BIOFYSICA: WERKZITTING 08 en 09 (Oplossingen) ELEKTRISCHE KRINGEN

Maat: px
Weergave met pagina beginnen:

Download "BIOFYSICA: WERKZITTING 08 en 09 (Oplossingen) ELEKTRISCHE KRINGEN"

Transcriptie

1 1ste Kandidatuur ARTS of TANDARTS Academiejaar Oefening 11 (p29) BIOFYSICA: WERKZITTING 08 en 09 (Oplossingen) ELEKTRISCHE KRINGEN Bereken de stromen in de verschillende takken van het netwerk in de figuur. Bereken het potentiaalverschil tussen de punten b en c. 1,2 Ω b 9 V 2,0 Ω 8,0 Ω 4,5 V 5,4 Ω c Notatie: R 1 =1, 2Ω V 1 =9V R 2 =5, 4Ω V 2 =4, 5V R 3 =2Ω R 4 =8Ω De eerste stap is het kiezen van de stromen in de kring. Er zijn hier in totaal drie onbekende stromen, die we I 1 tot I 3 noemen. Daarna kies je de omlooprichtingen voor de lussen in de kring (zie figuur). In totaal zijn er drie onbekenden, en je kan in totaal 5 vergelijkingen opstellen (er zijn twee knooppunten en in totaal drie lussen). De (eerste) stroomwet van Kirchhoff 1

2 I 1 I b 2 1,2 Ω I 3 9 V 2,0 Ω 1 2 8,0 Ω 4,5 V 5,4 Ω c uitschrijven in de knooppunten b en c levert de volgende twee vergelijkingen: { I1 I 3 I 2 = 0 (knooppunt b) I 3 + I 2 I 1 = 0 (knooppunt c) Aangezien je de tweede vergelijking uit de eerste kan bekomen door alle tekens te veranderen, zijn deze vergelijkingen niet onafhankelijk. Je kan er slechts één gebruiken om de oplossing te bekomen. Aangezien je drie onbekenden hebt (en je dus drie vergelijkingen nodig hebt) moet je nog twee andere vergelijkingen neerschrijven. Deze vind je met de (tweede) spanningswet van Kirchhoff: V 1 R 1 I 1 R 3 I 3 + V 2 R 2 I 1 =0 (lus1) V 2 + R 3 I 3 R 4 I 2 =0 (lus2) V 1 R 1 I 1 R 4 I 2 R 2 I 1 = 0 (de buitenste kring) Ook deze drie vergelijkingen zijn niet onafhankelijk. Door de eerste twee op te tellen bekom je de derde vergelijking. We zullen hier de eerste twee vergelijkingen nemen, en deze combineren met de vergelijking die we overhielden bij de stroomwet van Kirchhoff. Het stelsel dat moet opgelost worden om de onbekende stromen I 1, I 2 en I 3 te bepalen is dus: I 1 I 3 I 2 =0 (1) V 1 (R 1 + R 2 )I 1 R 3 I 3 + V 2 =0 (2) V 2 + R 3 I 3 R 4 I 2 =0 (3) Uit vergelijking (1) vind je dat I 1 = I 2 + I 3. Vul dit resultaat in vergelijking (2) in: I 3 + I 2 = I 1 V 1 + V 2 (R 1 + R 2 )(I 2 + I 3 ) R 3 I 3 =0 V 2 + R 3 I 3 R 4 I 2 =0 2

3 Je kan nu de twee laatste vergelijkingen herschrijven naar I 2 : I 1 = I 3 + I 2 I 2 = V 1 + V 2 (R 1 + R 2 + R 3 )I 3 R 1 + R 2 I 2 = V 2 + R 3 I 3 R 4 Door nu de twee laatste vergelijkingen aan elkaar gelijk te stellen krijg je een gesloten vergelijking voor I 3. Deze kan je dan oplossen: V 1 + V 2 (R 1 + R 2 + R 3 )I 3 = V 2 + R 3 I 3 R 1 + R 2 R 4 I 3 1, 679 A Met dit gegeven kan je nu I 1 en I 2 berekenen: I 1 1, 536 A I 2 0, 142 A I 3 1, 679 A Het spanningsverschil tussen punten b en c kan je berekenen uit de stroom die door de weerstand R 4 gaat. De weerstand R 4 staat immers parallel over de punten b en c, dus de spanning tussen beide punten is gegeven door: Oefening 12 (p30) V bc = I 2 R 4 1, 14 V Het netwerk in de figuur is in de stationaire toestand. Zoek de stroom door de weerstand en bereken het potentiaalverschil over de condensator. Bereken ook de lading op de condensator. Als de kring in de stationaire toestand is, wil dit zeggen dat de condensator volledig opgeladen is: er vloeit geen stroom meer naar de condensator. In deze toestand speelt de condensator de rol van een onderbreking in de kring in die tak. Je kan met andere woorden de condensatortak gewoon weglaten uit de beschrijving. In dat geval krijg je een serieschakeling van drie weerstanden. De totale weerstand van de kring kan je berekenen met de optelregel voor serieweerstanden: R tot = i R i Je vindt door alles op te tellen dat R tot = 12 Ω. De stroom door deze serieschakeling kan je met de wet van Ohm berekenen voor de totale weerstand: I = U I = 10 R 16 = 5 8 A Het potentiaalverschil over de condensator is gelijk aan de spanning over de rechtse weerstand van 4 Ω, aangezien deze parallel met de condensator geschakeld is (voor 3

4 4 Ω b 10 V 20 pf 4,0 Ω 8 Ω c parallel geschakelde componenten weet je dat de spanning over elk van deze componenten gelijk is). De spanning over deze weerstand kan je opnieuw berekenen met de wet van Ohm, deze keer toegepast op de weerstand van 4 Ω: U = IR U C = 5 2 V Nudat de spanning over de condensator gekend is, kan je de lading eenvoudig berekenen uit de capaciteit, met de formule U = q C : q = UC q =50pC= C 4

5 Oefening 20 (p31) In het netwerk in de figuur is R 1 = 200 kω, R 2 = 100 kω, C =15nFen U = 100 mv. Bereken de stroom door de takken (1,4) en (1,2,3,4) vanaf het moment dat de schakelaar gesloten wordt. Bereken ook het potentiaalverschil tussen 1 en 4 als functie van de tijd. 2 i 2 1 i R 2 C R 1 i 1 U 3 4 De eerste stap is weer het kiezen van de knooppunten (in dit geval zijn dit de punten 1 en 4 op de figuur) en het kiezen van de lussen en hun omloopszin. Het uitschrijven van de eerste wet van Kirchhoff levert voor elk van de knooppunten: { i(t) i1 (t) i 2 (t) = 0 (knooppunt 1) i 1 (t)+i 2 (t) i(t) = 0 (knooppunt 4) Hier is weer de tweede vergelijking op het minteken na gelijk aan de eerste. Je kan de tweede vergelijking dus niet gebruiken om de onbekende stromen te bepalen. Vooraleer je de tweede wet van Kirchhoff kan toepassen, moet je eerst nagaan welke plaat van de condensator positief opgeladen wordt. De plaat van de condensator die verbonden is met de positieve pool van de batterij laadt positief op, de andere plaat laadt negatief op. Als je de condensator van de + naar de - kant doorloopt moet je deze positief meetellen, in het andere geval negatief. Hiermee kan je de tweede wet van Kirchhoff uitschrijven: U C (t) i 2 (t)r 2 =0 (lus1) U i(t)r 1 U C (t) = 0 (lus 2) U i(t)r 1 i 2 (t)r 2 = 0 (de buitenste kring) Ook hier is er een vergelijking die je niet kan gebruiken: de som van de eerste twee vergelijkingen geeft terug de derde. We zullen hier enkel de eerste twee gebruiken. 5

6 2 i 2 1 i R 2 C R i 1 U 3 4 In totaal hebben we dan de vergelijkingen: i(t) i 1 (t) i 2 (t) = 0 (1) U C (t) i 2 (t)r 2 =0 (2) U i(t)r 1 U C (t) = 0 (3) Noteer de lading op de condensator als q(t). Noteer de spanning over de condensator U C (t) = q(t) C, dan geeft vergelijking (2): i 2 (t) = q(t) R 2 C Vergelijking (3) kan je herschrijven door i(t) =i 1 (t)+i 2 (t) te substitueren en U C (t) in te vullen: U ( i 1 (t)+i 2 (t) ) R 1 q(t) C =0 Vul nu de daarnet bekomen uitdrukking voor i 2 (t) in: U ( i 1 (t)+ q(t) R 2 C ) R 1 q(t) C =0 De verandering van de lading op de condensator dq(t) dt is gegeven door de stroom i 1 (t), aangezien dit net de stroom is die naar de condensator vloeit. Deze substitutie doorvoeren geeft: ( dq(t) U + q(t) ) R 1 q(t) dt R 2 C C =0 Het herschrijven van deze differentiaalvergelijking levert: ( ) dq(t) R1 + R 2 + q(t) = U dt R 1 R 2 C R 1 6

7 Dit is een eerste orde lineaire differentiaalvergelijking van de vorm dx dt αx(t) =αx d. In het formularium vind je de oplossing van deze vergelijking als X(t) =C 0 e αt +X d. Toegepast op deze differentiaalvergelijking krijg je als oplossing: q(t) =C 0 e αt + 1 U α = R 1 + R 2 α R 1 R 1 R 2 C De constante C 0 kan je bepalen uit de beginvoorwaarde: op tijdsstip t = 0 is de lading op de condensator gelijk aan nul (we nemen aan dat de condensator niet opgeladen is als we de spanningsbron aanschakelen): De volledige oplossing is dan: q(t =0)=0 C 0 = 1 α q(t) = 1 U ( 1 e αt ) α = R 1 + R 2 α R 1 R 1 R 2 C Het is nu een koud kunstje om de uitdrukking voor de stromen i 1 (t) eni 2 (t) te bekomen: i 1 (t) = dq(t) i 1 (t) = U e αt dt R 1 i 2 (t) = q(t) i 2 (t) = 1 U ( 1 e αt ) R 2 C α R 1 Door de waarde van α in te vullen vind je als eindresultaat: i 1 (t) = U e R 1 +R 2 R 1 R 2 C t R 1 ( ) R 2 U i 2 (t) = 1 e R 1 +R 2 R 1 R 2 C t R 1 + R 2 U R 1 7

8 Oefening 24 (p32) In een kring zijn een condensator met capaciteit 9 µf, en een weerstand van 1,5 kω in serie geschakeld met een bron met spanning v(t) = 300 sin(2πft), f = 50 Hz. Hoe verloopt de stroom als functie van de tijd? Bereken ook het gemiddeld vermogen geleverd door de bron. Noteer de spanning als v(t) =V sin(ωt). Als de spanning harmonisch varieert, dan kan je verwachten dat de stroom door de kring met dezelfde frequentie harmonisch varieert, maar eventueel een fasefactor φ voor- of achterloopt: { v(t) =V sin(ωt) i(t) =I sin(ωt + φ) Om de stroom i(t) volledig te bepalen moet je de amplitude I en de fasefactor φ berekenen. Aangezien je hier met een serieschakeling van een wisselspanningsbron, weerstand en condensator te maken heb, kan je meteen de tweede wet van Kirchhoff neerschrijven: v(t) =v R (t)+v C (t) Voor een serieschakeling onder wisselspanning moet je weten dat de spanning over de weerstand in fase loopt met de wisselstroom, en dat de spanning over de condensator 90 in fase achterloopt: i(t) =I sin(ωt + φ) v R (t) =V R sin(ωt + φ) (in fase) ( v C (t) =V C sin ωt + φ π ) (90 achter in fase) 2 De tweede wet van Kirchhoff geeft dan de volgende gelijkheid tussen de verschillende spanningen: ( V sin(ωt) =V R sin(ωt + φ)+v C sin ωt + φ π ) 2 Je kan deze gelijkheid ofwel onmiddelijk oplossen, ofwel oplossen met de methode van fasoren. Om de methode van fasoren te gebruiken, kan je best de volgende werkwijze toepassen: 1. Teken in het fasorenvlak een stroomvector i(t). De grootte van deze vector is net de amplitude I van de wisselstroom. Deze vector maakt een hoek ωt+φ met de x-as (dit is net het argument van de sinus die de wisselstroom i(t) beschrijft). 2. Teken de fasor v R (t). Dit is een vector met grootte V R, de amplitude van de wisselspanning over de weerstand, die volgens de stroomvector i(t) ligt. Dit laatste is zo omdat de spanning over de weerstand in fase is met de wisselstroom. 8

9 3. Teken de fasor v C (t). Deze vector heeft als grootte V C,enloopt90 achter op de stroomvector. 4. De totale spanningsfasor v(t) kan je bekomen door de vectorsom v C (t)+v R (t) te maken 1. Deze vectorsom kan je het eenvoudigst uitwerken met de parallellogram constructie Deze stappen zijn samengevat in de volgende figuur: y ωt v (t) R i(t) φ x v(t) v (t) C Uit de figuur kan je allerlei verbanden afleiden tussen alle grootheden en op die manier de amplitude I bepalen: V 2 = VR 2 + VC 2 (stelling van Pythagoras) tan(φ) = V C (definitie tangens) V R Nu kan je de formules voor de reactantie gebruiken om de amplitudes V C en V R te bepalen: V = IX V R = IR V C = 1 In werkelijkheid zijn dit geen vectoriele grootheden! Je gebruikt hier het truukje met de fasoren om de berekening te vereenvoudigen, en daar voeg je de fictieve vectorinterpretatie toe. I ωc 9

10 Dit invullen geeft: ( V 2 = I 2 R ) (ωc) 2 tan(φ) = 1 ωrc Oplossen naar de twee onbekenden I en φ levert als resultaat: V I = 0, 195 A R (ωc) ( 2 ) 1 φ = Bgtan 13, 5 ωrc Het (gemiddeld) vermogen in een wisselspanningskring is steeds gegeven door: P g = V g I g cos(φ) Gebruik makend van het feit dat voor een harmonisch varierende wisselstroom en wisselspanning de gemiddelde spanning en stroom gegeven zijn door I g = I 2 en V g = V 2 respectievelijk: P g = VI 2 cos(φ) De fasefactor φ is net het faseverschil tussen de stroom i(t) en spanning v(t) datwe net berekend hebben. Invullen en uitwerken levert: P g 28, 4W 10

11 Oefening 26 (p32) Judy wil de FM-ontvanger afstemmen op een frequentie van 99,7 MHz. Hiervoor wordt een RLC-seriekring gebruikt met R = 12 Ω en L = 14 µh. Wat is de capaciteit van de condensator? Het afstemmen van een FM-ontvanger komt neer op het in resonantie brengen van de RLC-kring, waarbij de resonantiefrequentie net de gewenste radiofrequentie is. Bij resonantie zal immers de stroom door de kring het grootst zijn: I = R 2 + V ( ) ω R = 1 2 LC ωl 1 ωc Bij ω = ω R krijg je als uitdrukking voor de stroom: I = V R en dit is de grootst mogelijke waarde (voor eender welke andere ω zal de ω-term onder de vierkantswortel niet meer wegvallen, en aangezien deze wegens het kwadraat altijd positief is, deel je dus voor eender welke andere ω door iets dat groter is dan R. Het eindresultaat zal dan altijd kleiner zijn). Bij een radio-ontvanger is een grote stroom door de kring bijvoorbeeld handig om de luidsprekers aan te sturen. De gewenste frequentie f is in dit geval f =99, Hz. De hiermee overeenkomende (resonantie) hoekfrequentie ω R =2πf rad/s. De capaciteit die hiervoor nodig is kan je dan berekenen uit de formule voor de resonantiefrequentie van een RLC-kring: ω R = 1 2πf = 1 LC LC 1 C = 4π 2 f 2 L C 1, 82pF 11

12 Appendix: Analyseschema voor elektrische kringen 1. Nummer de knooppunten in de kring. 2. Kies in elke tak van de kring een stroomzin. 3. Kies in elke lus een omloopzin. 4. Schrijf de twee wetten van Kirchhoff uit: voor elk knooppunt schrijf je de eerste wet van Kirchhoff uit: I i =0 i Hierbij reken de stromen die toekomen in een knooppunt positief, en de stromen die vertrekken in een knooppunt negatief. Daarna schrijf je de tweede wet van Kirchhoff uit voor elke lus: V i =0 Hierbij reken je: i De spanning over een weerstand negatief als de omloopzin gelijk is aan de stroomzin in die tak (de spanning over een weerstand daalt volgens de stroomrichting). De spanning van een batterij telt positief mee als je van de - naar de + pool gaat (de spanning over een batterij verhoogt van - naar +). Een condensator reken je op dezelfde manier als een batterij mee. De plaat van de condensator die met de + pool van de batterij verbonden is zal positief opgeladen worden, de kant die met de - pool verbonden is negatief. 5. Los het stelsel dat je zo bekomt op naar de onbekenden (de stromen in de kring). Tim Jacobs - 24 december

Elektrische stroomnetwerken

Elektrische stroomnetwerken ntroductieweek Faculteit Bewegings- en evalidatiewetenschappen 25 29 Augustus 2014 Elektrische stroomnetwerken Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be Assistent: Erik

Nadere informatie

Oefeningen Elektriciteit II Deel II

Oefeningen Elektriciteit II Deel II Oefeningen Elektriciteit II Deel II Dit document bevat opgaven die aansluiten bij de cursustekst Elektriciteit II deel II uit het jaarprogramma van het e bachelorjaar industriële wetenschappen KaHo Sint-ieven.

Nadere informatie

Toets 1 IEEE, Modules 1 en 2, Versie 1

Toets 1 IEEE, Modules 1 en 2, Versie 1 Toets 1 IEEE, Modules 1 en 2, Versie 1 Datum: 16 september 2009 Tijd: 10:45 12:45 (120 minuten) Het gebruik van een rekenmachine is niet toegestaan. Deze toets telt 8 opgaven en een bonusopgave Werk systematisch

Nadere informatie

HOOFDSTUK 3: Netwerkanalyse

HOOFDSTUK 3: Netwerkanalyse HOOFDSTUK 3: Netwerkanalyse 1. Netwerkanalyse situering analyseren van het netwerk = achterhalen van werking, gegeven de opbouw 2 methoden manuele methode = reductie tot Thévenin- of Norton-circuit zeer

Nadere informatie

Condensator. Het hellingsgetal a is constant. Dit hellingsgetal noemen we de capaciteit van de condensator C. Er geldt dus: C = Q U

Condensator. Het hellingsgetal a is constant. Dit hellingsgetal noemen we de capaciteit van de condensator C. Er geldt dus: C = Q U Inhoud Condensator... 2 Het laden van een condensator... 3 Het ontladen van een condensator... 5 Opgaven... 6 Opgave: Alarminstallatie... 6 Opgave: Gelijkrichtschakeling... 6 Opgave: Boormachine... 7 1/7

Nadere informatie

Leereenheid 3. Diagnostische toets: Enkelvoudige wisselstroomkringen

Leereenheid 3. Diagnostische toets: Enkelvoudige wisselstroomkringen Leereenheid 3 Diagnostische toets: Enkelvoudige wisselstroomkringen Let op! Bij meerkeuzevragen: Duid met een kringetje rond de letter het juiste antwoord of de juiste antwoorden aan. Vragen gemerkt met:

Nadere informatie

1. Weten wat elektrische stroom,spanning en vemogen is en het verband ertussen kennen 2. Elektrische netwerken kunnen oplossen

1. Weten wat elektrische stroom,spanning en vemogen is en het verband ertussen kennen 2. Elektrische netwerken kunnen oplossen Hoofdstuk 3 Elektrodynamica Doelstellingen 1. Weten wat elektrische stroom,spanning en vemogen is en het verband ertussen kennen 2. Elektrische netwerken kunnen oplossen Elektrodynamica houdt de studie

Nadere informatie

Inhoudsopgave. 0.1 Netwerkmodel voor passieve geleiding langs een zenuwcel.. 2

Inhoudsopgave. 0.1 Netwerkmodel voor passieve geleiding langs een zenuwcel.. 2 Inhoudsopgave 01 Netwerkmodel voor passieve geleiding langs een zenuwcel 2 1 01 Netwerkmodel voor passieve geleiding langs een zenuwcel I Figuur 1: Schematische voorstelling van een deel van een axon Elk

Nadere informatie

1 VRIJE TRILLINGEN 1.0 INLEIDING 1.1 HARMONISCHE OSCILLATOREN. 1.1.1 het massa-veersysteem. Hoofdstuk 1 - Vrije trillingen

1 VRIJE TRILLINGEN 1.0 INLEIDING 1.1 HARMONISCHE OSCILLATOREN. 1.1.1 het massa-veersysteem. Hoofdstuk 1 - Vrije trillingen 1 VRIJE TRILLINGEN 1.0 INLEIDING Veel fysische systemen, van groot tot klein, mechanisch en elektrisch, kunnen trillingen uitvoeren. Daarom is in de natuurkunde het bestuderen van trillingen van groot

Nadere informatie

PRACTICUM TRILLINGSKRINGEN onderdeel van het vak Trillingen en Golven

PRACTICUM TRILLINGSKRINGEN onderdeel van het vak Trillingen en Golven PRACTICUM TRILLINGSKRINGEN onderdeel van het vak Trillingen en Golven Inleiding In dit practicum worden experimenten gedaan aan elektrische trillingskringen, bestaande uit weerstanden, condensatoren en

Nadere informatie

DEEL 6 Serieschakeling van componenten. 6.1 Doel van de oefening. 6.2 Benodigdheden

DEEL 6 Serieschakeling van componenten. 6.1 Doel van de oefening. 6.2 Benodigdheden Naam: Nr.: Groep: Klas: Datum: DEEL 6 In de vorige oefeningen heb je reeds een A-meter, die een kleine inwendige weerstand bezit, in serie leren schakelen met een gebruiker. Door de schakelstand te veranderen

Nadere informatie

3.4.3 Plaatsing van de meters in een stroomkring

3.4.3 Plaatsing van de meters in een stroomkring 1 De stroom- of ampèremeter De ampèremeter is een meetinstrument om elektrische stroom te meten. De sterkte van een elektrische stroom wordt uitgedrukt in ampère, vandaar de naam ampèremeter. Voorstelling

Nadere informatie

Practicum complexe stromen

Practicum complexe stromen Practicum complexe stromen Experiment 1a: Een blokspanning over een condensator en een spoel De opstelling is al voor je klaargezet. Controleer of de frequentie ongeveer op 500 Hz staat. De vorm van het

Nadere informatie

Antwoorden bij Deel 1 (hfdst. 1-8)

Antwoorden bij Deel 1 (hfdst. 1-8) Elektrische netwerken Oefenopgaven: open vragen Hints en Antwoorden Antwoorden bij Deel 1 (hfdst. 1-8) Hoofdstuk 1 1.1 15 S 1.2 4,5 A 1.3 2 A, 4 A, 6 A 1.4 5 ma,!2,5 ma 1.5 B: in strijd met de stroomwet;!1

Nadere informatie

LABORATORIUM ELEKTRICITEIT

LABORATORIUM ELEKTRICITEIT LABORATORIUM ELEKTRICITEIT 1 Proef RL in serie... 1.1 Uitvoering:... 1.2 Opdrachten... 2 Proef RC in serie... 7 2.1 Meetschema... 7 2.2 Uitvoering:... 7 2.3 Opdrachten... 7 3 Proef RC in parallel... 11

Nadere informatie

BIOFYSICA: WERKZITTING 1 (Oplossingen) KINEMATICA

BIOFYSICA: WERKZITTING 1 (Oplossingen) KINEMATICA 1ste Kandidatuur ARTS of TANDARTS Academiejaar 00-003 Oefening 1 BIOFYSICA: WERKZITTING 1 (Oplossingen) KINEMATICA Kan de bewegingsrichting van een voorwerp, dat een rechte baan beschrijft, veranderen

Nadere informatie

Rekenkunde, eenheden en formules voor HAREC. 10 april 2015 presentator : ON5PDV, Paul

Rekenkunde, eenheden en formules voor HAREC. 10 april 2015 presentator : ON5PDV, Paul Rekenkunde, eenheden en formules voor HAREC 10 april 2015 presentator : ON5PDV, Paul Vooraf : expectation management 1. Verwachtingen van deze presentatie (inhoud, diepgang) U = R= R. I = 8 Ω. 0,5 A =

Nadere informatie

Hoofdstuk 3 Basiswetten van de elektriciteit.

Hoofdstuk 3 Basiswetten van de elektriciteit. Hoofdstuk 3 Basiswetten van de elektriciteit. 1 Wet van Ohm. Volledigheidshalve vermelden we hier nog eens de wet van Ohm: Elektriciteit U R. I of U I of R U R I 2 Wetten van Kirchhoff. Kirchhoff heeft

Nadere informatie

NETWERKEN EN DE WETTEN VAN KIRCHHOFF

NETWERKEN EN DE WETTEN VAN KIRCHHOFF NETWERKEN EN DE WETTEN VN KIRCHHOFF 1. Doelstelling van de proef Het doel van deze proef is het bepalen van de klemspanning van een spanningsbron, de waarden van de beveiligingsweerstanden en de inwendige

Nadere informatie

Fiche 7 (Analyse): Begrippen over elektriciteit

Fiche 7 (Analyse): Begrippen over elektriciteit Fiche 7 (Analyse): Begrippen over elektriciteit 1. Gelijkstroomkringen (DC) De verschillende elektrische grootheden bij gelijkstroom zijn: Elektrische spanning (volt) definitie: verschillend potentiaal

Nadere informatie

9.2 Bepaal de harmonische tijdsfuncties die horen bij deze complexe getallen: U 1 = 3 + 4j V; U 2 = 3e jb/8 V; I 1 =!j + 1 ma; I 2 = 7e!jB/3 ma.

9.2 Bepaal de harmonische tijdsfuncties die horen bij deze complexe getallen: U 1 = 3 + 4j V; U 2 = 3e jb/8 V; I 1 =!j + 1 ma; I 2 = 7e!jB/3 ma. Elektrische Netwerken 21 Opgaven bij hoofdstuk 9 9.1 Geef de complexe weergave van deze tijdsfuncties: u 1 =!3.sin(Tt+0,524) V; u 2 =!3.sin(Tt+B/6) V; u 3 =!3.sin(Tt+30 ) V. (Klopt deze uitdrukking?) 9.2

Nadere informatie

Overgangsverschijnselen

Overgangsverschijnselen Hoofdstuk 5 Overgangsverschijnselen Doelstellingen 1. Overgangsverschijnselen van RC en RL ketens kunnen uitleggen waarbij de wiskundige afleiding van ondergeschikt belang is Als we een condensator of

Nadere informatie

Impedantie V I V R R Z R

Impedantie V I V R R Z R Impedantie Impedantie (Z) betekent: wisselstroom-weerstand. De eenheid is (met als gelijkstroom-weerstand) Ohm. De weerstand geeft aan hoe goed de stroom wordt tegengehouden. We kennen de formules I R

Nadere informatie

Schriftelijk examen: theorie en oefeningen Fysica: elektromagnetisme 2009-2010

Schriftelijk examen: theorie en oefeningen Fysica: elektromagnetisme 2009-2010 Schriftelijk examen: theorie en oefeningen 2009-2010 Naam en studierichting: Aantal afgegeven bladen, dit blad niet meegerekend: Gebruik voor elke nieuwe vraag een nieuw blad. Zet op elk blad de vermelding

Nadere informatie

Wisselstromen anders bekeken

Wisselstromen anders bekeken Wisselstromen anders bekeken In de tekst die volgt, maak je kennis met weerstanden, condensatoren en spoelen. Sommige zaken behandelde je misschien in de lessen fysica, andere nog niet. We geven daarom

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Oefeningenexamen Fysica 2 1ste zit 2006-2007

Oefeningenexamen Fysica 2 1ste zit 2006-2007 Oefeningenexamen 2006-2007 12 januari 2007 Naam en groep: Aantal afgegeven bladen, dit blad niet meegerekend: Gebruik voor elke nieuwe vraag een nieuw blad. Zet op elk blad de vermelding 12/01/2007 alsook

Nadere informatie

Een elektrische schakeling is tot op zekere hoogte te vergelijken met een verwarmingsinstallatie.

Een elektrische schakeling is tot op zekere hoogte te vergelijken met een verwarmingsinstallatie. Inhoud Basisgrootheden... 2 Verwarmingsinstallatie... 3 Elektrische schakelingen... 4 Definities van basisgrootheden... 6 Fysische achtergrond bij deze grootheden... 6 Opgave: Geladen bollen... 7 De wet

Nadere informatie

Hoofdstuk 4 Het schakelen van weerstanden.

Hoofdstuk 4 Het schakelen van weerstanden. Hoofdstuk 4 Het schakelen van weerstanden.. Doel. Het is de bedoeling een grote schakeling met weerstanden te vervangen door één equivalente weerstand. Een equivalente schakeling betekent dat een buitenstaander

Nadere informatie

FORMULE BLAD - VERON ZENDCURSUS

FORMULE BLAD - VERON ZENDCURSUS FORMULE BLAD - VERON ZENDCURSUS Wet van Ohm U = I R (1) U = spanning in V, I is stroom in A en r is weerstand in Ohm Eerste wet van Kirchhoff Som van alle stromen in een knooppunt is nul. Tweede wet van

Nadere informatie

Signalen stroom, spanning, weerstand, vermogen AC, DC, effectieve waarde

Signalen stroom, spanning, weerstand, vermogen AC, DC, effectieve waarde Technologie 1 Elektrische en elektronische begrippen Signalen stroom, spanning, weerstand, vermogen AC, DC, effectieve waarde Opleiding Pop en Media Peet Ferwerda, januari 2002 Deze instructie wordt tijdens

Nadere informatie

5 Lineaire differentiaalvergelijkingen

5 Lineaire differentiaalvergelijkingen 5 Lineaire differentiaalvergelijkingen In veel toepassingen in de techniek en de exacte wetenschappen wordt gewerkt met differentiaalvergelijkingen om continue processen te modelleren. Het gaat dan meestal

Nadere informatie

FYSICA-BIOFYSICA : FORMULARIUM (oktober 2004)

FYSICA-BIOFYSICA : FORMULARIUM (oktober 2004) ste bachelor GENEESKUNDE ste bachelor TANDHEELKUNDE ste bachelor BIOMEDISCHE WETENSCHAPPEN FYSICA-BIOFYSICA : FORMULARIUM (oktober 004) Kinematica Eenparige rechtlijnige beweging : x(t) = v x (t t 0 )

Nadere informatie

1. Opwekken van een sinusoïdale wisselspanning.

1. Opwekken van een sinusoïdale wisselspanning. 1. Opwekken van een sinusoïdale wisselspanning. Bij de industriële opwekking van de elektriciteit maakt men steeds gebruik van een draaiende beweging. Veronderstel dat een spoel met rechthoekige doorsnede

Nadere informatie

HOOFDSTUK 2: Elektrische netwerken

HOOFDSTUK 2: Elektrische netwerken HOOFDSTUK 2: Elektrische netwerken 1. Netwerken en netwerkelementen elektrische netwerken situering brug tussen fysica en informatieverwerkende systemen abstractie maken fysische verschijnselen vb. velden

Nadere informatie

9 PARALLELSCHAKELING VAN WEERSTANDEN

9 PARALLELSCHAKELING VAN WEERSTANDEN 9 PARALLELSCHAKELING VAN WEERSTANDEN Een parallelschakeling komt in de praktijk vaker voor dan een serieschakeling van verbruikers. Denken we maar aan alle elektrische apparaten die aangesloten zijn op

Nadere informatie

Tentamen Inleiding Meten en Modelleren Vakcode 8C120 7 april 2010, uur. Het gebruik van een (grafische) rekenmachine is toegestaan.

Tentamen Inleiding Meten en Modelleren Vakcode 8C120 7 april 2010, uur. Het gebruik van een (grafische) rekenmachine is toegestaan. Tentamen Inleiding Meten en Modelleren Vakcode 8C1 7 april 1, 9. - 1. uur Dit tentamen bestaat uit 4 opgaven. Indien u een opgave niet kunt maken, geeft u dan aan hoe u de opgave zou maken. Dat kan een

Nadere informatie

Magnetische toepassingen in de motorvoertuigentechniek (3)

Magnetische toepassingen in de motorvoertuigentechniek (3) Magnetische toepassingen in de motorvoertuigentechniek (3) E. Gernaat, ISBN 978-90-808907-3-2 1 Theorie wisselspanning 1.1 De inductieve spoelweerstand (X L ) Wanneer we een spoel op een wisselspanning

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Elektrodynamica. 25 juli 2015 dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Elektrodynamica. 25 juli 2015 dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fysica: Elektrodynamica 25 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

EXAMEN CONCEPTUELE NATUURKUNDE MET TECHNISCHE TOEPASSINGEN

EXAMEN CONCEPTUELE NATUURKUNDE MET TECHNISCHE TOEPASSINGEN HIR-KUL-Oef-0607Jan IN DRUKLETTERS: NAAM... VOORNAAM... STUDIEJAAR... EXAMEN CONCEPTUELE NATUURKUNDE MET TECHNISCHE TOEPASSINGEN Deel oefeningen 1 ste examenperiode 2006-2007 Algemene instructies Naam

Nadere informatie

Inleiding tot de wisselstroomtheorie

Inleiding tot de wisselstroomtheorie Hoofdstuk 6 Inleiding tot de wisselstroomtheorie Doelstellingen 1. Kenmerkende grootheden gebruikt in wisselstroomtheorie kennen 2. Weten hoe de passieve componenten R,L en C zich gedragen in AC-regime

Nadere informatie

Leereenheid 7. Diagnostische toets: Vermogen en arbeidsfactor van een sinusvormige wisselstroom

Leereenheid 7. Diagnostische toets: Vermogen en arbeidsfactor van een sinusvormige wisselstroom Leereenheid 7 Diagnostische toets: Vermogen en arbeidsfactor van een sinusvormige wisselstroom Let op! Bij meerkeuzevragen: Duid met een kringetje rond de letter het juiste antwoord of de juiste antwoorden

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

Tentamen Lineaire Schakelingen, 2 e deel (EE1300-B)

Tentamen Lineaire Schakelingen, 2 e deel (EE1300-B) Tentamen Lineaire Schakelingen, 2 e deel (EE1300-B) Plaats: DTC tentamenzaal 2 Datum: 28 januari 2014 Tijd: 09:00-12:00 uur Dit tentamen bestaat uit 6 opgaven. Gebruik voor elk vraagstuk een nieuw blad.

Nadere informatie

5.12 Afgerond op twee decimalen, is de effectieve waarde van deze spanning: a: U eff = 4,18 V b: U eff = 5,00 V c: U eff = 5,70 V d: U eff = 5,98 V

5.12 Afgerond op twee decimalen, is de effectieve waarde van deze spanning: a: U eff = 4,18 V b: U eff = 5,00 V c: U eff = 5,70 V d: U eff = 5,98 V Elektrische Netwerken 17 Opgaven bij hoofdstuk 5 De volgende twee vragen hebben beide betrekking op de hiernaast weergegeven periodieke wisselspanning. 5.12 Afgerond op twee decimalen, is de effectieve

Nadere informatie

12 Elektrische schakelingen

12 Elektrische schakelingen Elektrische schakelingen Onderwerpen: - Stroomsterkte en spanning bij parallel- en serieschakeling - Verangingsweerstand bij parallelschakeling. - Verangingsweerstand bij serieschakeling.. Stroom en spanning

Nadere informatie

Inhoudsopgave Schakelen van luidsprekers

Inhoudsopgave Schakelen van luidsprekers Inhoudsopgave Inhoudsopgave...2 Inleiding...3 Vermogen...3 Impedantie...3 Serieschakeling van luidsprekers...4...4...4...4 Voorbeeld...4 Parallelschakeling van luidsprekers...4...4...4...4 Voorbeeld...5

Nadere informatie

I A (papier in) 10cm 10 cm X

I A (papier in) 10cm 10 cm X Tentamen: Fysica en Medische Fysica 2 Tijd: 15:15-18:00 uur, donderdag 28 mei 2009 Plaats: TenT blok 4 (met bijlage van formules, handrekenmachine is toegestaan) Docent: Dr. K.S.E. Eikema Puntentelling:

Nadere informatie

Leerling maakte het bord volledig zelf

Leerling maakte het bord volledig zelf 3. Oefeningen en Metingen 3.. Montageoefening Bouw een paneel als volgt: lampvoeten monteren draden van de lampvoeten naar een suikertje verbindingsstuk brengen. Twee verbindingsstukken doorverbinden.

Nadere informatie

Academiejaar Eerste Examenperiode Opleidingsonderdeel: Elektrische Schakelingen en Netwerken. EXAMENFOLDER maandag 27 januari 2014

Academiejaar Eerste Examenperiode Opleidingsonderdeel: Elektrische Schakelingen en Netwerken. EXAMENFOLDER maandag 27 januari 2014 Universiteit Gent naam: Faculteit Ingenieurswetenschappen en Architectuur voornaam: de Bachelor Ingenieurswetenschappen richting: Opties C,, TN en W prof. Kristiaan Neyts Academiejaar 03-04 erste xamenperiode

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme 2011-2012

Schriftelijk examen 2e Ba Biologie Fysica: elektromagnetisme 2011-2012 - Biologie Schriftelijk examen 2e Ba Biologie 2011-2012 Naam en studierichting: Aantal afgegeven bladen, deze opgaven niet meegerekend: Gebruik voor elke nieuwe vraag een nieuw blad. Zet op elk blad de

Nadere informatie

WINDENERGIE : SYNCHRONE GENERATOREN

WINDENERGIE : SYNCHRONE GENERATOREN WINDENERGIE : REACTIEF VERMOGEN INHOUD: SYNCHRONE GENERATOREN Het equivalent schema Geleverde stromen en vermogens Het elektrisch net Een synchrone generator is een spanningsbron. Het equivalent schema

Nadere informatie

LABO. Elektriciteit OPGAVE: De cos phi -meter Meten van vermogen in éénfase kringen. Totaal :.../20. .../.../ Datum van afgifte:

LABO. Elektriciteit OPGAVE: De cos phi -meter Meten van vermogen in éénfase kringen. Totaal :.../20. .../.../ Datum van afgifte: LABO Elektriciteit OPGAVE: De cos phi -meter Meten van vermogen in éénfase kringen Datum van opgave:.../.../ Datum van afgifte: Verslag nr. : 7 Leerling: Assistenten: Klas: 3.1 EIT.../.../ Evaluatie :.../10

Nadere informatie

Stroomkring en richtingspijlen voor spanning en stroom

Stroomkring en richtingspijlen voor spanning en stroom Katern voor scholing, her- en bijscholing 6 inhoud Stroomkring en richtingspijlen voor spanning en stroom 3 Spanningsdelers en gelijkstroom - netwerken 6 Fotowedstrijd zo moet het niet Basiskennis Een

Nadere informatie

Harmonischen: remedies

Harmonischen: remedies Harmonischen: remedies Harmonischen: remedies - De verbruiker - 12 en 24 pulsige gelijkrichters - Active Front End - Passieve filters - Actieve filters - Hybride filters - Het elektrisch net De verbruiker

Nadere informatie

Klasse B versterkers

Klasse B versterkers Klasse B versterkers Jan Genoe KHLim Universitaire Campus, Gebouw B 359 Diepenbeek Belgium http://www.khlim.be/~jgenoe In dit hoofdstuk bespreken we de Klasse B en de klasse G versterker. Deze versterker

Nadere informatie

Repetitie Elektronica (versie A)

Repetitie Elektronica (versie A) Naam: Klas: Repetitie Elektronica (versie A) Opgave 1 In de schakeling hiernaast stelt de stippellijn een spanningsbron voor. De spanningsbron wordt belast met weerstand R L. In het diagram naast de schakeling

Nadere informatie

Elektronische Basisschakelingen Oefenzitting 1

Elektronische Basisschakelingen Oefenzitting 1 Elektronische Basisschakelingen Oefenzitting 1 Aki Sarafianos http://homes.esat.kuleuven.be/~h01m3/ Materialen Slides, opgaves, extra info,... http://homes.esat.kuleuven.be/~h01m3/

Nadere informatie

Opgave 2 Een spanningsbron wordt belast als er een apparaat op is aangesloten dat (in meer of mindere mate) stroom doorlaat.

Opgave 2 Een spanningsbron wordt belast als er een apparaat op is aangesloten dat (in meer of mindere mate) stroom doorlaat. Uitwerkingen 1 A Een spanningsbron wordt belast als er een apparaat op is aangesloten dat (in meer of mindere mate) stroom doorlaat. Een ideale spanningsbron levert bij elke stroomsterkte dezelfde spanning.

Nadere informatie

Differentiaalvergelijkingen I : separabele en lineaire 1ste orde DV

Differentiaalvergelijkingen I : separabele en lineaire 1ste orde DV WISKUNDIGE ANALYSE OEFENZITTING 0 c D. Keppens 2004 Differentiaalvergelijkingen I : separabele en lineaire ste orde DV Onderwerp : separabele differentiaalvergelijkingen van de eerste orde en vergelijkingen

Nadere informatie

Over Betuwe College Oefeningen H3 Elektriciteit deel 4

Over Betuwe College Oefeningen H3 Elektriciteit deel 4 1 Door een dunne draad loopt een elektrische stroom met een stroomsterkte van 2 µa. De spanning over deze draad is 50 V. Bereken de weerstand van de dunne draad. U = 50 V I = 2 µa R = 50V 2µA R = 2,5 10

Nadere informatie

Inhoudsopgave. - 2 - De condensator

Inhoudsopgave.  - 2 - De condensator Inhoudsopgave Inhoudsopgave...2 Inleiding...3 Capaciteit...3 Complexe impedantie...4 De condensator in serie of parallel schakeling...4 Parallelschakeling...4 Serieschakeling...4 Aflezen van de capaciteit...5

Nadere informatie

Uitwerkingen Hoofdstuk 2 - deel 2

Uitwerkingen Hoofdstuk 2 - deel 2 Uitwerkingen Hoofdstuk 2 - deel 2 4 VWO 2.6 Serie en parallel 51. Vervanging 52. Bij de winkelstraat zijn de lampen parallel geschakeld en bij de kandelaar in serie. 53. Voorbeeld: Serie De stroom moet

Nadere informatie

Uitwerking LES 5 N CURSSUS

Uitwerking LES 5 N CURSSUS 1) C De letter C wordt in de elektronica gebruikt voor een: A) spoel (symbool L, eenheid Henry) B) weerstand (symbool R, eenheid Ohm Ω) C) condensator (symbool C, eenheid Farad, 2 geleiders gescheiden

Nadere informatie

3DE GRAAD DEEL 1 ELEKTRICITEIT & LAB EENFASIGE WISSELSTROOMKETENS. Ivan Maesen Jo Hovaere. Plantyn

3DE GRAAD DEEL 1 ELEKTRICITEIT & LAB EENFASIGE WISSELSTROOMKETENS. Ivan Maesen Jo Hovaere. Plantyn 3DE GRAAD DEEL 1 ELEKTRICITEIT & LAB EENFASIGE WISSELSTROOMKETENS Ivan Maesen Jo Hovaere Plantyn Plantyn ontwikkelt en verspreidt leermiddelen voor het basisonderwijs, het secundair onderwijs, het hoger

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Elektro-magnetisme Q B Q A

Elektro-magnetisme Q B Q A Elektro-magnetisme 1. Een lading QA =4Q bevindt zich in de buurt van een tweede lading QB = Q. In welk punt zal de resulterende kracht op een kleine positieve lading QC gelijk zijn aan nul? X O P Y

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Gelijke oppervlakten De parabool met vergelijking y = 4x x2 en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong O en in punt. Zie. y 4 3 2 1-1 O 1 2 3

Nadere informatie

De leugendetector. Jacco Dekkers. April 11, 2007

De leugendetector. Jacco Dekkers. April 11, 2007 Jacco Dekkers April 11, 2007 1 De elektronische componenten In dit hoofdstuk beschrijven we de toepassing van een populaire bouwblok: de operationele versterker (opamp). Het elektrische symbool van de

Nadere informatie

Serie. Itotaal= I1 = I2. Utotaal=UR1 + UR2. Rtotaal = R1 + R2. Itotaal= Utotaal : Rtotaal 24 = 10 + UR2 UR2 = 24 10 = 14 V

Serie. Itotaal= I1 = I2. Utotaal=UR1 + UR2. Rtotaal = R1 + R2. Itotaal= Utotaal : Rtotaal 24 = 10 + UR2 UR2 = 24 10 = 14 V Om te onthouden Serieschakeling Parallelschakeling Itotaal= I = I2 Utotaal=U + U2 totaal = + 2 Itotaal=I + I2 Utotaal= U = U2 tot 2 enz Voor elke schakeling I totaal U totaal totaal Itotaal= I = I2 Utotaal=U

Nadere informatie

BIOFYSICA: WERKZITTING 2 (Oplossingen) DYNAMICA

BIOFYSICA: WERKZITTING 2 (Oplossingen) DYNAMICA 1ste Kandidatuur ARTS of TANDARTS Academiejaar -3 Oefening 6 BIOFYSICA: WERKZITTING (Oplossingen) DYNAMICA Een blok met massa kg rust op een horizontaal vlak. De wrijvingscoëfficiënt tussen de blok en

Nadere informatie

Werking van een zekering

Werking van een zekering Naam: Klas: Datum: Werking van een zekering Doelstelling Leerlingen moeten inzien dat een zekering de elektrische stroom kan onderbreken bij oververhitting als gevolg van een kortsluiting. Inleidende proef

Nadere informatie

Zelf een hoogspanningsgenerator (9 kv gelijkspanning) bouwen

Zelf een hoogspanningsgenerator (9 kv gelijkspanning) bouwen Zelf een hoogspanningsgenerator (9 kv gelijkspanning) bouwen Inhoud De schakeling Een blokspanning van 15 V opwekken De wisselspanning omhoog transformeren Analyse van de maximale stroom door de primaire

Nadere informatie

2 GEDWONGEN TRILLINGEN

2 GEDWONGEN TRILLINGEN GEDWONGEN TRILLINGEN.0 INLEIDING Onder de titel gedwongen trillingen bekijken we de trillingen van een zwak gedempte harmonische oscillator die ontstaan als deze niet zelfstandig trilt, maar wor aangedreven

Nadere informatie

6 VEELVOUDEN EN ONDERDELEN VAN EENHEDEN

6 VEELVOUDEN EN ONDERDELEN VAN EENHEDEN 6 VEELVOUDEN EN ONDERDELEN VAN EENHEDEN Bij weerstanden, maar ook bij spanning en stroom, kunnen zeer uit een lopende waarden voorkomen. Spanning kan liggen tussen bijvoorbeeld 0,000 001 V en 160 000 V.

Nadere informatie

Opgaven bij hoofdstuk 20 20.1. Bepaal R 1 t/m R 3 (in het sternetwerk) als in de driehoek geldt: R 1 = 2 ks, R 2 = 3 ks, R 3 = 6 ks 20.

Opgaven bij hoofdstuk 20 20.1. Bepaal R 1 t/m R 3 (in het sternetwerk) als in de driehoek geldt: R 1 = 2 ks, R 2 = 3 ks, R 3 = 6 ks 20. Elektrische Netwerken 49 Opgaven bij hoofdstuk 20 20.1 Bepaal R 1 t/m R 3 (in het sternetwerk) als in de driehoek geldt: R 12 = 1 ks, R 23 = 3 ks, R 31 = 6 ks 20.2 Bepaal R 12 t/m R 31 (in de driehoek)

Nadere informatie

Elektrische Netwerken

Elektrische Netwerken Elektrische Netwerken 1 Project 1 Info te verkrijgen via: http://www.hanese.nl/~jonokiewicz/ Programma Week 1: DC stromen en spanningen Week 2: Serie en parallel, l stroomdeling, spanningsdeling Week 3:

Nadere informatie

Langere vraag over de theorie

Langere vraag over de theorie Langere vraag over de theorie (a) Magnetisch dipooloent Zoals het elektrisch dipooloent is het agnetisch dipooloent een vectoriële grootheid. Het agnetisch dipooloent wordt gedefinieerd voor een gesloten

Nadere informatie

Dit tentamen bestaat uit vier opgaven verdeeld over drie bladzijden. U heeft drie uur de tijd.

Dit tentamen bestaat uit vier opgaven verdeeld over drie bladzijden. U heeft drie uur de tijd. Tentamen Signaal Verwerking en Ruis Dinsdag 10 13 uur, 15 december 2009 Dit tentamen bestaat uit vier opgaven verdeeld over drie bladzijden. U heeft drie uur de tijd. 1. Staprespons van een filter [elk

Nadere informatie

BIOFYSICA: Toets I.4. Dynamica: Oplossing

BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 ste jaar Bachelor BIOMEDISCHE WETENSCHAPPEN Academiejaar 006-007 BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 Opgave 1 Een blokje met massa 0, kg heeft onder aan een vlakke helling een snelheid van 7,

Nadere informatie

Essential University Physics Richard Wolfson 2 nd Edition

Essential University Physics Richard Wolfson 2 nd Edition Chapter Hoofdstuk 13 13 Lecture Essential University Physics Richard Wolfson nd Edition Trillingen Slide 13-1 13.1 Trillingen Een systeem voert een trilling uit (of oscilleert) als het een periodieke beweging

Nadere informatie

UITWERKINGEN Examentraining (KeCo) SET-B HAVO5-Na

UITWERKINGEN Examentraining (KeCo) SET-B HAVO5-Na UITWERKINGEN KeCo-Examentraining SET-C HAVO5-Na UITWERKINGEN Examentraining (KeCo) SET-B HAVO5-Na EX.O... Lichtstraal A verplaatst zich van lucht naar water, dus naar een optisch dichtere stof toe. Er

Nadere informatie

Tentamen Analoge- en Elektrotechniek

Tentamen Analoge- en Elektrotechniek Verantwoordelijke docent: R. Hoogendoorn, H.J. Wimmenhoven Cursus Analoge- en Elektrotechniek Code MAMAET01 Cursusjaar: 2014 Datum: 2-6-2014 Tijdsduur: 90 min. Modulehouder: R. Hoogendoorn Aantal bladen:

Nadere informatie

Leereenheid 1. Diagnostische toets: Soorten spanningen. Let op!

Leereenheid 1. Diagnostische toets: Soorten spanningen. Let op! Leereenheid 1 Diagnostische toets: Soorten spanningen Let op! Bij meerkeuzevragen: Duid met een kringetje rond de letter het juiste antwoord of de juiste antwoorden aan Vragen gemerkt met: J O Sommige

Nadere informatie

Werkblad 1 Serieschakeling gelijke lampjes

Werkblad 1 Serieschakeling gelijke lampjes Werkblad 1 Serieschakeling gelijke lampjes In een serieschakeling gaat de stroom door alle onderdelen. In figuur 1 gaat de stroom eerst door lampje 1, dan door lampje 2, om terug te komen bij de spanningsbron.

Nadere informatie

Opgaven bij hoofdstuk 12

Opgaven bij hoofdstuk 12 32 Meerkeuze-opgaven Opgaven bij hoofdstuk 12 12.6 Van een lineaire tweepoort is poort 1 als ingang en poort 2 als uitgang op te vatten. Bij de Z-parametervoorstelling van deze tweepoort geldt dan: a:

Nadere informatie

Theory DutchBE (Belgium) Niet-lineaire dynamica in elektrische schakelingen (10 punten)

Theory DutchBE (Belgium) Niet-lineaire dynamica in elektrische schakelingen (10 punten) Q2-1 Niet-lineaire dynamica in elektrische schakelingen (10 punten) Neem voor het begin van deze opgave de algemene instructies uit de aparte enveloppe door! Inleiding Bistabiele niet-lineaire halfgeleider

Nadere informatie

Naam: Klas: Repetitie elektriciteit klas 2 1 t/m 6 HAVO (versie A)

Naam: Klas: Repetitie elektriciteit klas 2 1 t/m 6 HAVO (versie A) Naam: Klas: Repetitie elektriciteit klas 2 1 t/m 6 HAVO (versie A) OPGAVE 1 Welke spanning leveren de combinaties van 1,5 volt-batterijen? Eerste combinatie: Tweede combinatie: OPGAVE 2 Stel dat alle lampjes

Nadere informatie

Uitwerking LES 10 N CURSSUS

Uitwerking LES 10 N CURSSUS 1) B De resonantiefrequentie van een afstemkring wordt bepaald door: A) uitsluitend de capaciteit van de condensator B) de capaciteit van de condensator en de zelfinductie van de spoel (zowel van de condensator

Nadere informatie

Een elektrische schakeling is tot op zekere hoogte te vergelijken met een verwarmingsinstallatie.

Een elektrische schakeling is tot op zekere hoogte te vergelijken met een verwarmingsinstallatie. Inhoud Basisgrootheden... 2 Verwarmingsinstallatie... 3 Elektrische schakelingen... 4 Definities van basisgrootheden... 6 Fysische achtergrond bij deze grootheden... 6 Opgave: Geladen bollen... 7 De wet

Nadere informatie

SERIE-schakeling U I. THEMA 5: elektrische schakelingen. Theoretische berekening voor vervangingsweerstand:

SERIE-schakeling U I. THEMA 5: elektrische schakelingen. Theoretische berekening voor vervangingsweerstand: QUARK_5-Thema-05-elektrische schakelingen Blz. 1 THEMA 5: elektrische schakelingen Inleiding: PHET-opdracht ---> GEVAL-1 : SERIE-schakeling OPDRACHT: 1. bepaal de spanningspijlen en de stroomsterkten.

Nadere informatie

LES1: ELEKTRISCHE LADING DE WET VAN COULOMB. H21: Elektrische lading en elektrische velden

LES1: ELEKTRISCHE LADING DE WET VAN COULOMB. H21: Elektrische lading en elektrische velden LES1: ELEKTRISCHE LADING DE WET VAN COULOMB ELEKTROSTATICA Studie van ladingen in rust in een intertiaalstelsel. ELEKTRISCH GELADEN LICHAMEN Een massa is steeds positief. H21: Elektrische lading en elektrische

Nadere informatie

Passieve filters: enkele case studies

Passieve filters: enkele case studies Passieve filters: enkele case studies Passieve filters: enkele case studies - Voorbeeld 1: rekenvoorbeeld - Voorbeeld 2: simulatieresultaten - Voorbeeld 3: simulatieresultaten Voorbeeld 1: rekenvoorbeeld

Nadere informatie

R Verklaar alle antwoorden zo goed mogelijk

R Verklaar alle antwoorden zo goed mogelijk PROEFWERK TECHNOLOGIE VWO MODULE 6 ELECTRICITEIT VRIJDAG 19 maart 2010 R Verklaar alle antwoorden zo goed mogelijk 2P 2P 2P Opgave 1 Tup en Joep willen allebei in bed lezen. Ze hebben allebei een fietslampje.

Nadere informatie

FORMULE BLAD - VERON ZENDCURSUS Wet van Ohm U = I R (1) U = spanning in V, I is stroom in A en r is weerstand in Ohm Eerste wet van Kirchhoff Som van alle stromen in een knooppunt is nul. Tweede wet van

Nadere informatie

Tent. Elektriciteitsvoorziening I / ET 2105

Tent. Elektriciteitsvoorziening I / ET 2105 Tent. Elektriciteitsvoorziening I / ET 2105 Datum: 24 januari 2011 Tijd: Schrijf op elk blad uw naam en studienummer Begin elke nieuwe opgave op een nieuw blad De uitwerkingen van het tentamen worden na

Nadere informatie

Bepaal van de hieronder weergegeven spanningen en stromen: de periodetijd en de frequentie, de gemiddelde waarde en de effectieve waarde.

Bepaal van de hieronder weergegeven spanningen en stromen: de periodetijd en de frequentie, de gemiddelde waarde en de effectieve waarde. Elektrische Netwerken 13 Opgaven bij hoofdstuk 5 Bepaal van de hieronder weergegeven spanningen en stromen: de periodetijd en de frequentie, de gemiddelde waarde en de effectieve waarde. 5.1 5.2 5.3 5.4

Nadere informatie

Meetinstrumenten. PEKLY 33, Rue Boussingault _ Paris. Werkboekje behorende bij de software. Naam : Klas: 3, 15, 30, 150, 450 1,5 2

Meetinstrumenten. PEKLY 33, Rue Boussingault _ Paris. Werkboekje behorende bij de software. Naam : Klas: 3, 15, 30, 150, 450 1,5 2 Meetinstrumenten. 3, 1, 3, 1, 4 1,.1 Hz 4 o +1...+ o C PEKLY 33, Rue Boussingault _ Paris Werkboekje behorende bij de software. Naam : Klas: Figuur 1 Figuur - H.O.Boorsma. http://www.edutechsoft.nl/ 1

Nadere informatie