Chapter 4: Continuous-time Markov Chains (Part I)

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Chapter 4: Continuous-time Markov Chains (Part I)"

Transcriptie

1 Stochastic Operations Research I (2014/2015) Selection of exercises from book and previous exams. Chapter 4: Continuous-time Markov Chains (Part I) 1.1 Book pp These are useful exercises to learn the topic. 4.1; 4.2; 4.3; 4.4(a); 4.5(a); 4.6(a); 4.7(a); 4.8(a); 1.2 Uit Tentamens Opgave 1 [December 2013] Containerschepen met een lading van 100 containers varen naar de buitenhaven van Gotham City volgens een Poisson proces met intensiteit λ. Aan de havenkade kunnen slechts drie containerschepen aangemeerd liggen. Als de kapitein van een binnenvarend schip ziet dat de kade volledig bezet is, vaart hij door naar een concurrerende haven. Van de schepen die aan de kade liggen, wordt degene die het eerst was aangemeerd gelost. Zo gauw alle containers zijn gelost, verlaat dat schip de haven zodat er weer een plaats vrij komt aan de kade. Voor het lossen zijn 20 vrachtwagens beschikbaar. Het lossen van een container uit het schip op een vrachtwagen duurt een exponentiële tijd met verwachting 1/µ. Containers worden één voor één na elkaar uit het schip gelost, en iedere vrachtwagen kan slechts één container vervoeren. Zo gauw een container op een vrachtwagen ligt, brengt deze zijn lading naar de bestemming in de containeropslag, en keert dan weer leeg terug naar de kade. Zo een rondrit (inclusief het afladen in de containeropslag) duurt een exponentiële tijd met verwachting 1/α. De lege vrachtwagens wachten in aankomstvolgorde bij de kade voor een volgende container. (a). Formuleer een continue-tijds Markov-keten om de situatie van dit lossen van containers bij de haven te analyseren. Specificeer duidelijk wat de toestandsruimte I is, wat een toestand i voorstelt. Kies kenmerkende toestanden i en geef de bijbehorende overgangsintensiteiten q ij. Bijvoorbeeld de toestand behorende bij de situatie dat er 2 schepen aangemeerd liggen, het voorste schip heeft nog 72 containers te lossen, en er staan 5 lege vrachtwagens bij de kade. En als er 1 schip ligt met nog 1 container en 5 vrachtwagens. Bedenk zelf andere toestanden die speciale aandacht eisen. (b). Geef voor de eerste toestand genoemd bij onderdeel (a) aan hoe je de overgangsintensiteiten q ij hebt afgeleid uit de twee bekende regels (rule (a) en rule (b)) van een continue-tijds Markov-keten. 1

2 (i). Wat is de lange-termijn fractie van de tijd dat er geen lege vrachtwagens bij de kade zijn, maar wel een schip met te lossen containers? Formuleer de stelling die je toepast voor deze prestatiemaat, en geef dan duidelijk aan hoe je die toepast. (ii). Wat is de lange-termijn fractie van potentiële schepen die naar andere havens varen? Beredeneer deze fractie op twee manieren: Pas een variant van de stelling van (c) toe. Formuleer deze, en geef dan duidelijk aan hoe je die toepast. Pas PASTA toe. Wat betekent deze acroniem? Leg uit hoe je het toepast. (iii). Een aangemeerd schip betaalt 1000 euro liggeld per tijdseenheid. Hoe hoog zijn de lange-termijn gemiddelde inkomsten per tijdseenheid van de haven? Opgave 2 [Maart 2013] In Israël rijden zogenaamde sheruts rond. Dit zijn goedkope taxi s die plaatsbieden aan zeven passagiers en pas vertrekken zodra alle zeven plaatsen bezet zijn. In het kleine stadje Atlit zijn drie sheruts en één standplaats (bij het busstation). Bij de standplaats komen potentiële passagiers aan volgens een Poisson proces met parameter λ. Een passagier die bij aankomst geen sherut aantreft, gaat naar elders en heeft verder geen invloed op het systeem. Een sherutrit duurt een stochastische expontieel verdeelde tijd met verwachting 1/µ. Na afloop van de rit keert de sherut terug naar de standplaats. (a). Formuleer een continue-tijds Markovketen om de situatie bij de standplaats te analyseren. Specificeer duidelijk wat de toestandsruimte I is, wat een toestand i voorstelt, en wat de overgangsintensiteiten q ij zijn. Geef eventueel een toestandtransitiediagram. (i) Wat is de lange-termijn fractie van de tijd dat er geen passagiers wachten maar wel een of meer sheruts aanwezig zijn? Formuleer de stelling die je toepast voor deze prestatiemaat, en geef dan duidelijk aan hoe je die toepast. Geef aan hoe je de stelling van (i) hebt toegepast en/of hebt aangepast. (iii) Een sherutrit kost 50 shekels per passagier (shekel is de munteenheid van Israël; één shekel is ongeveer 18 eurocent waard). Hoe hoog is de lange-termijn gemiddelde opbrengst per tijdseenheid? Opgave 3 [December 2012] 2

3 In Israël rijden zogenaamde sheruts rond. Dit zijn goedkope taxi s die plaats bieden aan zeven passagiers en pas vertrekken zodra alle zeven plaatsen bezet zijn. Het kleine stadje Ramla heeft één standplaats voor twee sheruts. Potentiële passagiers arriveren volgens een Poisson proces met parameter λ. Een passagier die bij aankomst geen sherut aantreft maar wel zeven wachtenden, besluit een ander transportmiddel te gebruiken en heeft verder geen invloed op het systeem. Een rit van een sherut duurt een exponentiële tijd met verwachting 1/µ om alle zeven klanten op de plaats van bestemming te brengen en om weer terug te keren naar een standplaats. (a). Formuleer een continue-tijds Markovketen om dit systeem te analyseren. Specificeer duidelijk wat de toestandsruimte I is, wat een toestand i voorstelt, en wat de overgangsintensiteiten q ij zijn. Geef eventueel een toestand-transitiediagram. (b). Geef aan hoe je de overgangsintensiteiten q ij hebt beredeneerd. (i) Specificeer de evenwichtvergelijkingen voor de stationaire verdeling. Beredeneer deze fractie op twee manieren: Gebruik een opbrengst/kosten stelling. Formuleer deze stelling, en geef dan duidelijk aan hoe je die toepast. Pas PASTA toe. Wat betekent deze acroniem? Leg uit hoe je het toepast. (iii) Wat is het gemiddeld aantal wachtende sheruts (dwz; op een willekeurig tijdstip). Geef aan welke eigenschap je toepast. (iv) Een sherutrit kost 50 shekels per passagier (shekel is de munteenheid van Israël; één shekel is ongeveer 20 eurocent waard). Hoe hoog zijn de langetermijn gemiddelde opbrengst per tijdseenheid per sherut? Opgave 4 [Maart 2012] Beschouw een bedrijf met een productiehal waar n > 3 machines staan opgesteld voor het omzetten van grondstoffen en ruw materiaal in een aantal gewenste producten. Gereedgekomen producten worden afgehandeld en doorgestuurd naar de transport-afdeling voor verzending naar de klanten. Daarnaast beschikt het bedrijf over een reparatie-afdeling om kapotte machines te repareren. De levensduren van functionerende machines zijn onafhankelijke stochastische variabelen met een exponentiële kansverdeling met intensiteit λ. Een kapotte machine vereist een hoeveelheid reparatiewerk dat exponentieel verdeeld is met verwachting 1/µ. De reparatie-afdeling verdeelt haar capaciteit gelijkelijk over alle kapotte machines. Dat wil zeggen, als er k kapotte machines zijn, dan wordt ieder gerepareerd met intensiteit 1/k. Een gerepareerde machine is weer als nieuw. Productie vindt plaats zolang er machines functioneren. Maar als er drie of minder machines functioneren, kan de afhandeling niet uitgevoerd worden waardoor de producten niet worden doorgestuurd naar de transport-afdeling. In dat geval stapelt zich een 3

4 voorraad gereedgekomen producten op die pas worden doorgestuurd als er weer vier (of meer) machines functioneren. Noem voor het gemak deze periode waarin de afhandeling stilligt de down-periode. Neem aan dat op tijdstip 0 alle n machines functioneren. We zijn geïnteresseerd in de kansverdeling van de tijd tot de eerste down-periode. (a). Formuleer een geschikte continue-tijds Markov-keten om deze kansverdeling te kunnen berekenen. Specificeer de toestandsruimte I, de betekenis van een toestand i, en de overgangsintensiteiten q ij. Geef eventueel een toestands-transitiediagram. (b). Volgende week: (i) Geef aan hoe de gevraagde kansverdeling berekend kan worden, en bespreek de uniformisatie methode als numerieke methode om dat uit te voeren. Beargumenteer waarom men uniformisatie toepast. (ii) Neem nu aan dat de productiehal al een zeer lange tijd in bedrijf is, en ook in bedrijf zal blijven. Dan zijn we geïnteresseerd in de (lange-termijn) fractie van de tijd waarin de productiehal down is. Geef aan hoe die fractie berekend kan worden. Opgave 5 [Maart 2011] In een productie-voorraad systeem komen identieke producten één voor één gereed met tussentijden die onafhankelijk zijn en exponentieel verdeeld met verwachting 1/µ. Een gereed product wordt in voorraad genomen en is bestemd voor verkoop. Klanten voor het product komen aan volgens een Poisson proces met parameter λ, waarbij µ < λ. Als het product voorradig is, neemt de klant één product mee; anders gaat de klant naar elders, en gaat zijn vraag verloren. De opslagruimte voor de voorraad gereed product is onbeperkt. (a). Formuleer een geschikte continue-tijds Markovketen om dit productie-voorraad systeem te beschrijven. Specificeer de toestandsruimte I, de betekenis van een toestand i, en de overgangsintensiteiten q ij. Geef eventueel een toestands-transitiediagram. (i) Specificeer het (oneindig grote) stelsel lineaire vergelijkingen waaraan de evenwichtsverdeling voldoet, en laat vervolgens zien hoe de evenwichtskansen recursief berekend kunnen worden. Formuleer de stelling of stellingen die je toepast voor deze prestatiemaat, en geef dan duidelijk aan hoe je die toepast. 4

5 (iii) Wat is de gemiddelde tijd dat een product in voorraad is alvorens het verkocht wordt? Opgave 6 [December 2010] In Israël rijden zogenaamde sheruts rond. Dit zijn goedkope taxi s die plaatsbieden aan zeven passagiers en pas vertrekken zodra alle zeven plaatsen bezet zijn. Beschouw een gegeven sherutstandplaats met plaats voor niet meer dan twee sheruts. Bij deze standplaats komen sheruts langs volgens een Poisson proces met parameter µ en een sherut stopt alleen dan bij de standplaats als daar geen sherut of slechts één sherut staat. Bij de standplaats komen potentiële passagiers aan volgens een Poisson proces met parameter λ. Een passagier die bij aankomst geen sherut aantreft, gaat naar elders en heeft verder geen invloed op het systeem. (a). Formuleer een continue-tijds Markovketen om de situatie bij de standplaats te analyseren. Specificeer duidelijk wat de toestandsruimte I is, wat een toestand i voorstelt, en wat de overgangsintensiteiten q ij zijn. Geef eventueel een toestandtransitiediagram. (i) Wat is de long-run fractie van de tijd dat er geen passagiers wachten maar wel een of twee sheruts aanwezig zijn? Formuleer de stelling die je toepast voor deze prestatiemaat, en geef dan duidelijk aan hoe je die toepast. (ii) Wat is de long-run fractie van potentiële passagiers die naar elders gaan? Geef aan hoe je de stelling van (i) hebt toegepast en/of hebt aangepast. (iii) Een sherutrit kost 50 shekels per passagier (shekel is de munteenheid van Israël; één shekel is ongeveer 20 eurocent waard). Hoe hoog is de long-run gemiddelde opbrengst per tijdseenheid? 5

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. HET POISSON PROCES In veel praktische toepassingen kan het aaankomstproces van personen, orders,..., gemodelleerd worden door een zogenaamd Poisson proces. Definitie van een Poisson proces: Een Poisson

Nadere informatie

We zullen de volgende modellen bekijken: Het M/M/ model 1/14

We zullen de volgende modellen bekijken: Het M/M/ model 1/14 De analyse en resultaten van de voorgaande twee modellen (het M/M/1/K model en het M/M/1 model) kunnen uitgebreid worden naar modellen met meerdere bediendes. We zullen de volgende modellen bekijken: Het

Nadere informatie

WACHTRIJMODELLEN. aankomstproces van klanten; wachtruimte (met eindige of oneindige capaciteit); bedieningsstation (met één of meerdere bediendes).

WACHTRIJMODELLEN. aankomstproces van klanten; wachtruimte (met eindige of oneindige capaciteit); bedieningsstation (met één of meerdere bediendes). Verschillende soorten toepassingen WACHTRIJMODELLEN alledaagse toepassingen; toepassingen uit produktieomgeving; toepassingen in de communicatiesfeer. Typische onderdelen van een wachtrijmodel aankomstproces

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Operations Management (53088) S S Ack X ms X ms S0 40 ms R R R3 L L 0 ms 0 ms D0 Internet D D Richard Boucherie Stochastische Operations Research TW, Ravelijn H 9 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/53088/53088.html

Nadere informatie

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. VERNIEUWINGSPROCESSEN In hoofdstuk 3 hebben we gezien wat een Poisson proces is. Definitie van een Poisson proces: Een Poisson proces met intensiteit λ (notatie P P (λ)) is een stochastisch proces {N(t),

Nadere informatie

NETWERKEN VAN WACHTRIJEN

NETWERKEN VAN WACHTRIJEN NETWERKEN VAN WACHTRIJEN Tot nog toe keken we naar wachtrijmodellen bestaande uit 1 station. Klanten komen aan bij het station,... staan (al dan niet) een tijdje in de wachtrij,... worden bediend door

Nadere informatie

Definitie van continue-tijd Markov keten:

Definitie van continue-tijd Markov keten: Definitie van continue-tijd Markov keten: Een stochastisch proces {X(t), t 0} met toestandsruimte S heet een continue-tijd Markov keten (CTMC) als voor alle i en j in S en voor alle tijden s, t 0 geldt

Nadere informatie

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i).

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). MARKOV PROCESSEN Continue-tijd Markov ketens (CTMCs) In de voorafgaande colleges hebben we uitgebreid gekeken naar discrete-tijd Markov ketens (DTMCs). Definitie van discrete-tijd Markov keten: Een stochastisch

Nadere informatie

Definitie van continue-tijd Markov keten:

Definitie van continue-tijd Markov keten: Definitie van continue-tijd Markov keten: Een stochastisch proces {X(t), t 0} met toestandsruimte S heet een continue-tijd Markov keten (CTMC) als voor alle i en j in S en voor alle tijden s, t 0 geldt

Nadere informatie

Model: Er is één bediende en de capaciteit van de wachtrij is onbegrensd. 1/19. 1 ) = σ 2 + τ 2 = s 2.

Model: Er is één bediende en de capaciteit van de wachtrij is onbegrensd. 1/19. 1 ) = σ 2 + τ 2 = s 2. Het M/G/1 model In veel toepassingen is de aanname van exponentiële bedieningstijden niet realistisch (denk bijv. aan produktietijden). Daarom zullen we nu naar het model kijken met willekeurig verdeelde

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms Stochastische Modellen in Operations Management (153088) R1 S0 240 ms Ack Internet R2 L1 R3 L2 10 ms 1 10 ms D1 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander Universiteit Leiden Niels Bohrweg Tentamen Inleiding Kansrekening 25 juni 2009, 0.00 3.00 uur Docent: F. den Hollander Mathematisch Instituut 2333 CA Leiden Bij dit tentamen is het gebruik van een (grafische)

Nadere informatie

Tentamen Inleiding Kansrekening wi juni 2010, uur

Tentamen Inleiding Kansrekening wi juni 2010, uur Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische

Nadere informatie

INLEIDING. Definitie Stochastisch Proces:

INLEIDING. Definitie Stochastisch Proces: Definitie Stochastisch Proces: INLEIDING Verzameling van stochastische variabelen die het gedrag in de tijd beschrijven van een systeem dat onderhevig is aan toeval. Tijdparameter: discreet: {X n, n 0};

Nadere informatie

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten:

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten: Definitie van Markov keten: MARKOV KETENS Een stochastisch proces {X n, n 0} met toestandsruimte S heet een discrete-tijd Markov keten (DTMC) als voor alle i en j in S geldt P (X n+1 = j X n = i, X n 1,...,

Nadere informatie

Deel 2 van Wiskunde 2

Deel 2 van Wiskunde 2 Deel 2 van Wiskunde 2 Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Jacques Resing Thu 1+2 Aud 1+4 Jacques Resing Werkcollege Tue 7+8 Aud 6+15 Jacques Resing Instructie

Nadere informatie

Wachtrijmodellen voor optimalisatie in het dagelijks leven

Wachtrijmodellen voor optimalisatie in het dagelijks leven Wachtrijmodellen voor optimalisatie in het dagelijks leven Richard J. Boucherie Stochastische Operationele Research Abstract Wachten doen we allemaal: bij de kassa van de supermarkt, in het verkeer, maar

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) R1 L1 R2 1 S0 Stochastische Modellen in Operations Management (153088) 240 ms 10 ms Ack Internet Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

o Dit tentamen bestaat uit vier opgaven o Beantwoord de opgaven 1 en 2 enerzijds, en de opgaven 3 en 4 anderzijds op aparte vellen papier

o Dit tentamen bestaat uit vier opgaven o Beantwoord de opgaven 1 en 2 enerzijds, en de opgaven 3 en 4 anderzijds op aparte vellen papier Toets Stochastic Models (theorie) Maandag 22 rnei 2OL7 van 8.45-1-1-.45 uur Onderdeel van de modules: o Modelling and analysis of stochastic processes for MATH (20L400434) o Modelling and analysis of stochastic

Nadere informatie

Hoofdstuk 20 Wachtrijentheorie

Hoofdstuk 20 Wachtrijentheorie Hoofdstuk 20 Wachtrijentheorie Beschrijving Iedereen van ons heeft al tijd gespendeerd in een wachtrij: b.v. aanschuiven in de Alma restaurants. In dit hoofdstuk onwikkelen we mathematische modellen voor

Nadere informatie

Introductie. Havens als belangrijk knooppunt

Introductie. Havens als belangrijk knooppunt Les 3. Havens Introductie De onderdelen voor de pennen van Pennenland bv komen uit de Verenigde Staten. De bedrijven die deze onderdelen aan Pennenland verkopen (leveranciers) verschepen hun onderdelen

Nadere informatie

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden.

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden. Hertentamen Inleiding Kansrekening WI64. 9 augustus, 9:-: Het tentamen heeft 5 onderdelen. Met ieder onderdeel kan maximaal punten verdiend worden. Het tentamen is open boek. Boeken, nota s en een (eventueel

Nadere informatie

De Wachttijd-paradox

De Wachttijd-paradox De Wachttijd-paradox Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam Mastercourse 15 november 25 Peter Spreij spreij@science.uva.nl 1 Het probleem In deze mastercourse behandelen

Nadere informatie

0.97 0.03 0 0 0.008 0.982 0.01 0 0.02 0 0.975 0.005 0.01 0 0 0.99

0.97 0.03 0 0 0.008 0.982 0.01 0 0.02 0 0.975 0.005 0.01 0 0 0.99 COHORTE MODELLEN Markov ketens worden vaak gebruikt bij de bestudering van een groep van personen of objecten. We spreken dan meestal over Cohorte modellen. Een voorbeeld van zo n situatie is het personeelsplanning

Nadere informatie

Introductie. Transportmiddelen. Opdracht 1

Introductie. Transportmiddelen. Opdracht 1 Les 4. Transport Introductie De onderdelen voor de pennen in de fabriek van Pennenland bv moeten van de Verenigde Staten naar de fabriek in Nederland worden verplaatst. We noemen het verplaatsen van deze

Nadere informatie

b) Uit Bayes volgt, gebruik makend van onderdeel a) P (T V )P (V ) P (T ) = (0.09)(0.07)

b) Uit Bayes volgt, gebruik makend van onderdeel a) P (T V )P (V ) P (T ) = (0.09)(0.07) Uitwerkingen tentamen 6 juli 22. We stellen T de gebeurtenis test geeft positief resultaat, F de gebeurtenis, chauffeur heeft gefraudeerd, V de gebeurtenis, chauffeur heeft vergissing gemaakt C de gebeurtenis,

Nadere informatie

Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1.

Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1. LIMIETGEDRAG VAN REDUCIBELE MARKOV KETEN In het voorgaande hebben we gezien hoe we de limietverdeling van een irreducibele, aperiodieke Markov keten kunnen berekenen: Voorbeeld 1: Zoek de unieke oplossing

Nadere informatie

We zullen in deze les kijken hoe we netwerken kunnen analyseren, om bijvoorbeeld de volgende vragen te kunnen beantwoorden:

We zullen in deze les kijken hoe we netwerken kunnen analyseren, om bijvoorbeeld de volgende vragen te kunnen beantwoorden: Wiskunde voor kunstmatige intelligentie, 24 Les 5 Proces analyse Veel processen laten zich door netwerken beschrijven, waarin een aantal knopen acties aangeeft en opdrachten langs verbindingen tussen de

Nadere informatie

Tentamen: Operationele Research 1D (4016)

Tentamen: Operationele Research 1D (4016) UITWERKINGEN Tentamen: Operationele Research 1D (4016) Tentamendatum: 12-1-2010 Duur van het tentamen: 3 uur (maximaal) Opgave 1 (15 punten) Beschouw het volgende lineaire programmeringsprobleem P: max

Nadere informatie

Lesbrief DUURZAAM WERKEN OPDRACHT 1 - WERKEN IN DE HAVEN

Lesbrief DUURZAAM WERKEN OPDRACHT 1 - WERKEN IN DE HAVEN Lesbrief Primair onderwijs - BOVENBOUW DUURZAAM WERKEN De haven van Rotterdam is de grootste haven van Europa. Veel mensen werken in de haven. Steeds meer spullen die je in de winkel koopt, komen per schip

Nadere informatie

en-splitsingen: een aantal alternatieven worden parallel toegepast, of-splitsingen: van een aantal alternatieven wordt er één toegepast,

en-splitsingen: een aantal alternatieven worden parallel toegepast, of-splitsingen: van een aantal alternatieven wordt er één toegepast, Kansrekening voor Informatiekunde, 25 Les 8 Proces analyse Veel processen laten zich door netwerken beschrijven, waarin knopen acties aangeven en opdrachten langs verbindingen tussen de knopen verwerkt

Nadere informatie

Hoofdstuk A9 Hellinggrafieken - alternatief

Hoofdstuk A9 Hellinggrafieken - alternatief Hoofdstuk A9 Hellinggrafieken - alternatief Hellinggrafieken a. Maak instap opgaven I-a en I-b (zonder de formules van instap opgave I- te gebruiken). snelheid (m/s) tijd (seconden) b. Hoe kun je met de

Nadere informatie

MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen.

MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen. MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen. voorraadmodel: voorraadkosten personeelsplanningmodel: salariskosten machineonderhoudsmodel: reparatiekosten

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/39 Een stochastisch proces (stochastic proces) X (t) bestaat

Nadere informatie

Publieke Database. Verslag modelleren 4 (2H144) Finbar Bogerd (s474580) & Judy van Sambeek (s476368)

Publieke Database. Verslag modelleren 4 (2H144) Finbar Bogerd (s474580) & Judy van Sambeek (s476368) Publieke Database Verslag modelleren 4 (2H144) Finbar Bogerd (s474580) & Judy van Sambeek (s476368) Technische Universiteit Eindhoven Faculteit: Technische Wiskunde & Informatica 28 augustus 2002 Inhoudsopgave

Nadere informatie

Reglement kade- en ligplaatsgeld 2012

Reglement kade- en ligplaatsgeld 2012 Reglement kade- en ligplaatsgeld 2012 Delfzijl Eemshaven B. REGLEMENT KADE- EN LIGPLAATSGELD 2012 BEGRIPSBEPALINGEN Artikel 1 In dit reglement wordt verstaan onder: a) Aanvrager: de natuurlijke- of rechtspersoon

Nadere informatie

Deze examenopgave bestaat uit 8 pagina s, inclusief het voorblad. Controleer of alle pagina s aanwezig zijn.

Deze examenopgave bestaat uit 8 pagina s, inclusief het voorblad. Controleer of alle pagina s aanwezig zijn. SPD Bedrijfsadministratie Examenopgave COST & MANAGEMENTACCOUNTING DINSDAG 15 DECEMBER 2015 09.00 11.00 UUR Belangrijke informatie Deze examenopgave bestaat uit 8 pagina s, inclusief het voorblad. Controleer

Nadere informatie

Examen HAVO. Wiskunde A1,2

Examen HAVO. Wiskunde A1,2 Wiskunde A1,2 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Donderdag 25 mei 13.30 16.30 uur 20 00 Dit examen bestaat uit 19 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een

Nadere informatie

N. Haelvoet, V. Lippens, D. Luyckx, C. Tonesi

N. Haelvoet, V. Lippens, D. Luyckx, C. Tonesi Examen Wiskunde I Eerste zittijd 24-25 professor C. Thas e bachelor biochemie en biotechnologie, biologie, geografie en geomatica, geologie N. Haelvoet, V. Lippens, D. Luyckx, C. Tonesi Gelieve vraag op

Nadere informatie

Naam HAVEN ROTTERDAM import en export

Naam HAVEN ROTTERDAM import en export Naam HAVEN ROTTERDAM import en export Als er één plek is die duidelijk maakt waarom Nederland in de moderne tijd zo n belangrijk handelsland is, dan is het Rotterdam wel. De haven ligt in de delta van

Nadere informatie

Examen HAVO. tijdvak 1 vrijdag 19 mei uur

Examen HAVO. tijdvak 1 vrijdag 19 mei uur Examen HAVO 2017 tijdvak 1 vrijdag 19 mei 13.30-16.30 uur oud programma wiskunde A Dit examen bestaat uit 20 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer staat hoeveel

Nadere informatie

MAASVLAKTE 2 IN GEBRUIK

MAASVLAKTE 2 IN GEBRUIK MAASVLAKTE 2 IN GEBRUIK LESBRIEF VOORTGEZET ONDERWIJS ONDERBOUW OPDRACHTEN DE ROTTERDAMSE HAVEN GROEIT! Heel veel goederen die we gebruiken komen uit het buitenland. Het grootste deel komt via de haven

Nadere informatie

Tentamen Inleiding Kansrekening 11 augustus 2011, uur

Tentamen Inleiding Kansrekening 11 augustus 2011, uur Mathematisch Instituut Niels Bohrweg Universiteit Leiden 2 CA Leiden Delft Tentamen Inleiding Kansrekening augustus 20, 09.00 2.00 uur Bij dit examen is het gebruik van een evt. grafische) rekenmachine

Nadere informatie

P = LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten:

P = LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten: LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten: Voorbeeld: Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1. P = 0 1/4

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 (1) Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Gerhard Woeginger Thu 1+2 Aud 1+4 Gerhard Woeginger Clicker session Tue 7+8 Aud 6+15 Gerhard Woeginger

Nadere informatie

Wachtrijtheorie. Hester Vogels en Franziska van Dalen. 11 juni 2013

Wachtrijtheorie. Hester Vogels en Franziska van Dalen. 11 juni 2013 Wachtrijtheorie Hester Vogels en Franziska van Dalen 11 juni 2013 1 1 Inleiding Een mens wacht gemiddeld 15.000 uur in zijn leven. Dit is bijvoorbeeld in de rij bij de kassa van een winkel, aan de telefoon

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

Bij deze opgave horen de informatiebronnen 4 tot en met 6. Bij deze opgave blijven de belastingen buiten beschouwing.

Bij deze opgave horen de informatiebronnen 4 tot en met 6. Bij deze opgave blijven de belastingen buiten beschouwing. Opgave 5 Bij deze opgave horen de informatiebronnen 4 tot en met 6. Bij deze opgave blijven de belastingen buiten beschouwing. Jan Somers staat met een attractie op de kermis: de Tropical Trip. De Tropical

Nadere informatie

wrakken Introductie Scheepvaartroutes op de Noordzee

wrakken Introductie Scheepvaartroutes op de Noordzee Scheeps wrakken Introductie De Noordzee is een van de drukst bevaren zeeën ter wereld. In het Nederlandse deel alleen al varen 340 schepen per dag (dus 124100 per jaar!). En dat is nog afgezien van de

Nadere informatie

Uitwerkingen oefenopdrachten or

Uitwerkingen oefenopdrachten or Uitwerkingen oefenopdrachten or Marc Bremer August 10, 2009 Uitwerkingen bijeenkomst 1 Contact Dit document is samengesteld door onderwijsbureau Bijles en Training. Wij zijn DE expert op het gebied van

Nadere informatie

Toets 1 IEEE, Modules 1 en 2, Versie 1

Toets 1 IEEE, Modules 1 en 2, Versie 1 Toets 1 IEEE, Modules 1 en 2, Versie 1 Datum: 16 september 2009 Tijd: 10:45 12:45 (120 minuten) Het gebruik van een rekenmachine is niet toegestaan. Deze toets telt 8 opgaven en een bonusopgave Werk systematisch

Nadere informatie

Vorig college. IN2505-II Berekenbaarheidstheorie College 4. Opsommers versus herkenners (Th. 3.21) Opsommers

Vorig college. IN2505-II Berekenbaarheidstheorie College 4. Opsommers versus herkenners (Th. 3.21) Opsommers Vorig college College 4 Algoritmiekgroep Faculteit EWI TU Delft Vervolg NDTM s Vergelijking rekenkracht TM s en NDTM s Voorbeelden NDTM s 20 april 2009 1 2 Opsommers Opsommers versus herkenners (Th. 3.21)

Nadere informatie

Wachten in de supermarkt

Wachten in de supermarkt Wachten in de supermarkt Rik Schepens 0772841 Rob Wu 0787817 22 juni 2012 Begeleider: Marko Boon Modelleren A Vakcode: 2WH01 Inhoudsopgave Samenvatting 1 1 Inleiding 1 2 Theorie 1 3 Model 3 4 Resultaten

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms R1 S0 240 ms Ack L1 R2 10 ms Internet R3 L2 D0 10 ms D1 D2 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219

Nadere informatie

Gelezen het voorstel van burgemeester en wethouders d.d. 11 november 2014 (Gemeenteblad 2014, nr. );

Gelezen het voorstel van burgemeester en wethouders d.d. 11 november 2014 (Gemeenteblad 2014, nr. ); Onderwerp Datum 16 december 2014 Verordening op de heffing en invordering van Havengeld 2015 Pagina 1 van 6 De raad van Venray, Gelezen het voorstel van burgemeester en wethouders d.d. 11 november 2014

Nadere informatie

Eindexamen m&o vwo 2008-II

Eindexamen m&o vwo 2008-II Opgave 5 Bij deze opgave horen vijf informatiebronnen (de informatiebronnen 4 tot en met 8) en een uitwerkbijlage. In informatiebron 4 staat informatie over de soorten bevrachtingscontracten in de scheepsvaart.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2S27), dinsdag 14 juni 25, 9. - 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Examen HAVO. management & organisatie. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen horen een bijlage en een uitwerkbijlage.

Examen HAVO. management & organisatie. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen horen een bijlage en een uitwerkbijlage. Examen HAVO 2014 tijdvak 2 woensdag 18 juni 13.30-16.30 uur management & organisatie Bij dit examen horen een bijlage en een uitwerkbijlage. Dit examen bestaat uit 33 vragen. Voor dit examen zijn maximaal

Nadere informatie

BICS Instructiekaart E-MELDPLICHT MET BICS 4.00. E-MELDPLICHT met BICS 4.00. Water. Wegen. Werken. Rijkswaterstaat. Instructies Melden met BICS

BICS Instructiekaart E-MELDPLICHT MET BICS 4.00. E-MELDPLICHT met BICS 4.00. Water. Wegen. Werken. Rijkswaterstaat. Instructies Melden met BICS BICS Instructiekaart E-MELDPLICHT MET BICS 4.00 Water. Wegen. Werken. Rijkswaterstaat. 1 Dit document bevat de beknopte (werk)instructies voor schippers die moeten voldoen aan de meldplicht (m.n. de elektronische

Nadere informatie

Deze examenopgave bestaat uit 8 pagina s, inclusief het voorblad. Controleer of alle pagina s aanwezig zijn.

Deze examenopgave bestaat uit 8 pagina s, inclusief het voorblad. Controleer of alle pagina s aanwezig zijn. SPD Bedrijfsadministratie Examenopgave COST & MANAGEMENTACCOUNTING DINSDAG 6 OKTOBER 2015 11.45 13.45 UUR Belangrijke informatie Deze examenopgave bestaat uit 8 pagina s, inclusief het voorblad. Controleer

Nadere informatie

Waarom gaan we investeren We verwachten winst te maken! Alleen rekening houden met toekomstige ontvangsten en uitgaven.

Waarom gaan we investeren We verwachten winst te maken! Alleen rekening houden met toekomstige ontvangsten en uitgaven. www.jooplengkeek.nl Investeringsselectie Waarom gaan we investeren We verwachten winst te maken! Alleen rekening houden met toekomstige ontvangsten en uitgaven. belangrijk Calculaties voor beslissingen

Nadere informatie

Les Aardrijkskunde & Geschiedenis

Les Aardrijkskunde & Geschiedenis C Deze les bestaat uit 16 vragen over de zeescheepvaart. De meeste vragen hebben ook met aardrijkskunde en geschiedenis te maken. Als je deze les af hebt, weet je alles over de scheepvaart! eerkeuzevragen

Nadere informatie

EXAMEN Praktijkdiploma Boekhouden

EXAMEN Praktijkdiploma Boekhouden EXAMEN Praktijkdiploma Boekhouden Kostprijscalculatie 9 november 2013 Beschikbare tijd 2 uur. Op de netheid van het werk zal worden gelet. Deze opgave is eigendom van de Examencommissie en dient, tezamen

Nadere informatie

Mobiele communicatie: reken maar!

Mobiele communicatie: reken maar! Mobiele communicatie: reken maar! Richard J. Boucherie Stochastische Operationele Research Toen : telefooncentrale Erlang verliesmodel Nu : GSM Straks : Video on demand Toen : CPU Processor sharing model

Nadere informatie

WISKUNDE 5 PERIODEN. DATUM : 8 juni 2009

WISKUNDE 5 PERIODEN. DATUM : 8 juni 2009 EUROPEES BACCALAUREAAT 2009 WISKUNDE 5 PERIODEN DATUM : 8 juni 2009 DUUR VAN HET EXAMEN : 4 huur (240 minuten) TOEGESTANE HULPMIDDELEN : Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische

Nadere informatie

Voorbeeldexamen Management Controle

Voorbeeldexamen Management Controle Voorbeeldexamen Management Controle VRAAG 1 Verklaar volgende termen (maximaal 3 regels per term) - Doelcongruentie - Productclassificatie - MBO - Profit sharing - Indirecte CF statement VRAAG 2 Leg uit

Nadere informatie

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur.

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur. Universiteit Utrecht Faculteit Wiskunde en Informatica Examen Optimalisering op maandag 18 april 2005, 9.00-12.00 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf

Nadere informatie

een schip dat is bestemd of geschikt is voor de vaart op zee;

een schip dat is bestemd of geschikt is voor de vaart op zee; CVDR Officiële uitgave van Dordrecht. Nr. CVDR11962_5 23 februari 2016 Verordening binnenhavengeld 1995 G E M E E N TE B E S T U U R Nr. 3901 VERORDENING binnenhavengeld 1995. Artikel 1 Begripsomschrijvingen

Nadere informatie

TENTAMEN Basismodellen in de Informatica VOORBEELDUITWERKING

TENTAMEN Basismodellen in de Informatica VOORBEELDUITWERKING TENTAMEN Basismodellen in de Informatica vakcode: 211180 datum: 2 juli 2009 tijd: 9:00 12:30 uur VOORBEELDUITWERKING Algemeen Bij dit tentamen mag gebruik worden gemaakt van het boek van Sudkamp, van de

Nadere informatie

Opgaven voor Kansrekening

Opgaven voor Kansrekening Wiskunde 1 voor kunstmatige intelligentie Opgaven voor Kansrekening Opgave 1. Een oneerlijke dobbelsteen is zo gemaakt dat 3 drie keer zo vaak valt als 4 en 2 twee keer zo vaak als 5. Verder vallen 1,

Nadere informatie

De normale afzet van Verhoeven, uitgedrukt in ton/km per jaar, is als volgt verdeeld:

De normale afzet van Verhoeven, uitgedrukt in ton/km per jaar, is als volgt verdeeld: MA1 Oefententamen 3 Opgave 1 Verhoeven bv is een middelgrote transportonderneming die vrachten vervoert binnen Nederland voor diverse klanten. De onderneming heeft plannen om haar vrachtwagens te vervangen

Nadere informatie

Status: Geldende wetgeving. Van toepassing indien niets (anders) is overeengekomen.

Status: Geldende wetgeving. Van toepassing indien niets (anders) is overeengekomen. Nederlandse wet Besluit laad- en lostijden en overliggeld Status: Geldende wetgeving. Van toepassing indien niets (anders) is overeengekomen. Artikel 1 In dit besluit wordt verstaan onder: a. werkdag:

Nadere informatie

Eindexamen wiskunde A vwo 2004-I (oude stijl)

Eindexamen wiskunde A vwo 2004-I (oude stijl) Kentekens Elk land geeft kentekens uit voor personenauto s. Op een kenteken staat een code die bestaat uit een combinatie van cijfers en/of letters. In Nederland gebruikt men al sinds de jaren vijftig

Nadere informatie

Examen PC 2 Accounting 1

Examen PC 2 Accounting 1 Examen PC 2 Accounting 1 Instructieblad Examen : Professional Controller 2 leergang 11 Vak : Accounting 1 Datum : 18 december 2014 Tijd : 12.00 13.30 uur Deze aanwijzingen goed lezen voor u met uw examen

Nadere informatie

Examen VWO. Wiskunde A (oude stijl)

Examen VWO. Wiskunde A (oude stijl) Wiskunde A (oude stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 27 mei 13.3 16.3 uur 2 3 Voor dit examen zijn maximaal 9 punten te behalen; het examen bestaat uit 2 vragen.

Nadere informatie

Examen VWO. economische wetenschappen II en recht (oude stijl)

Examen VWO. economische wetenschappen II en recht (oude stijl) economische wetenschappen II en recht (oude stijl) Examen VWO Vragenboekje Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 19 mei 13.30 16.30 uur 20 04 Voor dit examen zijn maximaal 90 punten

Nadere informatie

Een model voor een lift

Een model voor een lift Een model voor een lift 2 de Leergang Wiskunde schooljaar 213/14 2 Inhoudsopgave Achtergrondinformatie... 4 Inleiding... 5 Model 1, oriëntatie... 7 Model 1... 9 Model 2, oriëntatie... 11 Model 2... 13

Nadere informatie

datum 17 februari 2016 project ACT Milieuneutrale verandering Grimaldischip vestiging Den Haag Vergelijking luchtemissies uw kenmerk -

datum 17 februari 2016 project ACT Milieuneutrale verandering Grimaldischip vestiging Den Haag Vergelijking luchtemissies uw kenmerk - ACT: Behandeling RoRo-schip Grimaldi Lines datum 17 februari 2016 project ACT Milieuneutrale verandering Grimaldischip vestiging Den Haag betreft Vergelijking luchtemissies uw kenmerk - versie 001 ons

Nadere informatie

Praktijkinstructie Externe transportplanning 3 (CLO12.3/CREBO:50196)

Praktijkinstructie Externe transportplanning 3 (CLO12.3/CREBO:50196) instructie Externe transportplanning 3 (CLO12.3/CREBO:50196) pi.clo12.3.v2 ECABO, 1 september 2003 Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd, overgenomen, opgeslagen

Nadere informatie

Management & Organisatie VWO 5 Hoofdstuk 27 t/m 30. 15 juni 2009 proeftoets 100 minuten. In deze opgave blijft de btw buiten beschouwing.

Management & Organisatie VWO 5 Hoofdstuk 27 t/m 30. 15 juni 2009 proeftoets 100 minuten. In deze opgave blijft de btw buiten beschouwing. Management & Organisatie VWO 5 Hoofdstuk 27 t/m 30 15 juni 2009 proeftoets 100 minuten Opgave 1 In deze opgave blijft de btw buiten beschouwing. Firma Balans produceert uitsluitend twee typen weegschalen,

Nadere informatie

Introductie Pennenland bv

Introductie Pennenland bv Introductie Pennenland bv Pieter is eigenaar van het bedrijf Pennenland bv. Met deze onderneming maakt hij al sinds 2005 pennen. Het bedrijf staat in Utrecht en er werken 12 mensen. Pennenland verkoopt

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

H9 Exponentiële verbanden

H9 Exponentiële verbanden H9 Exponentiële verbanden Havo 5 wiskunde A Getal & Ruimte deel 3 PTA 1 Oefenmateriaal examens 2 Voorkennis Rekenen met procenten Formule van procentuele verandering Vermenigvuldigingsfactor Procent op

Nadere informatie

Bij het na-calculatorische budget bepalen we achteraf wat de kosten hadden mogen zijn op basis van de werkelijke productie/afzet.

Bij het na-calculatorische budget bepalen we achteraf wat de kosten hadden mogen zijn op basis van de werkelijke productie/afzet. www.jooplengkeek.nl Nacalculatie bij homogene productie Berekening van het bedrijfsresultaat Bij het na-calculatorische budget bepalen we achteraf wat de kosten hadden mogen zijn op basis van de werkelijke

Nadere informatie

Module 3. Maximale stromen

Module 3. Maximale stromen Module In november 00 legde een stroomstoring een gedeelte van Europa plat. Overal moesten de kaarsen aan. oordat een gedeelte van het elektriciteitsnet uitviel, was er te weinig capaciteit om aan de vraag

Nadere informatie

Opgaven voor Kansrekening

Opgaven voor Kansrekening Opgaven voor Kansrekening Opgave 1. Je hebt 4 verschillende wiskunde boeken, 6 psychologie boeken en 2 letterkundige boeken. Hoeveel manieren zijn er om deze twaalf boeken op een boord te plaatsen als:

Nadere informatie

Hoofdstuk 5 - Recursie

Hoofdstuk 5 - Recursie Hoofdstuk 5 - Recursie Een banktegoed waarover je jaarlijks rente krijgt uitgekeerd is een voorbeeld van recursie. Je kunt steeds het nieuwe banktegoed berekenen op basis van het banktegoed van vorig jaar.

Nadere informatie

Wiskunde A. Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 17 mei 13.30 16.30 uur

Wiskunde A. Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 17 mei 13.30 16.30 uur Wiskunde A Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 17 mei 13.30 16.30 uur 20 00 Als bij een vraag een verklaring, uitleg of berekening vereist is, worden aan het antwoord

Nadere informatie

Aantal medewerkers: 2 * 1,0 + 3 * 0,5 + 4 * 0, * 0,2 = 5,3 FTE

Aantal medewerkers: 2 * 1,0 + 3 * 0,5 + 4 * 0, * 0,2 = 5,3 FTE personeel Opgave 1 Aantal medewerkers: 2 * 1,0 + 3 * 0,5 + 4 * 0,35 + 2 * 0,2 = 5,3 FTE Opgave 2 Aantal productieve uren: bruto uren: 52 * 38 = 1.976 - ziekte 5% van 1.976 = 98,8 uur - vrije dagen: (26+6)

Nadere informatie

VEILIGHEIDSVOORRADEN BEREKENEN

VEILIGHEIDSVOORRADEN BEREKENEN VEILIGHEIDSVOORRADEN BEREKENEN 4 Soorten berekeningen 12 AUGUSTUS 2013 IR. PAUL DURLINGER Durlinger Consultancy Management Summary In dit paper worden vier methoden behandeld om veiligheidsvoorraden te

Nadere informatie

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door APP.1 Appendix A.1 Erlang verdeling verdeling met parameters n en λ Voor o.o. discrete s.v.-en X en Y geldt P (X + Y = z) =P (X = x 1 en Y = z x 1 )+P(X = x en Y = z x )+... = P (X = x 1 )P (Y = z x 1

Nadere informatie

1. De benodigde hoeveelheid arbeidskrachten blijft gelijk. 2. De opbrengst voor komend jaar moet meer dan 140 miljoen euro bedragen.

1. De benodigde hoeveelheid arbeidskrachten blijft gelijk. 2. De opbrengst voor komend jaar moet meer dan 140 miljoen euro bedragen. Contact Dit document is samengesteld door onderwijsbureau Bijles en Training. Wij zijn DE expert op het gebied van bijlessen en trainingen in de exacte vakken, van VMBO tot universiteit. Zowel voor individuele

Nadere informatie

max 5x 1 2x 2 s.t. 2x 1 x 2 10 (P) x 1 + 2x 2 2 x 1, x 2 0

max 5x 1 2x 2 s.t. 2x 1 x 2 10 (P) x 1 + 2x 2 2 x 1, x 2 0 Voorbeeldtentamen Deterministische Modellen in de OR (158075) Opmerking vooraf: Geef bij elke opgave een volledige en duidelijke uitwerking inclusief argumentatie! Gebruik van de rekenmachine is niet toegestaan.

Nadere informatie

Proefschoolexamen Management & Organisatie 5 vwo. Hoofdstuk 17 tot en met 28. Normering. Aantal punten x 9 + 1 = cijfer 63

Proefschoolexamen Management & Organisatie 5 vwo. Hoofdstuk 17 tot en met 28. Normering. Aantal punten x 9 + 1 = cijfer 63 Proefschoolexamen Management & Organisatie 5 vwo Hoofdstuk 17 tot en met 28 Normering Opgave 1 Opgave 1 Opgave 2 Opgave 4 Opgave 5 Opgave 6 Opgave 7 1: 2 punten 1: 2 punten a: 2 punten 1: 3 punten 1: 2

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

BESLISKUNDE 2 Deel 2 najaar L.C.M. KALLENBERG en F.M. SPIEKSMA UNIVERSITEIT LEIDEN

BESLISKUNDE 2 Deel 2 najaar L.C.M. KALLENBERG en F.M. SPIEKSMA UNIVERSITEIT LEIDEN BESLISKUNDE 2 Deel 2 najaar 203 L.C.M. KALLENBERG en F.M. SPIEKSMA UNIVERSITEIT LEIDEN Inhoudsopgave MARKOVPROCESSEN. Inleiding...........................................2 Differentiaalvergelijkingen

Nadere informatie

MEER PARKEREN VOOR MINDER. Voorronde opdracht van de 22 e Wiskunde A-lympiade

MEER PARKEREN VOOR MINDER. Voorronde opdracht van de 22 e Wiskunde A-lympiade MEER PARKEREN VOOR MINDER Voorronde opdracht van de 22 e Wiskunde A-lympiade 19 November 2010 1 Werkwijzer bij de voorronde opdracht van de Wiskunde A-lympiade 2010/2011 Deze Wiskunde A-lympiade opdracht

Nadere informatie

Examen HAVO. Wiskunde A1,2

Examen HAVO. Wiskunde A1,2 Wiskunde A1,2 Examen AVO oger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 21 juni 1.0 16.0 uur 20 00 Dit examen bestaat uit 21 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een goed

Nadere informatie

Hoofdstuk 26 Kosten en resultaten in de industriële onderneming Diagn.Toets

Hoofdstuk 26 Kosten en resultaten in de industriële onderneming Diagn.Toets Hoofdstuk 26 Kosten en resultaten in de industriële onderneming Diagn.Toets Opgave 1 Aangezien de aanschaf van een bietenrooimachine voor een individuele landbouwer te kostbaar is, schakelen landbouwers

Nadere informatie