tussen de schl, de kinderen en de uders. Waarm een pestprtcl?

Nadere informatie

Bergermeer Gasopslag Microseismisch monitoring

Bergermeer Gasopslag Microseismisch monitoring Bergermeer Gaspslag Micrseismisch mnitring Maandrapprtage Februari 2012 Het maandelijkse rapprt geeft verslag van de micrseismische mnitring van het Bergermeer veld, inclusief de resultaten zals die gerapprteerd

Nadere informatie

VOEL OOK DE MAGIE VAN KINDEROPVANG EN NATUUR!

VOEL OOK DE MAGIE VAN KINDEROPVANG EN NATUUR! Ontwikkeling van kinderen, stagnatie van de ntwikkeling en drverwijzen Wij prberen er vr te zrgen dat kinderen zich bij nze pvang plezierig velen en zich kunnen ntwikkelen. Om te kunnen berdelen f dit

Nadere informatie

Kenneth Smit Consulting -1-

Kenneth Smit Consulting -1- Versneld en cntinu verbeteren van de perfrmance en de resultaten van uw medewerkers en rganisatie. Perfrmance en rendementsverbetering van uw rganisatie is de fcus waarp de activiteiten van Kenneth Smit

Nadere informatie

Handleiding Opmaken fiche 281.50 Versie 2.0

Handleiding Opmaken fiche 281.50 Versie 2.0 Versie 2.0 1. Inleiding... 3 2. Vrbereidende werkzaamheden... 3 2.1. Algemene rekeningen... 3 2.2. Leveranciersfiches... 4 3. Het pstellen van de fiches... 6 3.1. Het vrbereidingsprgramma... 6 3.2. Het

Nadere informatie

Pedagogisch klimaat en autisme. Pedagogisch klimaat en de Klimaatschaal. Groepsprocessen bij jongeren: rol van de leerkracht.

Pedagogisch klimaat en autisme. Pedagogisch klimaat en de Klimaatschaal. Groepsprocessen bij jongeren: rol van de leerkracht. Pedaggisch klimaat en autisme dr Ad Dnkers Klimaatschaal SIGA Dinsdag 9 december 2014 Inleiding Even vrstellen.. Pedaggisch klimaat en de Klimaatschaal Grepsprcessen bij jngeren: rl van de leerkracht.

Nadere informatie

Kwaliteitsaspecten van onderwijs. Wat vinden pedicures belangrijk aan kwaliteit van opleiders

Kwaliteitsaspecten van onderwijs. Wat vinden pedicures belangrijk aan kwaliteit van opleiders Kwaliteitsaspecten van nderwijs Wat vinden pedicures belangrijk aan kwaliteit van pleiders Clfn Titel Kwaliteitsaspecten van nderwijs. Wat vinden pedicures belangrijk aan kwaliteit van pleiders. Auteur

Nadere informatie

Hoe zet ik een tent op?

Hoe zet ik een tent op? He zet ik een tent p? 1. Een Gede plek vinden en vrbereiden Zek een plek die hger ligt dan de rest Ga als het mgelijk is niet nder lfbmen staan. Bij regen druppelen deze namelijk lang na. Hud rekening

Nadere informatie

Ter vergelijking met de MJA3-doelstelling worden de indices voor productieproces, keten en duurzame energie gesommeerd.

Ter vergelijking met de MJA3-doelstelling worden de indices voor productieproces, keten en duurzame energie gesommeerd. MJA3 cnvenant Methdiek energieefficiency Alle inspanningen van bedrijven gericht p energiebesparing in het prductieprces en in de keten en met het g p de inzet van duurzame energie, wrden gehnreerd: zij

Nadere informatie

MedewerkerMonitor Benchmark in de Zorg

MedewerkerMonitor Benchmark in de Zorg MedewerkerMnitr Benchmark in de Zrg Telichting pzet vragenlijst en invulinstructies U heeft een inlgcde ntvangen per brief f per e-mail. Mcht u geen inlgcde ntvangen hebben, dan kunt u terecht bij de benchmarkcördinatr

Nadere informatie

Pieter Swager/ Jos Fransen lectoraat elearning

Pieter Swager/ Jos Fransen lectoraat elearning 1 Pieter Swager/ Js Fransen lectraat elearning Scenari: 1 e deel afstudeerfase (1 e semester): schrijven nderzeksplan (vrbeeldscenari/ blauwdruk van een leerpraktijk) Vraf Onderwijskundig kader waarbinnen

Nadere informatie

Overgangsnormen Minkemalaan. cursusjaar 2015 2016

Overgangsnormen Minkemalaan. cursusjaar 2015 2016 Overgangsnrmen Minkemalaan cursusjaar 2015 2016 1 INHOUDSOPGAVE blz. Vrwrd 3 BEVORDERINGSNORMEN 1. Inleiding 4 2. Tetscijfers 5 3. Rapprtcijfers 5 4. Bevrderingsnrmen brugklas hav/vw 6 5. Bevrderingsnrmen

Nadere informatie

Een natuurlijk proces

Een natuurlijk proces Ik vel het weer. Het is er weer. Sms even, dan de hele tijd. Ik wil je niet kwetsen. Ik wil het niet weer zeggen, maar het is er weer. (Gijs Hrvers) Overprikkeling Veel mensen met autisme hebben gede intellectuele

Nadere informatie

dat u gemakkelijker het huurcontract kunt opzeggen als u een koper voor de woning heeft gevonden.

dat u gemakkelijker het huurcontract kunt opzeggen als u een koper voor de woning heeft gevonden. Telichting huurcntract Tijdelijke verhuur p basis Leegstandwet behrende bij het huurcntract p de website van Vereniging Eigen Huis datum van pstellen telichting: 14 december 2012 Inleiding Het verhuren

Nadere informatie

Dactylografie/Toegepaste informatica 6KA/VK

Dactylografie/Toegepaste informatica 6KA/VK Dactylgrafie/Tegepaste infrmatica 6KA/VK Thierry Willekens, leerkracht Kninklijk Technisch Atheneum Ml 2007 WOORD VOORAF Alle leerlingen hebben in de 2 de graad en in het eerste leerjaar van de 3 de graad

Nadere informatie

Rollenspel Jezus redt

Rollenspel Jezus redt Rllenspel Jezus redt Krte mschrijving prgrammanderdeel De leerlingen spelen samen een bestuursrechtzaak bij de Raad van State na. De Raad van State is de hgste bestuursrechter van Nederland. In deze rechtszaak

Nadere informatie

Waarom zou je kiezen voor M&O?

Waarom zou je kiezen voor M&O? Waarm zu je kiezen vr M&O? Onderzek naar het keuzegedrag van leerlingen vr het vak Management & Organisatie Grningen, mei 2013 Auteurs Brenda Bergkamp Bvenhuis Arjan Wrd Masterpleiding leraar Algemene

Nadere informatie

Geavanceerde data wetenschappen

Geavanceerde data wetenschappen Master HI Geavanceerde data wetenschappen 1ste deel - inclusief pgelste efeningen Q uickprinter Kningstraat 13 2000 Antwerpen www.quickprinter.be 182 3.50 EUR Nieuw!!! Online samenvattingen kpen via www.quickprintershp.be

Nadere informatie

Deel 1. Procedure voor het indienen van een schakelprogramma

Deel 1. Procedure voor het indienen van een schakelprogramma Deel 1. Prcedure vr het indienen van een schakelprgramma Waarm een schakelprgramma? Vr telating tt de pstinitiële master pleiding Kwaliteit en veiligheid in de patiëntenzrg is een geaccrediteerd master

Nadere informatie

ALGEMENE VOORWAARDEN

ALGEMENE VOORWAARDEN ALGEMENE VOORWAARDEN VisumPr B.V., Raamweg 1, 2596 HL, Den Haag Artikel 1. Definities In deze algemene vrwaarden wrden de vlgende definities tegepast: Opdrachtgever: de wederpartij van VisumPr B.V. VisumPr:

Nadere informatie

Handreiking invulling zorgniveau 2 en 3 bij vermoeden ernstige enkelvoudige dyslexie (EED) RSV Breda e.o. OOK

Handreiking invulling zorgniveau 2 en 3 bij vermoeden ernstige enkelvoudige dyslexie (EED) RSV Breda e.o. OOK Handreiking invulling zrgniveau 2 en 3 bij vermeden ernstige enkelvudige dyslexie (EED) RSV Breda e.. OOK Inleiding. Vanaf 1 januari 2015 is de bekstiging en uitvering van beleid met betrekking tt ernstige

Nadere informatie