Stochastische Modellen in Operations Management (153088)

Maat: px
Weergave met pagina beginnen:

Download "Stochastische Modellen in Operations Management (153088)"

Transcriptie

1 S1 S2 X ms X ms Stochastische Modellen in Operations Management (153088) R1 S0 240 ms Ack Internet R2 L1 R3 L2 10 ms 1 10 ms D1 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 D2

2 Karakteristieken Dynamische Programmering 2 Probleem kan worden opgedeeld in fasen Elke fase is geassocieerd met een aantal toestanden Actie / beslissing in toestand legt volgende toestand vast Gegeven huidige toestand mag beslissing voor volgende fasen niet afhangen van eerdere fasen (principe van optimaliteit, Bellman) Er is een recursie die verwachte kosten / opbrengst van fasen n, n+1,, T relateert aan kosten van fasen n+1,, T Kosten zijn zeker, volgende toestand is zeker Kosten zijn onzeker, volgende toestand is zeker Kosten zijn onzeker, volgende toestand is onzeker

3 Fasen n Variabelen aantal opeenvolgende momenten waarop beslissingen moeten worden genomen 3 Toestandsruimte S n verzameling van mogelijke toestanden i die kunnen optreden in fase n Beslissingsruimte D n (i) verzameling van mogelijk acties d die beschikbaar zijn bij toestand i in fase n Directe resultaat r n (i,d) verwachte opbrengst gedurende fase n als gevolg van beslissing d in toestand i Overgang j i,d Overgang naar toestand j als gevolg van beslissing d bij toestand i in fase n

4 4 Vandaag: Beleggen in opties Stochastisch dynamische programmering Dobbelspelletje Beslisbomen Samenvatting How to gamble if you must

5 Beleggen in opties (1) 5 Situatieschets je bezit een optie om gedurende de komende N dagen een hoeveelheid aandelen te kopen tegen een vaste prijs van c Euro per aandeel je maakt een winst van max{0,i-c} Euro per aandeel als de koers gelijk is aan i Euro op de dag van aankoop de huidige koers van het aandeel is s, maar verandert per dag met +1, -1 of 0, met bijbehorende kansen p, q en 1-p-q Gevraagd de optimale strategie en de maximale verwachte winst per aandeel Opgave (N=5, s=c=50, p=q=1/3) Bepaal de optimale strategie

6 Fasen Beleggen in opties (2) opeenvolgende dagen : n = 0,...,N Toestand koers v/h aandeel : i n {s - n,...,s + n} Beslissing kopen of niet kopen? Optimale waardefunctie definieer f n (i) als de maximale verwachte winst indien de koers i Euro bedraagt als er n dagen verstreken zijn 6 Recurrente betrekkingen?

7 Beleggen in opties (3) Optimale waardefunctie definieer f n (i) als de maximale verwachte winst indien de koers i gulden bedraagt als er n dagen verstreken zijn Recurrente betrekkingen na N dagen is de optie verlopen, d.w.z. 7 f N (i) = max{0,i-c} voor alle i voor 0 n< N geldt het volgende:

8 Beleggen in opties (4) 8 Voorbeeld (N=5, s=c=50, p=q=1/3) de optimale strategie laat zich eenvoudig aflezen uit de volgende tabel (rood = beslissing kopen): de maximale verwachte winst bedraagt hierbij f 0 (50)=72 cent per aandeel (is waarde optie op tijdstip 0)

9 9 Vandaag: Beleggen in opties Stochastisch dynamische programmering Dobbelspelletje Beslisbomen Samenvatting How to gamble if you must

10 10 Deterministische Stochastische Dynamische Programmering Toepassingen beslissingsproblemen over een eindige horizon waarbij de beslismomenten geordend zijn (doorgaans in de tijd) Probleemstructuur optimale strategie m.b.v. recursie fase n toestand i n S n beslissing d n D n ( i n ) overgangskansen pi n n+1 ( i n+1 ii n,, d n ) directe resultaat r n ( i n, d n )

11 11 SDP (kosten onzeker, volgende toestand onzeker) Fasen n aantal opeenvolgende momenten waarop beslissingen moeten worden genomen Toestandsruimte S n verzameling van mogelijke toestanden i die kunnen optreden in fase n Beslissingsruimte D n (i) verzameling van mogelijk acties d die beschikbaar zijn bij toestand i in fase n Directe resultaat r n (i,d) verwachte opbrengst gedurende fase n als gevolg van beslissing d in toestand i Overgangskansen p n (j i,d) kans op toestand j als gevolg van beslissing d bij toestand i in fase n

12 Doelstelling Optimalisatie maximaliseer de verwachte resultaten over de gehele planningshorizon : Optimale waardefunctie N max E r n (i n,d n ) definieer f n (i) als het maximale verwachte resultaat vanaf fase n vanuit toestand i S n Recurrente betrekkingen Stopcriterium f n (i) = max d D n (i) n= 0 r n (i,d) + p n ( j i,d) f n +1 ( j) j S n+1 aan het eind van de planningshorizon ligt alles vast, d.w.z. f N (i) moet gegeven zijn voor alle i S N 12

13 Verschillende varianten Determistisch vs. stochastisch bij deterministische DP problemen zijn de gevolgen van iedere beslissing bekend: p n (j i,d)=1 voor zekere j bij alle n,i,d bij stochastische DP problemen is dat niet (altijd) het geval Discreet vs. continu bij discrete DP problemen is aantal toestanden aftelbaar bij continue DP problemen is aantal toestanden overaftelbaar Eén vs. meerdere dimensies een toestand uit de toestandsruimte kan soms uit meerdere variabelen bestaan Doelstellingen maximale verwachtingswaarde van... maximale kans op... 13

14 14 Vandaag: Beleggen in opties Stochastisch dynamische programmering Dobbelspelletje Beslisbomen Samenvatting How to gamble if you must

15 15 Situatieschets Een dobbelspelletje (1) je mag maximaal N maal werpen met een (zuivere) dobbelsteen na elke worp moet je beslissen of je doorgaat of stopt de uitbetaling van het spel is het aantal gegooide ogen in de laatste worp Gevraagd de optimale strategie en de maximale verwachte uitbetaling of `hoeveel wilt u inzetten om mee te doen? Optimale waardefunctie definieer f n (i) als de maximale verwachte uitbetaling indien je n maal gegooid hebt, en het aantal ogen in de laatste worp gelijk is aan i

16 Fasen Een dobbelspelletje (2) opeenvolgende worpen : n = 0,...,N Toestand aantal ogen in laatste worp : i {1,...,6} Beslissing stoppen of doorgaan? Optimale waardefunctie f n (i) max verwachte uitbetaling indien je n maal gegooid hebt, en aantal ogen in de laatste worp is i Recurrente betrekkingen na N worpen is het spelletje afgelopen f N (i)=i, i=1,,6 voor 0 n< N geldt 6 f n (i) = max i, 1 6 f n +1 ( j) j=1 16

17 17 Voorbeeld (N=6) Een dobbelspelletje (4) de optimale strategie laat zich eenvoudig aflezen uit de volgende tabel (rood = beslissing stoppen) de verwachte uitbetaling van het spel bedraagt f 0 (0)=(5/6)*5.130+(1/6)*6=5.275 gulden

18 18 Vandaag: Beleggen in opties Stochastisch dynamische programmering Dobbelspelletje Beslisbomen Samenvatting How to gamble if you must

19 Wasmachine fabrikant (1) Pilgrim benaderd door het warenhuis D&V met het aanbod om exclusief voor D&V wasmachines te maken. Huidige winst van Pilgrim uit eigen verkopen is 1 miljoen euro. Accepteert Pilgrim het aanbod dan levert dit een jaarlijkse winstbijdrage van E ,-. Door substitutie effecten dalen de eigen verkopen. Geschatte winstdaling op de eigen verkopen is 25% met kans 0.1, 30% met kans 0.6 en 35% met kans 0.3. Indien Pilgrim aanbod afslaat zal met kans 0.4 een concurrent het aanbod accepteren, in welk geval de hiervoor genoemde winstdaling toch optreedt. Pilgrim kan in dit geval echter ook tot actie overgaan, hetzij door de eigen prijs te verlagen, hetzij door meer reclame te maken. De extra reclame kost jaarlijks E ,-- en heeft als effect dat de winstdaling minder is en wel 10% met kans 0.2, 15% met kans 0.7 en 20% met kans 0.1. Prijsverlaging beperkt de winstdaling tot 10% met kans 0.1, 15% met kans 0.8 en 20% met kans 0.1, mits de concurrent niet ook zijn prijs omlaag doet. Kans dat concurrent met een prijsverlaging reageert als Pilgrim hiertoe besluit is 0.5, met als gevolg dat Pilgrim's winstdaling 10% is met kans 0.1, 15% met kans 0.6 of 20% met kans 0.3. Welke politiek moet Pilgrim toepassen opdat zijn verwachte winstdaling zo klein mogelijk is? 19

20 Huidige winst E 1 miljoen uit eigen verkoop aanbod warenhuis: maak exclusief machines voor warenhuis acceptatie: winstbijdrage E maar minder eigen verkopen (substitutie): 25% met kans 0.1, 30% met kans 0.6, 35% met kans 0.3 afslaan: concurrent accepteert aanbod met kans 40% dan zelfde winstdaling mogelijke actie bij acceptatie aanbod door concurrent: prijs verlagen -- minder eigen verkopen als conc. prijs gelijk: 10% met kans 0.1, 15% met kans 0.8, 20% met kans als conc. prijs lager (kans hierop 50%): 10% met kans 0.1, 15% met kans 0.6, 20% met kans 0.3 reclame maken (kosten E ) -- minder eigen verkopen: 10% met kans 0.2, 15% met kans 0.7, 20% met kans 0.1 niets doen 20

21 Wasmachine fabrikant (2) 21 beslisboom beslissing realisatie; gevolg omgeving

22 22 Beslisbomen Vaak meerdere besluiten Aantal besluiten niet altijd vooraf bekend Structuur van beslisprobleem vaak gecompliceerd Beslisboom geeft structuur aan beslissingsprobleem Decompositie in meerdere deelproblemen Visualisatie van beslissingsprobleem

23 Achterwaarts Wasmachine fabrikant (3) f 2 minimale verwachte winstderving in situatie 2 f 1 minimale verwachte winstderving in situatie 1 23 Het is optimaal bod te accepteren, met verw. winstderving 60

24 24 Vandaag: Beleggen in opties Stochastisch dynamische programmering Dobbelspelletje Beslisbomen Samenvatting How to gamble if you must

25 Stochastische dynamische programmering Doelstelling maximaliseer de verwachte resultaten over de gehele planningshorizon : N max E r n (i n,d n ) Optimale waardefunctie n= 0 definieer f n (i) als het maximale verwachte resultaat vanaf fase n vanuit toestand i S n Recurrente betrekkingen f n (i) = max d D n (i) r n (i,d) + p n ( j i,d) f n +1 ( j) j S n+1 25 Beslisbomen: grafische voorstelling Extra voorbeelden W & dictaat OR II

26 Geluidbelasting Schiphol

27 27

28 28 Vandaag: Beleggen in opties Stochastisch dynamische programmering Dobbelspelletje Beslisbomen Samenvatting How to gamble if you must

29 29 How to gamble if you must U heeft 2 Euro en dringend behoefte uw kapitaal te vergroten tot 16 Euro U heeft de mogelijkheid deel te nemen aan een gokspel, met winstkans 40%, verlieskans 60% Inzet bij dit spel is ongelimiteerd, maar in hele Euro s Uitbetaling bij winst is twee maal uw inzet Bepaal een strategie om uw kans op bereiken doel te maximaliseren

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms R1 S0 240 ms Ack L1 R2 10 ms Internet R3 L2 D0 10 ms D1 D2 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) R1 L1 R2 1 S0 Stochastische Modellen in Operations Management (153088) 240 ms 10 ms Ack Internet Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Oerations Management (153088) S1 S2 Ack X ms X ms S0 240 ms R1 R2 R3 L1 L2 10 ms 10 ms D0 Internet D1 D2 Richard Boucherie Stochastische Oerations Research TW, Citadel 125 htt://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

INLEIDING. Definitie Stochastisch Proces:

INLEIDING. Definitie Stochastisch Proces: Definitie Stochastisch Proces: INLEIDING Verzameling van stochastische variabelen die het gedrag in de tijd beschrijven van een systeem dat onderhevig is aan toeval. Tijdparameter: discreet: {X n, n 0};

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Oerations Management (15388) S1 S2 Ack X ms X ms S 24 ms R1 R2 R3 L1 L2 1 ms 1 ms D Internet D1 D2 Richard Boucherie Stochastische Oerations Research TW, Ravelijn H 219 htt://wwwhome.math.utwente.nl/~boucherierj/onderwijs/15388/15388.html

Nadere informatie

max 5x 1 2x 2 s.t. 2x 1 x 2 10 (P) x 1 + 2x 2 2 x 1, x 2 0

max 5x 1 2x 2 s.t. 2x 1 x 2 10 (P) x 1 + 2x 2 2 x 1, x 2 0 Voorbeeldtentamen Deterministische Modellen in de OR (158075) Opmerking vooraf: Geef bij elke opgave een volledige en duidelijke uitwerking inclusief argumentatie! Gebruik van de rekenmachine is niet toegestaan.

Nadere informatie

Stochastisch Dynamisch Programmeren

Stochastisch Dynamisch Programmeren Stochastisch Dynamisch Programmeren Ger Koole Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands 17 juni 2005 Samenvatting We introduceren de principes van stochastisch dynamisch

Nadere informatie

Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur.

Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur. Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur. Deze opdracht bestaat uit vier onderdelen; in elk onderdeel wordt gevraagd een Matlabprogramma te schrijven. De vier bijbehore bestanden stuur

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms Stochastische Modellen in Operations Management (153088) R1 S0 240 ms Ack Internet R2 L1 R3 L2 10 ms 1 10 ms D1 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

Tentamen Inleiding Kansrekening wi juni 2010, uur

Tentamen Inleiding Kansrekening wi juni 2010, uur Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische

Nadere informatie

Deel 2 van Wiskunde 2

Deel 2 van Wiskunde 2 Deel 2 van Wiskunde 2 Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Jacques Resing Thu 1+2 Aud 1+4 Jacques Resing Werkcollege Tue 7+8 Aud 6+15 Jacques Resing Instructie

Nadere informatie

aandeelprijs op t = T 8.5 e 9 e 9.5 e 10 e 10.5 e 11 e 11.5 e

aandeelprijs op t = T 8.5 e 9 e 9.5 e 10 e 10.5 e 11 e 11.5 e 1 Technische Universiteit Delft Fac. Elektrotechniek, Wiskunde en Informatica Tussentoets Waarderen van Derivaten, Wi 3405TU Vrijdag november 01 9:00-11:00 ( uurs tentamen) 1. a. De koers van het aandeel

Nadere informatie

Aanvullend dictaat Stochastische Operations Research I. H.C. Tijms

Aanvullend dictaat Stochastische Operations Research I. H.C. Tijms Aanvullend dictaat Stochastische Operations Research I H.C. Tijms november 2008 2 Contents 1 Markov Keten Monte Carlo Methoden 7 1.0.1 Reversibele Markov ketens.................. 7 1.0.2 Metropolis-Hastings

Nadere informatie

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander Universiteit Leiden Niels Bohrweg Tentamen Inleiding Kansrekening 25 juni 2009, 0.00 3.00 uur Docent: F. den Hollander Mathematisch Instituut 2333 CA Leiden Bij dit tentamen is het gebruik van een (grafische)

Nadere informatie

Optimalisering WI 2608

Optimalisering WI 2608 Optimalisering WI 2608 Docent: Hans Melissen, EWI kamer 4.150 e-mail: j.b.m.melissen@tudelft.nl tel: 015-2782547 Het project is een verplicht onderdeel van het vak Het project start in week 5. Nadere informatie

Nadere informatie

Optimalisering WI 2608

Optimalisering WI 2608 Optimalisering WI 2608 Docent: Hans Melissen, EWI kamer 7.080 e-mail: j.b.m.melissen@ewi.tudelft.nl tel: 015-2782547 Studiemateriaal op : http://www.isa.ewi.tudelft.nl/~melissen (kijk bij onderwijs WI

Nadere informatie

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS Algoritmiek 2016/Dynamisch Programmeren Tiende college algoritmiek 14 april 2016 Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS 1 Algoritmiek 2016/Dynamisch Programmeren Houtzaagmolen

Nadere informatie

Wachtrijmodellen voor optimalisatie in het dagelijks leven

Wachtrijmodellen voor optimalisatie in het dagelijks leven Wachtrijmodellen voor optimalisatie in het dagelijks leven Richard J. Boucherie Stochastische Operationele Research Abstract Wachten doen we allemaal: bij de kassa van de supermarkt, in het verkeer, maar

Nadere informatie

Durft u het risico aan?

Durft u het risico aan? Durft u het risico aan? Hoe het uitkeringspercentage van de vernieuwde Nederlandse Lotto te schatten? Ton Dieker en Henk Tijms De Lotto is in Nederland een grote speler op de kansspelmarkt. Met onderdelen

Nadere informatie

Advanced Battery Tech Inc.

Advanced Battery Tech Inc. TIP 1: Advanced Battery Tech Inc. Beurs Land Ticker Symbol ISIN Code Sector Nasdaq Verenigde Staten ABAT US00752H1023 Industrial Electrical Equipment Advanced Batteries (ABAT) ontwikkelt, fabriceert en

Nadere informatie

P = LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten:

P = LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten: LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten: Voorbeeld: Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1. P = 0 1/4

Nadere informatie

MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen.

MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen. MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen. voorraadmodel: voorraadkosten personeelsplanningmodel: salariskosten machineonderhoudsmodel: reparatiekosten

Nadere informatie

Hoofdstuk V. Spelen met kansen. Ben van der Genugten

Hoofdstuk V. Spelen met kansen. Ben van der Genugten Hoofdstuk V Spelen met kansen Ben van der Genugten 1. Inleiding Doel van dit hoofdstuk is te laten zien hoe kansrekening gebruikt kan worden bij het oplossen van intrigerende problemen bij enkele (over)bekende

Nadere informatie

Negende college algoritmiek. 15 april Dynamisch Programmeren

Negende college algoritmiek. 15 april Dynamisch Programmeren Negende college algoritmiek 15 april 2016 Dynamisch Programmeren 1 algemeen Uit college 8: DP: - nuttig bij problemen met overlappende deelproblemen - druk een oplossing van het probleem uit in oplossingen

Nadere informatie

Samenvatting. Beginselen van Productie. en Logistiek Management

Samenvatting. Beginselen van Productie. en Logistiek Management Samenvatting Beginselen van Productie en Logistiek Management Pieter-Jan Smets 5 maart 2015 Inhoudsopgave I Voorraadbeheer 4 1 Inleiding 4 1.1 Globalisering........................................... 4

Nadere informatie

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten:

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten: Definitie van Markov keten: MARKOV KETENS Een stochastisch proces {X n, n 0} met toestandsruimte S heet een discrete-tijd Markov keten (DTMC) als voor alle i en j in S geldt P (X n+1 = j X n = i, X n 1,...,

Nadere informatie

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. VERNIEUWINGSPROCESSEN In hoofdstuk 3 hebben we gezien wat een Poisson proces is. Definitie van een Poisson proces: Een Poisson proces met intensiteit λ (notatie P P (λ)) is een stochastisch proces {N(t),

Nadere informatie

Hedging strategies. Opties ADVANCED. Een onderneming van de KBC-groep

Hedging strategies. Opties ADVANCED. Een onderneming van de KBC-groep Hedging strategies Opties p. 2 Index 1. Hedging met opties 3 2. Hedging met put opties 4 3. Hedgen met valutaopties 6 Drie valutaoptiecontracten 6 p. 3 Hedging met opties Hedging komt van het Engelse to

Nadere informatie

Figuur 1. Schematisch overzicht van de structuur van het twee-stadia recourse model.

Figuur 1. Schematisch overzicht van de structuur van het twee-stadia recourse model. Samenvatting In dit proefschrift worden planningsproblemen op het gebied van routering en roostering bestudeerd met behulp van wiskundige modellen en (numerieke) optimalisatie. Kenmerkend voor de bestudeerde

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 3 Dinsdag 21 September 1 / 21 1 Kansrekening Indeling: Uniforme verdelingen Cumulatieve distributiefuncties 2 / 21 Vragen: lengte Een lineaal wordt op een willekeurig

Nadere informatie

Mobiele communicatie: reken maar!

Mobiele communicatie: reken maar! Mobiele communicatie: reken maar! Richard J. Boucherie Stochastische Operationele Research Toen : telefooncentrale Erlang verliesmodel Nu : GSM Straks : Video on demand Toen : CPU Processor sharing model

Nadere informatie

Toegepaste Wiskunde 2: Het Kalman-filter

Toegepaste Wiskunde 2: Het Kalman-filter Toegepaste Wiskunde 2: Het Kalman-filter 25 februari, 2008 Hans Maassen 1. Inleiding Het Kalman filter schat de toestand van een systeem op basis van een reeks, door ruis verstoorde waarnemingen. Een meer

Nadere informatie

Examen HAVO. wiskunde A. tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde A. tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 01 tijdvak woensdag 0 juni 13.30-16.30 uur wiskunde A Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 1 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk

Nadere informatie

Hedging strategies. Opties ADVANCED. Member of the KBC group

Hedging strategies. Opties ADVANCED. Member of the KBC group Hedging strategies Opties p. 2 Index 1. Hedging met opties 3 2. Hedging met put opties 4 3. Hedgen met valutaopties 6 Twee valutaoptiecontracten 6 p. 3 Hedging met opties Hedging komt van het Engelse to

Nadere informatie

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen

Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen Tentamen Optimalisering (IN2520) Datum: 5 november 2004, 14.00 17.00. Docent: Dr. J.B.M. Melissen Veel succes! 1 Deze opgave bestaat uit 15 tweekeuzevragen. Per goed antwoord krijg je 2 punten. a. Dynamisch

Nadere informatie

Het oplossen van vergelijkingen Voor het benaderen van oplossingen van vergelijkingen van de vorm F(x)=0 bespreken we een aantal methoden:

Het oplossen van vergelijkingen Voor het benaderen van oplossingen van vergelijkingen van de vorm F(x)=0 bespreken we een aantal methoden: Hoofdstuk 4 Programmeren met de GR Toevoegen: een inleiding op het programmeren met de GR Hoofdstuk 5 - Numerieke methoden Numerieke wiskunde is een deelgebied van de wiskunde waarin algoritmes voor problemen

Nadere informatie

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. HET POISSON PROCES In veel praktische toepassingen kan het aaankomstproces van personen, orders,..., gemodelleerd worden door een zogenaamd Poisson proces. Definitie van een Poisson proces: Een Poisson

Nadere informatie

Chapter 4: Continuous-time Markov Chains (Part I)

Chapter 4: Continuous-time Markov Chains (Part I) Stochastic Operations Research I (2014/2015) Selection of exercises from book and previous exams. Chapter 4: Continuous-time Markov Chains (Part I) 1.1 Book pp 179 185 These are useful exercises to learn

Nadere informatie

TU/e 2DD50: Wiskunde 2 (1)

TU/e 2DD50: Wiskunde 2 (1) TU/e 2DD50: Wiskunde 2 (1) Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Gerhard Woeginger Thu 1+2 Aud 1+4 Gerhard Woeginger Clicker session Tue 7+8 Aud 6+15 Gerhard Woeginger

Nadere informatie

Verwachtingswaarde, Variantie en Standaarddeviatie

Verwachtingswaarde, Variantie en Standaarddeviatie Verwachtingswaarde, Variantie en Standaarddeviatie Wisnet-hbo Verwachtingswaarde update maart 200 De verwachtingswaarde van een kansvariabele is een soort gemiddelde waarde. Deze wordt aangeduid met E(k)

Nadere informatie

Beslisbare talen (1) IN2505-II Berekenbaarheidstheorie. Beslisbare talen (2) Beslisbare talen (3) De talen: College 7

Beslisbare talen (1) IN2505-II Berekenbaarheidstheorie. Beslisbare talen (2) Beslisbare talen (3) De talen: College 7 Beslisbare talen (1) College 7 Algoritmiekgroep Faculteit EWI TU Delft 10 mei 2009 De talen: A DFA = { M, w M is een DFA die w accepteert} A NFA = { M, w M is een NFA die w accepteert} E DFA = { M M is

Nadere informatie

Samenvatting (Summary in Dutch)

Samenvatting (Summary in Dutch) Het voornaamste doel van dit proefschrift is nieuwe methoden te ontwikkelen en te valideren om de effectiviteit van customization te kunnen bepalen en hoe dataverzameling kan worden verbeterd. Om deze

Nadere informatie

Wachttijdtheorie (vakcode )

Wachttijdtheorie (vakcode ) Wachttidtheorie vacode 153087 Doel Introductie theorie netweren van wachtrien met nadru o exacte analytische olossingen. Omvang 3 SP 5 ECTS volgend aar Ca 18 bieenomsten Plaats: 4.2 Vorm: Hoorcollege /

Nadere informatie

Inleiding Programmeren 2

Inleiding Programmeren 2 Inleiding Programmeren 2 Gertjan van Noord en Leonie Bosveld December 2, 2016 Simulatie Uitrekenen of simpelweg heel vaak uitproberen... Wissel je van garagebox? Simulatie: als benadering van niet of moeilijk

Nadere informatie

Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1.

Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1. LIMIETGEDRAG VAN REDUCIBELE MARKOV KETEN In het voorgaande hebben we gezien hoe we de limietverdeling van een irreducibele, aperiodieke Markov keten kunnen berekenen: Voorbeeld 1: Zoek de unieke oplossing

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

Tentamen Inleiding Kansrekening 12 augustus 2010, 10.00 13.00 uur Docent: F. den Hollander

Tentamen Inleiding Kansrekening 12 augustus 2010, 10.00 13.00 uur Docent: F. den Hollander Universiteit Leiden Niels Bohrweg Mathematisch Instituut 333 CA Leiden Tentamen Inleiding Kansrekening augustus,. 3. uur Docent: F. den Hollander Bij dit tentamen is het gebruik van een (grafische) rekenmachine

Nadere informatie

20 tips over sparen en beleggen.

20 tips over sparen en beleggen. 20 tips over sparen en beleggen. www.sparen-en-beleggen.nl 10 spaartips TIP 1 Bepaal uw spaardoel Spaart u bijvoorbeeld om een buffer op te bouwen of wilt u sparen voor een nieuwe auto of vakantie. Het

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Numerieke Methoden voor Werktuigbouwkunde N460 op donderdag 4 juni 010, 14.00-17.00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

start -> id (k (f c s) (g s c)) -> k (f c s) (g s c) -> f c s -> s c

start -> id (k (f c s) (g s c)) -> k (f c s) (g s c) -> f c s -> s c Een Minimaal Formalisme om te Programmeren We hebben gezien dat Turing machines beschouwd kunnen worden als universele computers. D.w.z. dat iedere berekening met natuurlijke getallen die met een computer

Nadere informatie

Digitaal Proefstuderen Econometrie en Operationele Research Universiteit van Tilburg

Digitaal Proefstuderen Econometrie en Operationele Research Universiteit van Tilburg Digitaal Proefstuderen Econometrie en Operationele Research Universiteit van Tilburg 1 Voorwoord Welkom bij de cursus Digitaal Proefstuderen van de opleiding Econometrie en Operationele Research aan de

Nadere informatie

Samen uw risico profiel bepalen

Samen uw risico profiel bepalen Klant naam: Woonplaats:.. Samen uw risico profiel bepalen Deze vragenlijst is bestemd voor de belegger. Beleggen betekent investeren, tegen al dan niet onzekere rendementen en eventueel met een risico.

Nadere informatie

Tentamen Grondslagen van de Wiskunde A, met uitwerkingen

Tentamen Grondslagen van de Wiskunde A, met uitwerkingen Tentamen Grondslagen van de Wiskunde A, met uitwerkingen 8 december 2015, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal

Nadere informatie

Business Plan Grensoverschrijdende Marketing. Marie-Janine Saris 24 april 2007

Business Plan Grensoverschrijdende Marketing. Marie-Janine Saris 24 april 2007 Business Plan Grensoverschrijdende Marketing Marie-Janine Saris 24 april 2007 Agenda Introductie Waarom een plan? Business Plan versus Marketing Plan Opbouw Business Plan Structuur van een Marketing Plan

Nadere informatie

Strategie 2013. André Brouwers

Strategie 2013. André Brouwers André Brouwers Strategie 2013 André Brouwers Training en coaching Online abonnement VIP coaching Trading Week Strategie Weekend Disclaimer Disclaimer De disclaimer van onze website is van toepassing. Beleggen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Eindtentamen Kansrekening en Statistiek (WS), Tussentoets Kansrekening en Statistiek (WS), Vrijdag 8 april, om 9:-:. Dit is een tentamen

Nadere informatie

1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3.

1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3. 1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3. Een LP probleem heeft n>2 variabelen en n+2 constraints.

Nadere informatie

Opgave 1 - Uitwerking

Opgave 1 - Uitwerking Opgave 1 - Uitwerking Om dit probleem op te lossen moeten we een zogenaamd stelsel van vergelijkingen oplossen. We zetten eerst even de tips van de begeleider onder elkaar: 1. De zak snoep weegt precies

Nadere informatie

OPGAVE 2: Kleiduivenschieten

OPGAVE 2: Kleiduivenschieten OPGAVE 1: Bingo! Twee spelers spelen een spelletje bingo. Ieder van hen heeft een kaart waarop twintig verschillende getallen staan uit de verzameling {1,..., 75}, willekeurig geplaatst in vier rijen en

Nadere informatie

OVER OMZET, KOSTEN EN WINST

OVER OMZET, KOSTEN EN WINST OVER OMZET, KOSTEN EN WINST De Totale Winst (TW) van bedrijven vindt men door van de Totale Opbrengsten (TO), de Totale Kosten (TK) af te halen. Daarvoor moeten we eerst naar de opbrengstenkant van het

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

Definitie van continue-tijd Markov keten:

Definitie van continue-tijd Markov keten: Definitie van continue-tijd Markov keten: Een stochastisch proces {X(t), t 0} met toestandsruimte S heet een continue-tijd Markov keten (CTMC) als voor alle i en j in S en voor alle tijden s, t 0 geldt

Nadere informatie

HOOFDSTUK I - INLEIDENDE BEGRIPPEN

HOOFDSTUK I - INLEIDENDE BEGRIPPEN HOOFDSTUK I - INLEIDENDE BEGRIPPEN 1.2 Kansveranderlijken en verdelingen 1 Veranderlijken Beschouw een toevallig experiment met uitkomstenverzameling V (eindig of oneindig), de verzameling van alle gebeurtenissen

Nadere informatie

Beleggingsprofiel. Assurantiekantoor Klaassen & Partners Postkantoorstraat 33 6551 BH Weurt

Beleggingsprofiel. Assurantiekantoor Klaassen & Partners Postkantoorstraat 33 6551 BH Weurt Beleggingsprofiel Assurantiekantoor Klaassen & Partners Postkantoorstraat 33 6551 BH Weurt Assurantiekantoor Klaassen & Partners Beleggingsprofiel Versie juni 2009 1 Klantgegevens Voorletter Naam Adres

Nadere informatie

Optieprijzen in een formule

Optieprijzen in een formule Optieprijzen in een formule Op de financiële markt worden allerlei soorten opties verhandeld. Banken en andere financiële instellingen willen een redelijke prijs bepalen voor zulke producten. Hoewel de

Nadere informatie

Domein Markt. Uitwerking. Zie steeds de eenvoud!! totale winst, elasticiteit. Frans Etman

Domein Markt. Uitwerking. Zie steeds de eenvoud!! totale winst, elasticiteit. Frans Etman Domein Markt Zie steeds de eenvoud!! totale winst, elasticiteit Uitwerking vwo Frans Etman Opgave 1 Opgave 2 1.Lees in de grafiek af hoe hoog de totale omzet (TO) en de totale kosten (TK) is bij een afzet

Nadere informatie

Risico s binnen een project

Risico s binnen een project Risico s binnen een project Alles loopt op wieltjes Je hebt de zaak vanuit alle hoeken onderzocht. Je hebt het al 1000x gedaan Alles is vanzelfsprekend Je weet perfect wat je aan het doen bent, je bent

Nadere informatie

Strategieën met Opties

Strategieën met Opties Strategieën met Opties Euronext, de nieuwe pan-europese beurs, komt voort uit de fusie tussen de beurzen van Amsterdam, Brussel en Parijs. Handelen op Euronext is snel en goedkoop. Bovendien heeft u binnenkort

Nadere informatie

Opties. Brochure bestemd voor particuliere beleggers INTERMEDIATE. Een onderneming van de KBC-groep. Gepubliceerd door KBC Securities

Opties. Brochure bestemd voor particuliere beleggers INTERMEDIATE. Een onderneming van de KBC-groep. Gepubliceerd door KBC Securities Brochure bestemd voor particuliere beleggers Gepubliceerd door KBC Securities p. 2 Index 1. Inleiding 3 2. Valutaopties 4 Drie valutaoptiecontracten 4 Waarom valutaopties gebruiken 4 3. Indexopties 5 Kenmerken

Nadere informatie

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route Kosten Zoekalgoritmen (00 00) ollege 5: Zoeken met kosten Peter de Waal, Tekst: Linda van der aag Veel zoekproblemen omvatten kosten: een afstand in kilometers; een geldbedrag; een hoeveelheid tijd; ongemak;...

Nadere informatie

Eindexamen wiskunde B1 havo 2007-II

Eindexamen wiskunde B1 havo 2007-II Broze botten Oudere mensen kunnen last krijgen van allerlei ouderdomskwalen, onder andere van broze botten. Mensen met broze botten hebben een grotere kans dat ze een bot breken. In figuur 1 is een staafdiagram

Nadere informatie

Opties. Brochure bestemd voor particuliere beleggers INTERMEDIATE. Member of the KBC group

Opties. Brochure bestemd voor particuliere beleggers INTERMEDIATE. Member of the KBC group Brochure bestemd voor particuliere beleggers Gepubliceerd door KBC Securities in samen werking met Euronext. p. 2 Index 1. Inleiding 3 2. Valutaopties 4 Twee valutaoptiecontracten 4 Waarom valutaopties

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2001-II

Eindexamen wiskunde A1-2 vwo 2001-II Eindeamen wiskunde A- vwo 00-II 4 Antwoordmodel Opgave Vakkenkeuze Maimumscore 47,9% van 493 = 36 meisjes doen economie 60,% van 344 = 07 jongens doen economie Maimumscore 3 Het totaal van de percentages

Nadere informatie

Opties. Brochure bestemd voor particuliere beleggers INTERMEDIATE. Een onderneming van de KBC-groep

Opties. Brochure bestemd voor particuliere beleggers INTERMEDIATE. Een onderneming van de KBC-groep Brochure bestemd voor particuliere beleggers Gepubliceerd door KBC Securities in samen werking met Euronext. p. 2 Index 1. Inleiding 3 2. Valutaopties 4 Drie valutaoptiecontracten 4 Waarom valutaopties

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

1. Leg uit dat het sparen door gezinnen een voorbeeld is van ruilen in de tijd. 2. Leg uit waarom investeren door bedrijven als ruilen over de tijd beschouwd kan worden. 3. Wat is intertemporele substitutie?

Nadere informatie

Uitwerkingen oefenopdrachten or

Uitwerkingen oefenopdrachten or Uitwerkingen oefenopdrachten or Marc Bremer August 10, 2009 Uitwerkingen bijeenkomst 1 Contact Dit document is samengesteld door onderwijsbureau Bijles en Training. Wij zijn DE expert op het gebied van

Nadere informatie

Inleiding Speltheorie - 29 januari 2003, uur

Inleiding Speltheorie - 29 januari 2003, uur Inleiding Speltheorie - 29 januari 2003, 9.30-2.30 uur Dit tentamen bestaat uit 4 opgaven. Het totaal aantal te behalen punten is 00. De waardering per opgave staat vermeld. Opgave (20 punten) Gegeven

Nadere informatie

opgaven formele structuren deterministische eindige automaten

opgaven formele structuren deterministische eindige automaten opgaven formele structuren deterministische eindige automaten Opgave. De taal L over het alfabet {a, b} bestaat uit alle strings die beginnen met aa en eindigen met ab. Geef een reguliere expressie voor

Nadere informatie

Proefles webklas Wiskunde. Universiteit van Amsterdam September 2002

Proefles webklas Wiskunde. Universiteit van Amsterdam September 2002 Proefles webklas Wiskunde Universiteit van Amsterdam September 2002 1 Inleiding Deze proefles van de webklas Wiskunde behandelt hetzelfde onderwerp als de echte webklas, alleen in een veel eenvoudiger

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen HAVO Wiskunde A Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Supersize me Opgave 1. De formule voor de dagelijkse energiebehoefte is E b = 33,6 G. Als

Nadere informatie

Voorbeeld 1. Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen. Voorbeeld 2A. Voorbeeld 1 (vervolg)

Voorbeeld 1. Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen. Voorbeeld 2A. Voorbeeld 1 (vervolg) Voorbeeld Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen Cursusjaar 2009 Peter de Waal Departement Informatica In een eperiment gooien we 4 maal met een zuivere munt.

Nadere informatie

Examen HAVO. wiskunde A. tijdvak 2 woensdag 23 juni 13.30-16.30 uur

Examen HAVO. wiskunde A. tijdvak 2 woensdag 23 juni 13.30-16.30 uur Examen HAVO 2010 tijdvak 2 woensdag 23 juni 13.30-16.30 uur wiskunde A Dit examen bestaat uit 21 vragen. Voor dit examen zijn maximaal 83 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

Maandbeleggen. Ook met een klein bedrag. Geen aankoopkosten. Betere spreiding. Flexibel. Van punt tot punt sneller naar je doel

Maandbeleggen. Ook met een klein bedrag. Geen aankoopkosten. Betere spreiding. Flexibel. Van punt tot punt sneller naar je doel Maandbeleggen Van punt tot punt sneller naar je doel Ook met een klein bedrag Geen aankoopkosten Betere spreiding Flexibel Elke maand dichter bij je doel Je legt geld opzij voor later. Om een onvergetelijke

Nadere informatie

dr. Katrien Antonio en dr. Richard Plat AAG RBA

dr. Katrien Antonio en dr. Richard Plat AAG RBA dr. Katrien Antonio en dr. Richard Plat AAG RBA 1 Micro-Level Stochastic Loss Reserving Katrien Antonio (UvA) Richard Plat (Richard Plat Consultancy) 2 Agenda Introductie Schadereservering Huidige technieken

Nadere informatie

Bedoeling van het spel Door het uitvoeren van vluchten en het kopen van route-rechten zoveel mogelijk geld te verdienen.

Bedoeling van het spel Door het uitvoeren van vluchten en het kopen van route-rechten zoveel mogelijk geld te verdienen. Inhoud van de doos Speelbord, boekingskaarten (blauwe achterzijde), kanskaarten (rode achterzijde), vluchtpijlen (lang, smal), routerechtbewijzen (kort, breed), vliegtuigen, dobbelstenen en een groot aantal

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Andere dingen kunnen ons veranderen, maar we beginnen en eindigen met onze familie. Anthony Brandt.

Andere dingen kunnen ons veranderen, maar we beginnen en eindigen met onze familie. Anthony Brandt. Exitstrategieën Als er geen volgende generatie familieleden klaarstaat, bereid of in staat is het bedrijf voort te zetten, kan het zinvoller zijn een uittreedplan op te stellen in plaats van een opvolgingsplan.

Nadere informatie

Samen uw risicoprofiel bepalen - Natuurlijke personen

Samen uw risicoprofiel bepalen - Natuurlijke personen Samen uw risicoprofiel bepalen - Natuurlijke personen Elke belegger staat voor de moeilijke keuze om zijn portefeuille samen te stellen uit de diverse mogelijke beleggingsvormen (beleggingsfondsen, aandelen,

Nadere informatie

In de handel is het gebruikelijk om korting te geven als een klant veel exemplaren van een bepaald product bestelt.

In de handel is het gebruikelijk om korting te geven als een klant veel exemplaren van een bepaald product bestelt. Korting In de handel is het gebruikelijk om korting te geven als een klant veel exemplaren van een bepaald product bestelt. Kwantumkorting Een manier om klanten korting te geven, is de kwantumkorting.

Nadere informatie

OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN

OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN VOORJAAR 2003 Inhoudsopgave 1 Inleiding 1 1.1 Wat is Operations Research?.............................. 1 1.2 Overzicht van de te behandelen

Nadere informatie

Doordacht beleggen begint bij Belfius Bank. Ontdek onze beleggingsaanpak

Doordacht beleggen begint bij Belfius Bank. Ontdek onze beleggingsaanpak Doordacht beleggen begint bij Belfius Bank Ontdek onze beleggingsaanpak Onze beleggingsaanpak: op maat én persoonlijk Ontdek het verschil. Beleg bij Belfius Bank. Beleggen is complex. Er bestaan immers

Nadere informatie

Het schatten van de Duitse oorlogsproductie: maximum likelihood versus de momentenmethode

Het schatten van de Duitse oorlogsproductie: maximum likelihood versus de momentenmethode Het schatten van de Duitse oorlogsproductie: maximum likelihood versus de momentenmethode Rik Lopuhaä TU Delft 30 januari, 2015 Rik Lopuhaä (TU Delft) Schatten van de Duitse oorlogsproductie 30 januari,

Nadere informatie

Euronext.liffe. Inleiding Optiestrategieën

Euronext.liffe. Inleiding Optiestrategieën Euronext.liffe Inleiding Optiestrategieën Vooraf De inhoud van dit document is uitsluitend educatief van karakter. Voor advies dient u contact op te nemen met uw bank of broker. Het is verstandig alvorens

Nadere informatie

Tentamen Inleiding Speltheorie 29-10-2003

Tentamen Inleiding Speltheorie 29-10-2003 entamen Inleiding Speltheorie 9-0-003 Dit tentamen telt 5 opgaven die in 3 uur moeten worden opgelost. Het maximaal te behalen punten is 0, uitgesplitst naar de verschillende opgaven. Voor het tentamencijfer

Nadere informatie

Beleggersprofiel - Vragenlijst voor de klant(en) :

Beleggersprofiel - Vragenlijst voor de klant(en) : Beleggersprofiel - Vragenlijst voor de klant(en) : Naam persoon 1 :.Voornaam :.. Naam persoon 2 :.Voornaam :.. Adres :. Heeft u een partner? : ja / neen Aantal kinderen ten laste + hun leeftijd :. Voor

Nadere informatie

Definitie van continue-tijd Markov keten:

Definitie van continue-tijd Markov keten: Definitie van continue-tijd Markov keten: Een stochastisch proces {X(t), t 0} met toestandsruimte S heet een continue-tijd Markov keten (CTMC) als voor alle i en j in S en voor alle tijden s, t 0 geldt

Nadere informatie