Stochastische Modellen in Operations Management (153088)

Maat: px
Weergave met pagina beginnen:

Download "Stochastische Modellen in Operations Management (153088)"

Transcriptie

1 Stochastische Modellen in Operations Management (53088) S S Ack X ms X ms S0 40 ms R R R3 L L 0 ms 0 ms D0 Internet D D Richard Boucherie Stochastische Operations Research TW, Ravelijn H 9

2 Algemenere wachtsystemen M G : Pollaczek-Khintchine formule M G : Residuele bedieningsduur Poolen? M G : busy period M G en M G s 0 Prioriteiten

3 Definities Het M G model Poisson aankomstproces enkele bediende alleen de verwachting en de variantie van de bedieningsduur zijn gegeven μ σ 0 0 tdb ( t) < ( t μ ) db ( t) <

4 Eigenschappen Het M G model: PK formule de gemiddelde wachttijd wordt gegeven door de Pollaczek-Khintchine formule : EW { } ρ μ( ρ) { ( μσ) } + hierin bedraagt μσ de variatie-coefficient van de bedieningsduurverdeling gemiddelde wachttijd deterministische bedieningsduur is helft gem wachttijd exponentieel verdeelde bediendingsduur

5 Afleiding PK formule E{L w } gemiddeld aantal wachtenden G kans tenminste een klant in systeem E{R} gemiddelde residuele bedieningsduur E{B} gemiddelde bedieningsduur PASTA: EW G.E{R}+ E{L w }.E{B} G.E{R}+ λ.e{w}.e{b} (Little)

6 Afleiding PK formule EW G.E{R}+ E{L w }.E{B} G.E{R}+ λ.e{w}.e{b} (Little) G.E{R}+ G.E{W} G kans ten minste een klant (-P 0 ) fractie tijd server bezet hoeveelheid werk die server per tijdseenheid moet verzetten aantal aank per tijdseenh x gem hoeveel gevraagde bed. λ E{B} Verder G is kans, zodat E{W}(00%)E{W}GE{W}+(-G)E{W} E G. E { R } { W } E { R G } ρ ρ

7 7 Algemenere wachtsystemen M G : Pollaczek-Khintchine formule M G : Residuele bedieningsduur Poolen? M G : busy period M G en M G s 0 Prioriteiten

8 Residuele bedieningsduur Continue bediening: -- klant in bediening betaalt E per tijdseenheid voor iedere resterende eenheid van zijn bediening -- systeem ontvangt dus E{R} per tijdseenheid -- en klant moet betalen E{R}E{B} -- alternatief: klant betaalt bij aanvang bediening gehele bedrag volgens zelfde regel, klant moet dus gemiddeld betalen E{B }/ Zodat E { R } E { B E { B } } Invullen in voorgaande formule geeft uiteindelijke vorm PK formule

9 9 Algemenere wachtsystemen M G : Pollaczek-Khintchine formule M G : Residuele bedieningsduur Poolen? M G : busy period M G en M G s 0 Prioriteiten

10 Poolen? Situatieschets E { W ρ ρ ) + beschouw een kopieermachine waarop zowel studenten als medewerkers mogen kopieren de aankomstprocessen van studenten en medewerkers zijn Poisson met gemiddelden van resp. 4 per uur de bedieningsduren van studenten en medewerkers zijn exponentieel verdeeld met gemiddeldes van 0 resp. 5 minuten Optie : delen van een machine met snelheid Optie : aparte machines snelheid Welke optie is beter voor gemiddelde wachttijd? Welke optie is beter voor gemiddelde verblijftijd? } ( ( μσ ) μ

11 Optie : delen machine snelheid λ λ s 3, 0 0 μ σ, Poolen? ρ E{ W } ( ρ ) W 00 m W s W 3 0 Optie : aparte machines snelheid 5 9 μ 30 0, λ s m 5, μ m, ( μσ ) μ CV ongeveer, dus winst snelle machine groter dan verlies door variantie W s { } 5 Wm { } W /0 / 5 0 3

12 Stel nu meer uiteenliggende jobgrootte, dus hogere variantie Optie : delen machine snelheid λ λ s 30, s 8 m 5 m μ, λ, μ 3, 0 0 μ σ, W 00 9 m W s W 3 0 Optie : aparte machines snelheid W s Poolen? ρ E{ W } ( ρ ) Wm W 4 + ( μσ ) μ.0 CV ongeveer 3, en winst snelle machine teniet gedaan door grotere variantie

13 3 Algemenere wachtsystemen M G : Pollaczek-Khintchine formule M G : Residuele bedieningsduur Poolen? M G : busy period M G en M G s 0 Prioriteiten

14 Het M G model : busy period een bezetperiode is gedefinieerd als een aangesloten interval waarin de server actief is een bezetcyclus is de tijd tussen twee opeenvolgende momenten waarop een bezetperiode begint E{P} : gemiddelde lengte bezetperiode E{C} : gemiddelde lengte bezetcyclus Eigenschappen E E { P } { C } P 0 ρ Gevolg E { C } E { P } + E { P } μ ( ρ ) λ μ λ Alleen afhankelijk gemiddelden

15 5 Algemenere wachtsystemen M G : Pollaczek-Khintchine formule M G : Residuele bedieningsduur Poolen? M G : busy period M G en M G s 0 Prioriteiten

16 Het M G model Overige wachtsystemen stationaire verdeling is een Poisson verdeling met gemiddelde ρ n ρ ρ Pn e n n! Het M G s 0 model stationaire verdeling P P n 0 n 0,,,... ρ P0 n 0,,..., s n! n s 0 blokkeringskans (Erlang verliesformule) s s n ρ Ps ρ Ongevoelig s! n! n 0 ρ n n!

17 7 Algemenere wachtsystemen M G : Pollaczek-Khintchine formule M G : Residuele bedieningsduur Poolen? M G : busy period M G en M G s 0 Prioriteiten

18 Wachtsystemen met prioriteiten Voorbeeld (M M ) n typen klachten type i heeft voorrang boven type j als i < j tussenaankomsttijden en bedieningsduren zijn exp. verdeeld met parameters λ i en μ i de bediening van een klant kan niet worden onderbroken

19 Resultaten Wachtsystemen met prioriteiten def. ρ k als de verkeersintensiteit die wordt geleverd door de eerste k typen klanten: k λ i ρ k μ i de gemiddelde wachttijd W k per klant van type k bedraagt dan (zie Winston) : λ μ λn μn W k ( ρk ) ( ρk ) in het gevaln reduceert dit weer tot : i EW { } λ μ ρ ρ μ ( ρ)

20 Situatieschets Een kopieermachine beschouw een kopieermachine waarop zowel studenten als medewerkers mogen kopieren de aankomstprocessen van studenten en medewerkers zijn Poisson met gemiddelden van resp. 4 per uur de bedieningsduren van studenten en medewerkers zijn exponentieel verdeeld met gemiddelden van 0 resp. 5 minuten Optie : niemand voorrang Optie : studenten voorrang Optie 3 : medewerkers voorrang

21 Een kopieermachine Optie : niemand voorrang 0 Optie : studenten voorrang λ, μ, σ W Optie 3 : medewerkers voorrang λ, μ, λ, μ W 75., W 5., W 5. LET OP: Voor opties en 3 zijn wachttijden typen gelijk, immers ρ s ρ w maar fractie studenten niet gelijk aan fractie medewerkers, zodat gem wachttijd verschillend λ, μ, λ, μ s W W m W 75., W 5., W

22 Algemenere wachtsystemen M G : Pollaczek-Khintchine formule M G : Residuele bedieningsduur Poolen? M G : busy period M G en M G s 0 Prioriteiten Andere systemen?

23 Andere systemen? Wachttijd M G Rijlengte bij aankomst GI M Wachttijd E m E n Wachttijd GI G (benaderingen) Batch bediening

24 Situatieschets Een batch systeem beschouw een systeem met Poisson aankomsten, waarbij bediening in batches van twee klanten tegelijkertijd plaatsvindt Transitiediagram λ 0 Geef evenwichtsverdeling μ μ μ 3 λ λ λ μ (etcetera)

25 Volgende keer: netwerken van wachtrijen 3 4 5

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Operations Management (53088) S S Ack X ms X ms S0 40 ms R R R3 L L 0 ms 0 ms D0 Internet D D Richard Boucherie Stochastische Operations Research TW, Ravelijn H 9 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/53088/53088.html

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms Stochastische Modellen in Operations Management (153088) R1 S0 240 ms Ack Internet R2 L1 R3 L2 10 ms 1 10 ms D1 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms Stochastische Modellen in Operations Management (153088) R1 S0 240 ms Ack Internet R2 L1 R3 L2 10 ms 1 10 ms D1 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

We zullen de volgende modellen bekijken: Het M/M/ model 1/14

We zullen de volgende modellen bekijken: Het M/M/ model 1/14 De analyse en resultaten van de voorgaande twee modellen (het M/M/1/K model en het M/M/1 model) kunnen uitgebreid worden naar modellen met meerdere bediendes. We zullen de volgende modellen bekijken: Het

Nadere informatie

Model: Er is één bediende en de capaciteit van de wachtrij is onbegrensd. 1/19. 1 ) = σ 2 + τ 2 = s 2.

Model: Er is één bediende en de capaciteit van de wachtrij is onbegrensd. 1/19. 1 ) = σ 2 + τ 2 = s 2. Het M/G/1 model In veel toepassingen is de aanname van exponentiële bedieningstijden niet realistisch (denk bijv. aan produktietijden). Daarom zullen we nu naar het model kijken met willekeurig verdeelde

Nadere informatie

Wachten of niet wachten: Dat is de vraag

Wachten of niet wachten: Dat is de vraag Wachten of niet wachten: Dat is de vraag Sindo Núñez-Queija Centrum voor Wiskunde en Informatica Technische Universiteit Eindhoven Wachten of niet wachten: Dat is de vraag Wanneer heeft u voor het laatst

Nadere informatie

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. VERNIEUWINGSPROCESSEN In hoofdstuk 3 hebben we gezien wat een Poisson proces is. Definitie van een Poisson proces: Een Poisson proces met intensiteit λ (notatie P P (λ)) is een stochastisch proces {N(t),

Nadere informatie

Waarom wachten voor verkeerslichten? Inhoud 2/16/2010. Introductie Wachtrijtheorie Simpel model: een opengebroken weg

Waarom wachten voor verkeerslichten? Inhoud 2/16/2010. Introductie Wachtrijtheorie Simpel model: een opengebroken weg Waarom wachten voor verkeerslichten? Marko Boon Nationale Wiskunde Dagen 2010 Inhoud Introductie Simpel model: een opengebroken weg Met vaste afstellingen Met dynamische afstellingen Ingewikkeldere kruispunten

Nadere informatie

p j r j = LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS Hoofdstelling over het limietgedrag van continue-tijd Markov ketens formuleren.

p j r j = LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS Hoofdstelling over het limietgedrag van continue-tijd Markov ketens formuleren. LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS Hoofdstelling over het limietgedrag van continue-tijd Markov ketens formuleren. Stelling: Een irreducibele, continue-tijd Markov keten met toestandsruimte S

Nadere informatie

WACHTRIJMODELLEN. aankomstproces van klanten; wachtruimte (met eindige of oneindige capaciteit); bedieningsstation (met één of meerdere bediendes).

WACHTRIJMODELLEN. aankomstproces van klanten; wachtruimte (met eindige of oneindige capaciteit); bedieningsstation (met één of meerdere bediendes). Verschillende soorten toepassingen WACHTRIJMODELLEN alledaagse toepassingen; toepassingen uit produktieomgeving; toepassingen in de communicatiesfeer. Typische onderdelen van een wachtrijmodel aankomstproces

Nadere informatie

WACHTRIJMODELLEN. aankomstproces van klanten; wachtruimte (met eindige of oneindige capaciteit); bedieningsstation (met één of meerdere bediendes).

WACHTRIJMODELLEN. aankomstproces van klanten; wachtruimte (met eindige of oneindige capaciteit); bedieningsstation (met één of meerdere bediendes). Verschillende soorten toepassingen WACHTRIJMODELLEN alledaagse toepassingen; toepassingen uit produktieomgeving; toepassingen in de communicatiesfeer. Typische onderdelen van een wachtrijmodel aankomstproces

Nadere informatie

Inleiding Modelmatige beschrijving Kansverdelingen Het overgangsdiagram De stellingen van Little M/M/1 M/M/1/N Afsluiti.

Inleiding Modelmatige beschrijving Kansverdelingen Het overgangsdiagram De stellingen van Little M/M/1 M/M/1/N Afsluiti. 11 juni 2013 Maartje van de Vrugt, CHOIR Wat is het belang van wachtrijtheorie? Inleiding Modelmatige beschrijving Kansverdelingen Het overgangsdiagram De stellingen van Little M/M/1 Evenwichtskansen Wachtrij

Nadere informatie

Reserveringssystemen

Reserveringssystemen I. Verstraten Reserveringssystemen Bachelorscriptie, 26 juli 203 Scriptiebegeleider: Dr. F.M. Spieksma Mathematisch Instituut, Universiteit Leiden Inhoudsopgave Inleiding 3 2 Twee systemen 4 2. Zonder

Nadere informatie

Vragen die je wilt beantwoorden zijn:

Vragen die je wilt beantwoorden zijn: Net als bij een discrete-tijd Markov keten is men bij de bestudering van een continue-tijd Markov keten zowel geïnteresseerd in het korte-termijn gedrag als in het lange-termijn gedrag. Vragen die je wilt

Nadere informatie

LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS

LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS Hoofdstelling over limietgedrag van continue-tijd Markov ketens. Stelling: Een irreducibele, continue-tijd Markov keten met toestandsruimte S = {1, 2,..., N}

Nadere informatie

o Dit tentamen bestaat uit vier opgaven o Beantwoord de opgaven 1 en 2 enerzijds, en de opgaven 3 en 4 anderzijds op aparte vellen papier

o Dit tentamen bestaat uit vier opgaven o Beantwoord de opgaven 1 en 2 enerzijds, en de opgaven 3 en 4 anderzijds op aparte vellen papier Toets Stochastic Models (theorie) Maandag 22 rnei 2OL7 van 8.45-1-1-.45 uur Onderdeel van de modules: o Modelling and analysis of stochastic processes for MATH (20L400434) o Modelling and analysis of stochastic

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) R1 L1 R2 1 S0 Stochastische Modellen in Operations Management (153088) 240 ms 10 ms Ack Internet Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. HET POISSON PROCES In veel praktische toepassingen kan het aaankomstproces van personen, orders,..., gemodelleerd worden door een zogenaamd Poisson proces. Definitie van een Poisson proces: Een Poisson

Nadere informatie

Mobiele communicatie: reken maar!

Mobiele communicatie: reken maar! Mobiele communicatie: reken maar! Richard J. Boucherie Stochastische Operationele Research Toen : telefooncentrale Erlang verliesmodel Nu : GSM Straks : Video on demand Toen : CPU Processor sharing model

Nadere informatie

Hoofdstuk 20 Wachtrijentheorie

Hoofdstuk 20 Wachtrijentheorie Hoofdstuk 20 Wachtrijentheorie Beschrijving Iedereen van ons heeft al tijd gespendeerd in een wachtrij: b.v. aanschuiven in de Alma restaurants. In dit hoofdstuk onwikkelen we mathematische modellen voor

Nadere informatie

0 2λ µ 0

0 2λ µ 0 Example 6.7 Machine werkplaats met vier onafhankelijke machines 1, 2, 3 en 4. Bedrijfsduur machine i (i = 1, 2, 3, 4) is B i Exp(µ), reparatieduur wegens defect machine i is R i Exp(λ). Er zijn twee reparateurs

Nadere informatie

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. VERNIEUWINGSPROCESSEN In hoofdstuk 6 hebben we gezien wat een Poisson proces is. Definitie van een Poisson proces: Een Poisson proces met intensiteit λ (notatie P P (λ)) is een stochastisch proces {N(t),

Nadere informatie

Definitie van continue-tijd Markov keten:

Definitie van continue-tijd Markov keten: Definitie van continue-tijd Markov keten: Een stochastisch proces {X(t), t 0} met toestandsruimte S heet een continue-tijd Markov keten (CTMC) als voor alle i en j in S en voor alle tijden s, t 0 geldt

Nadere informatie

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door APP.1 Appendix A.1 Erlang verdeling verdeling met parameters n en λ Voor o.o. discrete s.v.-en X en Y geldt P (X + Y = z) =P (X = x 1 en Y = z x 1 )+P(X = x en Y = z x )+... = P (X = x 1 )P (Y = z x 1

Nadere informatie

Definitie van continue-tijd Markov keten:

Definitie van continue-tijd Markov keten: Definitie van continue-tijd Markov keten: Een stochastisch proces {X(t), t 0} met toestandsruimte S heet een continue-tijd Markov keten (CTMC) als voor alle i en j in S en voor alle tijden s, t 0 geldt

Nadere informatie

Deeltentamen Vraag 1 (0.25 punten) Vraag 2 (0.25 punten) Vraag 3 (0.25 punten) Vraag 4 (0.25 punten) *-vragen ( relatief simpel 2 punten)

Deeltentamen Vraag 1 (0.25 punten) Vraag 2 (0.25 punten) Vraag 3 (0.25 punten) Vraag 4 (0.25 punten) *-vragen ( relatief simpel 2 punten) Deeltentamen 2013 *-vragen ( relatief simpel 2 punten) Vraag 1 (0.25 punten) In wachtrijtheorie (blz. 226) wordt het symbool λ gebruikt voor: A. De gemiddelde tijd tussen twee aankomsten B. Het gemiddeld

Nadere informatie

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i).

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). MARKOV PROCESSEN Continue-tijd Markov ketens (CTMCs) In de voorafgaande colleges hebben we uitgebreid gekeken naar discrete-tijd Markov ketens (DTMCs). Definitie van discrete-tijd Markov keten: Een stochastisch

Nadere informatie

Benaderingen voor wachttijden in k-gelimiteerde polling modellen

Benaderingen voor wachttijden in k-gelimiteerde polling modellen TU/e Technische Universiteit Eindhoven Bachelor technische wiskunde Bachelor project 28 januari 2016 Benaderingen voor wachttijden in k-gelimiteerde polling modellen Auteur: Iris Theeuwes 0828283, i.theeuwes@student.tue.nl

Nadere informatie

BESLISKUNDE A. Najaar 2016 Deel 2. L.C.M. KALLENBERG en F.M. SPIEKSMA

BESLISKUNDE A. Najaar 2016 Deel 2. L.C.M. KALLENBERG en F.M. SPIEKSMA BESLISKUNDE A Najaar 016 Deel L.C.M. KALLENBERG en F.M. SPIEKSMA UNIVERSITEIT LEIDEN Inhoudsopgave 5 WACHTTIJDTHEORIE 1 5.1 Inleiding.......................................... 1 5. Wachttijdparadox.....................................

Nadere informatie

BESLISKUNDE A. Najaar 2017 Deel 2. L.C.M. KALLENBERG en F.M. SPIEKSMA

BESLISKUNDE A. Najaar 2017 Deel 2. L.C.M. KALLENBERG en F.M. SPIEKSMA BESLISKUNDE A Najaar 2017 Deel 2 L.C.M. KALLENBERG en F.M. SPIEKSMA UNIVERSITEIT LEIDEN Inhoudsopgave 5 WACHTTIJDTHEORIE 1 5.1 Inleiding.......................................... 1 5.2 Wachttijdparadox.....................................

Nadere informatie

Q is het deel van de overgangsmatrix dat correspondeert met overgangen

Q is het deel van de overgangsmatrix dat correspondeert met overgangen COHORTE MODELLEN Stel we hebben een groep personen, waarvan het gedrag van ieder persoon afzonderlijk beschreven wordt door een Markov keten met toestandsruimte S = {0, 1, 2,..., N} en overgangsmatrix

Nadere informatie

Wachtrijtheorie op verkeersmodellen

Wachtrijtheorie op verkeersmodellen Wachtrijtheorie op verkeersmodellen Jan Jelle de Wit 20 juli 202 Bachelorscriptie Begeleiding: prof.dr. R. Núñez Queija KdV Instituut voor wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Nadere informatie

Chapter 4: Continuous-time Markov Chains (Part I)

Chapter 4: Continuous-time Markov Chains (Part I) Stochastic Operations Research I (2014/2015) Selection of exercises from book and previous exams. Chapter 4: Continuous-time Markov Chains (Part I) 1.1 Book pp 179 185 These are useful exercises to learn

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms R1 S0 240 ms Ack L1 R2 10 ms Internet R3 L2 D0 10 ms D1 D2 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219

Nadere informatie

b. de aantallen aankomsten in disjuncte tijdsintervallen zijn onafhankelijk van elkaar

b. de aantallen aankomsten in disjuncte tijdsintervallen zijn onafhankelijk van elkaar APPENDIX: HET POISSON PROCES Een stochastisch proces dat onlosmakelijk verbonden is met de Poisson verdeling is het Poisson proces. Dit is een telproces dat het aantal optredens van een bepaalde gebeurtenis

Nadere informatie

Tentamen Inleiding Kansrekening 11 augustus 2011, uur

Tentamen Inleiding Kansrekening 11 augustus 2011, uur Mathematisch Instituut Niels Bohrweg Universiteit Leiden 2 CA Leiden Delft Tentamen Inleiding Kansrekening augustus 20, 09.00 2.00 uur Bij dit examen is het gebruik van een evt. grafische) rekenmachine

Nadere informatie

Wachten in de supermarkt

Wachten in de supermarkt Wachten in de supermarkt Rik Schepens 0772841 Rob Wu 0787817 22 juni 2012 Begeleider: Marko Boon Modelleren A Vakcode: 2WH01 Inhoudsopgave Samenvatting 1 1 Inleiding 1 2 Theorie 1 3 Model 3 4 Resultaten

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms Stochastische Modellen in Operations Management (153088) R1 S0 240 ms Ack Internet R2 L1 R3 L2 10 ms 1 10 ms D1 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

Hoofdstuk 7 : Continue distributies als stochastische modellen. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 7 : Continue distributies als stochastische modellen. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 7 : Continue distributies als stochastische modellen Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Continue distributies als stochastische

Nadere informatie

Personeelsplanning in een schoolkantine

Personeelsplanning in een schoolkantine Personeelsplanning in een schoolkantine BWI werkstuk Januari 212 Petra Vis Begeleider: prof. dr. R.D. van der Mei Vrije Universiteit Faculteit der Exacte Wetenschappen Bedrijfswiskunde en Informatica De

Nadere informatie

Wachtrijtheorie. Hester Vogels en Franziska van Dalen. 11 juni 2013

Wachtrijtheorie. Hester Vogels en Franziska van Dalen. 11 juni 2013 Wachtrijtheorie Hester Vogels en Franziska van Dalen 11 juni 2013 1 1 Inleiding Een mens wacht gemiddeld 15.000 uur in zijn leven. Dit is bijvoorbeeld in de rij bij de kassa van een winkel, aan de telefoon

Nadere informatie

Kansrekening en stochastische processen 2DE18

Kansrekening en stochastische processen 2DE18 Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: resing@win.tue.nl 1/23 Voor een verzameling stochastische variabelen X 1,..., X n, de verwachting van W n = X 1 + + X n is

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) R1 L1 R2 S0 Stochastische Modellen in Operations Management (153088) 240 ms 10 ms Ack Internet Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

Wachtrijmodellen voor optimalisatie in het dagelijks leven

Wachtrijmodellen voor optimalisatie in het dagelijks leven Wachtrijmodellen voor optimalisatie in het dagelijks leven Richard J. Boucherie Stochastische Operationele Research Abstract Wachten doen we allemaal: bij de kassa van de supermarkt, in het verkeer, maar

Nadere informatie

Practicum wachtrijtheorie

Practicum wachtrijtheorie SPM0001 1e week Technische Bestuurskunde Woensdag 5 september 2012, 10:30 12:30 uur Plaats: TBM begane grond (zalen B, C, D1, D2, computerzaal A en studielandschap) Practicum wachtrijtheorie Het practicum

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/28 Schatten van de verwachting We hebben een stochast X en

Nadere informatie

Opslag strategieën in een multi-deep magazijn

Opslag strategieën in een multi-deep magazijn Opslag strategieën in een multi-deep magazijn J. Manders Universiteit Twente. Technische Wiskunde 18 juli 2016 Samenvatting In dit onderzoek wordt het gebruik van een multi-deep automatisch magazijn inclusief

Nadere informatie

UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE STUDIE VAN FILES VEROORZAAKT DOOR TRAGE VOERTUIGEN

UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE STUDIE VAN FILES VEROORZAAKT DOOR TRAGE VOERTUIGEN UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Academiejaar 2010 2011 STUDIE VAN FILES VEROORZAAKT DOOR TRAGE VOERTUIGEN Masterproef voorgedragen tot het bekomen van de graad van Master of Science

Nadere informatie

Invloed van planning op bedbezetting. 26 januari 2009 Paulien Out p.out@cczorgadviseurs.nl

Invloed van planning op bedbezetting. 26 januari 2009 Paulien Out p.out@cczorgadviseurs.nl Invloed van planning op bedbezetting 26 januari 2009 Paulien Out p.out@cczorgadviseurs.nl Programma Aanleiding voor onderzoek: opdracht van ziekenhuis aan CC Zorgadviseurs Aanpak en resultaten van de opdracht

Nadere informatie

Attractielogistiek. Bachelorproject. Where innovation starts. Faculteit Wiskunde en Informatica

Attractielogistiek. Bachelorproject. Where innovation starts. Faculteit Wiskunde en Informatica Faculteit Wiskunde en Informatica Den Dolech 2, 5612 AZ Eindhoven Postbus 513, 5600 MB Eindhoven Auteur Yves Houben Opdrachtgever prof.dr.ir. O.J. Boxma, dr.ir. M.A.A. Boon Datum 14 juni 2011 Attractielogistiek

Nadere informatie

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden.

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden. Hertentamen Inleiding Kansrekening WI64. 9 augustus, 9:-: Het tentamen heeft 5 onderdelen. Met ieder onderdeel kan maximaal punten verdiend worden. Het tentamen is open boek. Boeken, nota s en een (eventueel

Nadere informatie

Vergelijken van modellen voor het aanbieden van tolken Een wiskundig model voor Capio

Vergelijken van modellen voor het aanbieden van tolken Een wiskundig model voor Capio Vergelijken van modellen voor het aanbieden van tolken Een wiskundig model voor Capio Anke Gasseling, Wouter Lardinois en Eloy Stoppels 15 juni 2015 1 1 Abstract Capio is een bedrijf dat een applicatie

Nadere informatie

Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties

Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties Discrete Distributiefuncties 3. Er zijn 3 studenten aan het begin van de dag aanwezig bij een symposium. De kans dat een student volhoudt

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

Milieustraat Project Modelleren C

Milieustraat Project Modelleren C Den Dolech 2, 5612 AZ Eindhoven Postbus 513, 5600 MB Eindhoven www.tue.nl Auteur Wouter van der Heide & Thomas Beekenkamp ID (resp.): 0739052 & 0743557 Begeleider: J.A.C. Resing Opdrachtgever: M. Boon

Nadere informatie

GESLOTEN NETWERKEN VAN WACHTRIJEN

GESLOTEN NETWERKEN VAN WACHTRIJEN GESLOTEN NETWERKEN VAN WACHTRIJEN In het vorige college hebben we gekeken naar een model waarbij klanten van buitenaf het netwerk inkomen, een (stochastisch) aantal keren van het ene station naar het andere

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Oerations Management (15388) S1 S2 Ack X ms X ms S 24 ms R1 R2 R3 L1 L2 1 ms 1 ms D Internet D1 D2 Richard Boucherie Stochastische Oerations Research TW, Ravelijn H 219 htt://wwwhome.math.utwente.nl/~boucherierj/onderwijs/15388/15388.html

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 7 Dinsdag 11 Oktober 1 / 33 2 Statistiek Vandaag: Populatie en steekproef Maten Standaardscores Normale verdeling Stochast en populatie Experimenten herhalen 2 / 33 3

Nadere informatie

De Wachttijd-paradox

De Wachttijd-paradox De Wachttijd-paradox Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam Mastercourse 15 november 25 Peter Spreij spreij@science.uva.nl 1 Het probleem In deze mastercourse behandelen

Nadere informatie

Milieustraat Project Modelleren C

Milieustraat Project Modelleren C Den Dolech 2, 562 AZ Eindhoven Postbus 53, 5600 MB Eindhoven www.tue.nl Auteur Wouter van der Heide & Thomas Beekenkamp ID (resp.): 0739052 & 0743557 Begeleider: J.A.C. Resing Opdrachtgever: M. Boon Faculteit:

Nadere informatie

Tentamen Kansrekening (NB004B)

Tentamen Kansrekening (NB004B) NB4B: Kansrekening Dinsdag november 2 Tentamen Kansrekening (NB4B) Het is een open boek tentamen. Gebruik van een rekenmachine of andere hulpmiddelen is niet toegestaan. Vermeld op ieder blad je naam en

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/39 Een stochastisch proces (stochastic proces) X (t) bestaat

Nadere informatie

Strategisch kassa s inzetten in supermarkten. Lydia van t Veer. BWI-werkstuk

Strategisch kassa s inzetten in supermarkten. Lydia van t Veer. BWI-werkstuk Lydia van t Veer BWI-werkstuk Lydia van t Veer BWI-werkstuk Vrije Universiteit Faculteit der Exacte Wetenschappen Studierichting Bedrijfswiskunde en Informatica De Boelelaan 1081a 1081 HV Amsterdam Maart

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Oerations Management (153088) S1 S2 Ack X ms X ms S0 240 ms R1 R2 R3 L1 L2 10 ms 10 ms D0 Internet D1 D2 Richard Boucherie Stochastische Oerations Research TW, Citadel 125 htt://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal. Toets Kansrekenen I. 28 maart 2014

Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal. Toets Kansrekenen I. 28 maart 2014 Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal Toets Kansrekenen I 28 maart 2014 Naam : Richting : Lees volgende aanwijzingen alvorens aan het examen te beginnen Wie de

Nadere informatie

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1) Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie

Nadere informatie

HOOFDSTUK II BIJZONDERE THEORETISCHE VERDELINGEN

HOOFDSTUK II BIJZONDERE THEORETISCHE VERDELINGEN HOOFDSTUK II BIJZONDERE THEORETISCHE VERDELINGEN. Continue Verdelingen 1 A. De uniforme (of rechthoekige) verdeling Kansdichtheid en cumulatieve frequentiefunctie Voor x < a f(x) = 0 F(x) = 0 Voor a x

Nadere informatie

CPU scheduling : introductie

CPU scheduling : introductie CPU scheduling : introductie CPU scheduling nodig bij multiprogrammering doel: een zo hoog mogelijke CPU-bezetting, bij tevreden gebruikers proces bestaat uit afwisselend CPU-bursts en I/O-bursts lengte

Nadere informatie

Triage op de spoedeisende hulp

Triage op de spoedeisende hulp Triage op de spoedeisende hulp BWI Werkstuk, augustus 2008 Matthijs Kooy Vrije Universiteit Amsterdam Faculteit der Eacte Wetenschappen De Boelelaan 1081a 1081 HV Amsterdam Voorwoord Een van de laatste

Nadere informatie

Stochastic Operations Research

Stochastic Operations Research Stochastic Operations Research Staf: Richard Boucherie Nelly Litvak Jan-Kees van Ommeren Werner Scheinhardt Judith Vink-Timmer Promovendi: Tom Coenen Roland de Haan Denis Miretskiy Yana Volkovich Peter

Nadere informatie

Kostenbesparing bij voorraadbeheer

Kostenbesparing bij voorraadbeheer Kostenbesparing bij voorraadbeheer Douwe Hut Universiteit Twente d.a.hut@student.utwente.nl 3 augustus 207 Samenvatting In dit artikel worden twee samenwerkingsstrategieën voor gezamenlijke inkoop van

Nadere informatie

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling.

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling. Deze week: Verdelingsfuncties Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties Cursusjaar 29 Peter de Waal Toepassingen Kansmassafuncties / kansdichtheidsfuncties Eigenschappen Departement Informatica

Nadere informatie

Wiskunde is tijdloos

Wiskunde is tijdloos Van Graham Bell tot John de Mol: Wiskunde is tijdloos Rob van der Mei Agenda 1. Telecommunicatie: de geboorte van een vakgebied 2. een reis door de geschiedenis 3. en de terugkeer naar het basiskamp: Wiskunde!

Nadere informatie

Deeltentamen 2 Algemene Statistiek Vrije Universiteit 18 december 2013

Deeltentamen 2 Algemene Statistiek Vrije Universiteit 18 december 2013 Afdeling Wiskunde Volledig tentamen Algemene Statistiek Deeltentamen 2 Algemene Statistiek Vrije Universiteit 18 december 2013 Gebruik van een (niet-grafische) rekenmachine is toegestaan. Geheel tentamen:

Nadere informatie

module SC 12 Inleiding Risicotheorie donderdag 7 november uur

module SC 12 Inleiding Risicotheorie donderdag 7 november uur module SC 1 Inleiding Risicotheorie donderdag 7 november 013 13.30-16.30 uur Examen module SC 1 Inleiding Risicotheorie donderdag 7 november 013 Voordat u met de beantwoording van de vragen van dit examen

Nadere informatie

Tentamen Voortgezette Kansrekening (WB006C)

Tentamen Voortgezette Kansrekening (WB006C) WB6C: Voortgezette Kansrekening Donderdag 26 januari 212 Tentamen Voortgezette Kansrekening (WB6C) Het is een open boek tentamen. Gebruik van een rekenmachine of andere hulpmiddelen is niet toegestaan.

Nadere informatie

NETWERKEN VAN WACHTRIJEN

NETWERKEN VAN WACHTRIJEN NETWERKEN VAN WACHTRIJEN Tot nog toe keken we naar wachtrijmodellen bestaande uit 1 station. Klanten komen aan bij het station,... staan (al dan niet) een tijdje in de wachtrij,... worden bediend door

Nadere informatie

Kansrekening en statistiek wi2105in deel I 29 januari 2010, uur

Kansrekening en statistiek wi2105in deel I 29 januari 2010, uur Kansrekening en statistiek wi20in deel I 29 januari 200, 400 700 uur Bij dit examen is het gebruik van een (evt grafische rekenmachine toegestaan Tevens krijgt u een formuleblad uitgereikt na afloop inleveren

Nadere informatie

OR in de zorg: een persoonlijk overzicht

OR in de zorg: een persoonlijk overzicht OR in de zorg: een persoonlijk overzicht René Bekker Afdeling Wiskunde, VU Zorguitgaven Verenigde Staten In 2007: $2.3 triljoen Voorspellingen 2011 & 2016: $3 & $4.2 triljoen Zorguitgaven zijn 4.3 maal

Nadere informatie

STOCHASTISCHE OPERATIONS RESEARCH

STOCHASTISCHE OPERATIONS RESEARCH STOCHASTISCHE OPERATIONS RESEARCH Staf: prof.dr Henk Zijm prof.dr Richard Boucherie mevr. dr Nelly Litvak dr Jan-Kees van Ommeren dr.ir Werner Scheinhardt mevr. dr Judith Vink-Timmer Promovendi: ir. Bas

Nadere informatie

Vrije Universiteit 28 mei Gebruik van een (niet-grafische) rekenmachine is toegestaan.

Vrije Universiteit 28 mei Gebruik van een (niet-grafische) rekenmachine is toegestaan. Afdeling Wiskunde Volledig tentamen Statistics Deeltentamen 2 Statistics Vrije Universiteit 28 mei 2015 Gebruik van een (niet-grafische) rekenmachine is toegestaan. Geheel tentamen: opgaven 1,2,3,4. Cijfer=

Nadere informatie

Optimale regeling van de bedieningscapaciteit van een wachtlijnsysteem

Optimale regeling van de bedieningscapaciteit van een wachtlijnsysteem UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 200 Optimale regeling van de bedieningscapaciteit van een wachtlijnsysteem Masterproef voorgedragen tot het bekomen van de graad

Nadere informatie

Variabiliteit in de zorg: geluk of ongeluk?

Variabiliteit in de zorg: geluk of ongeluk? Variabiliteit in de zorg: geluk of ongeluk? Rekenen met variabiliteit Dr. René Bekker Vrije Universiteit PICA, kenniscentrum patiëntenlogistiek 2 Flaw of averages 3 Aantal bedden 35 3 25 2 15 1 5 Scenario

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Hertentamen Biostatistiek 3 / Biomedische wiskunde

Hertentamen Biostatistiek 3 / Biomedische wiskunde Hertentamen Biostatistiek 3 / Biomedische wiskunde 2 juni 2014; 18:30-20:30 NB. Geef een duidelijke toelichting bij de antwoorden. Na correctie liggen de tentamens ter inzage bij het onderwijsbureau. Het

Nadere informatie

Analyse van discrete-tijd-wachtlijnsystemen met meerdimensionale toestandsruimte

Analyse van discrete-tijd-wachtlijnsystemen met meerdimensionale toestandsruimte Openbare verdediging van het proefschrift Analyse van discrete-tijd-wachtlijnsystemen met meerdimensionale toestandsruimte Stijn De Vuyst Promotoren: Prof. Dr. ir. Herwig Bruneel Prof. Dr. ir. Sabine Wittevrongel

Nadere informatie

Tentamen Inleiding Kansrekening wi juni 2010, uur

Tentamen Inleiding Kansrekening wi juni 2010, uur Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Matchings Bachelorproject

Matchings Bachelorproject Den Dolech 2, 5612 AZ Eindhoven Postbus 513, 5600 MB Eindhoven www.tue.nl Auteur Wouter van der Heide Identiteitsnummer: 0739052 Faculteit: W&I Vakcode: 2J008 Datum April - Juni 2013 Matchings Where innovation

Nadere informatie

Multi-class Erlang loss systems with trunk reservation in a Halfin-Whitt Regime

Multi-class Erlang loss systems with trunk reservation in a Halfin-Whitt Regime Eindhoven University of Technology BACHELOR Multi-class Erlang loss systems with trunk reservation in a Halfin-Whitt Regime van der Boor, M Award date: 204 Disclaimer This document contains a student thesis

Nadere informatie

Vrije Universiteit Amsterdam Opleiding Wiskunde Vak Poisson Processen. Poisson Processen. Arno Weber.

Vrije Universiteit Amsterdam Opleiding Wiskunde Vak Poisson Processen. Poisson Processen. Arno Weber. Vrije Universiteit Amsterdam Opleiding Wiskunde Vak Poisson Processen Poisson Processen Arno Weber email: aeweber@cs.vu.nl Januari 2003 1 Inhoudsopgave 1. Computersimulaties 3 2. Wachttijd-paradox 6 3.

Nadere informatie

5.1 Stel x is een stochastische variabele die het beste beschreven wordt door een uniforme kansverdeling met c = 20 en d = 45.

5.1 Stel x is een stochastische variabele die het beste beschreven wordt door een uniforme kansverdeling met c = 20 en d = 45. Opgaven hoofdstuk 5 I Basistechnieken 5.1 Stel x is een stochastische variabele die het beste beschreven wordt door een uniforme kansverdeling met c = 20 en d = 45. a. Bepaal f(x). b. Bepaal de verwachting

Nadere informatie

Wachttijdtheorie. Prof. dr N.M. van Dijk Dr H.J. van der Sluis

Wachttijdtheorie. Prof. dr N.M. van Dijk Dr H.J. van der Sluis Wachttijdtheorie Beo-cases Prof. dr N.M. van Dijk Dr H.J. van der Sluis Een ogenblik geduld a.u.b. Een ogenblik geduld... (Uit Trouw artikel, 26 augustus 1998) Zeker een jaar van ons leven verdoen we onze

Nadere informatie

Verbeterde afsprakenplanning voor patiënt en gipsverbandmeester

Verbeterde afsprakenplanning voor patiënt en gipsverbandmeester Verbeterde afsprakenplanning voor patiënt en gipsverbandmeester Maartje van de Vrugt, Petra Matel, Richard J. Boucherie, Peter van Engelen, Tiny Beukman en John de Laat. De gipsverbandmeesters van het

Nadere informatie

Vandaag. Onderzoeksmethoden: Statistiek 3. Recap 2. Recap 1. Recap Centrale limietstelling T-verdeling Toetsen van hypotheses

Vandaag. Onderzoeksmethoden: Statistiek 3. Recap 2. Recap 1. Recap Centrale limietstelling T-verdeling Toetsen van hypotheses Vandaag Onderzoeksmethoden: Statistiek 3 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Recap Centrale limietstelling

Nadere informatie

Bedrijfskunde. Hoofdstuk 1. Vraag 1.1 Welke naam hoort bij het concept Elementaire bewegingen voor arbeidsanalyse

Bedrijfskunde. Hoofdstuk 1. Vraag 1.1 Welke naam hoort bij het concept Elementaire bewegingen voor arbeidsanalyse Hoofdstuk 1 Bedrijfskunde Vraag 1.1 Welke naam hoort bij het concept Elementaire bewegingen voor arbeidsanalyse - McGregor - Elton Mayo - Frank Lilian Gilbreth - Alfred Sloan - Henri Fayol Vraag 1.2 Je

Nadere informatie

Doorlooptijd variantie reductie in productielijnen

Doorlooptijd variantie reductie in productielijnen Auteur Erik van Rhee (0589036) Begeleider dr. J.A.C. Resing Doorlooptijd variantie reductie in productielijnen Opdrachtgever dr. ir. M. van Vuuren (CQM) Datum 7 oktober 2009 Versie 2.0 Abstract Consider

Nadere informatie

Zeldzame en extreme gebeurtenissen

Zeldzame en extreme gebeurtenissen 24 March 215 Outline 1 Inleiding 2 Extreme gebeurtenissen 3 4 Staarten 5 Het maximum 6 Kwantielen 23 maart 215 Het Financieele Dagblad Vijf grootste rampen (verzekerd kapitaal) 1 Orkaan Katrina (25, MU$

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie