Wisselstromen. Benodigde voorkennis Elektriciteit (deel 2) Paragraaf 1 t/m 8 Elektronica Paragraaf 4 t/m 6

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Wisselstromen. Benodigde voorkennis Elektriciteit (deel 2) Paragraaf 1 t/m 8 Elektronica Paragraaf 4 t/m 6"

Transcriptie

1 Wisselstromen 1 Effectieve waarden 2 Spoel en condensator 3 Harmonisch variërende signalen optellen 4 Complexe getallen 5 Complexe impedantie 6 Filters 7 Opgenomen vermogen 8 Extra opgaven Benodigde voorkennis Elektriciteit (deel 2) Paragraaf 1 t/m 8 Elektronica Paragraaf 4 t/m 6 Magnetisme Geheel Trillingen en geluid wiskundig Paragraaf 1 t/m 3

2 1 Effectieve waarden Vermogen in een weerstand In de onderstaande figuur is een weerstand met (constante) weerstandswaarde R op een bron aangesloten die een gelijkspanning geeft In de diagrammen daarnaast zijn de spanning U over de weerstand, de stroom I door de weerstand en het vermogen P in de weerstand als functie van de tijd t weergegeven Het vermogen volgt volgens de volgende formule uit de spanning en de stroom P = U I Dit verband kan met U = I R herschreven worden als: 2 P = U / R en als P = I 2 R Effectieve waarde van een wisselspanning of een wisselstroom In de onderstaande figuur is een weerstand op een bron aangesloten die een sinusvormige wisselspanning geeft In de diagrammen daarnaast zijn weer de spanning, stroom en vermogen als functie van de tijd weergegeven Merk op dat de stroom niet steeds in de richting van de pijl loopt en de spanning niet steeds de polariteit heeft die in de figuur is aangegeven met een plus- en een minteken De aangegeven pijl en polariteit geven alleen aan wanneer de stroom en spanning positief zijn Theorie Wisselstromen, Effectieve waarden, wwwroelhendrikseu 1

3 Zoals uit de bovenste twee diagrammen blijkt, keren de spanning en de stroom op dezelfde momenten van teken om De spanning en stroom zijn dus beide positief of beide negatief Dit betekent dat het vermogen bij een weerstand altijd positief (of nul) is Anders gezegd: de weerstand ontvangt steeds energie en geeft nooit energie terug aan de bron We maken onderscheid tussen enerzijds de topwaarden U max en I max en anderzijds de hierna te bespreken effectieve waarden U eff en I eff Uit het onderste diagram blijkt dat het vermogen varieert tussen nul en een maximum waarde P max De (in de tijd) gemiddelde waarde van het vermogen is aangeduid met P gem We kunnen de effectieve spanning en de effectieve stroom als volgt definiëren De effectieve waarde van de wisselspanning is de waarde die een gelijkspanning zou moeten hebben om in dezelfde weerstand gemiddeld in de tijd een even groot vermogen te veroorzaken De effectieve waarde van de wisselstroom is de waarde die een gelijkstroom zou moeten hebben om in dezelfde weerstand gemiddeld in de tijd een even groot vermogen te veroorzaken Als P gem het gemiddelde vermogen is dat een wisselspanning in weerstand R veroorzaakt, dan geldt per definitie voor de effectieve spanning: 2 Ueff Pgem = R Voor de effectieve stroom geldt per definitie: Pgem = I 2 eff R Uit de laatste twee vergelijkingen volgt: Harmonisch variërende wisselspanning en wisselstroom Bij een harmonisch variërende wisselspanning (ook wel sinusvormige wisselspanning genoemd) kunnen we eenvoudig een verband vinden tussen de effectieve spanning en de topwaarde van de spanning Voor het gemiddelde vermogen geldt namelijk: 2 1 Umax P gem = Pmax = 2 2R Hieruit volgt: 2 2 U eff Umax = R 2R Hieruit volgt: Theorie Wisselstromen, Effectieve waarden, wwwroelhendrikseu 2

4 We kunnen een soortgelijk verband vinden tussen de effectieve stroom en de topwaarde van de stroom Er geldt: P gem = Pmax = Imax R 2 2 Hieruit volgt: I eff R = Imax R 2 Hieruit volgt: Opmerking De effectieve waarde wordt ook wel de rms-waarde genoemd (van root mean square ) Als van een sinusvormige wisselspanning de spanning wordt gegeven zonder verdere specificatie, wordt meestal de effectieve waarde bedoeld Momentane spanning Naast de effectieve spanning wordt vaak de momentane spanning gebruikt Dat is de spanning op afzonderlijke tijdstippen en het is deze momentane spanning die in de bovenstaande diagrammen tegen de tijd is uitgezet Als we het in de volgende paragrafen over de spanning hebben, bedoelen we steeds de momentane spanning Hetzelfde geldt voor de momentane stroom Voorbeeld van een opgave De elektriciteitsvoorziening in woonhuizen levert een harmonisch variërende spanning met een effectieve waarde van 230 V Een straalkachel met een weerstand van 53 Ω wordt op het stopcontact aangesloten a Bereken de topwaarde van de spanning b Bereken het aan de straalkachel geleverde vermogen c Bereken op twee manieren de effectieve stroom Oplossing a U max = 2 Ueff = 1, V = 325 V U eff b P = = = 998 W R 53 c Manier 1 U 230 = eff Ieff = = 4,3 A R 53 Manier 2 P 998 I eff = = = 4,3 A R 53 Theorie Wisselstromen, Effectieve waarden, wwwroelhendrikseu 3

5 Opgaven bij 1 Opgave 1 Wat is het verschil tussen de momentane spanning en de effectieve spanning? Opgave 2 Een spanningsbron levert een harmonisch variërende spanning met een amplitude van 30 V Een weerstand van 15 Ω wordt op de spanningsbron aangesloten a Bereken de effectieve waarde van de spanning b Bereken het aan de weerstand geleverde vermogen Opgave 3 Op een bron die een harmonisch variërende spanning levert, wordt een weerstand van 22 Ω aangesloten De bron levert een vermogen van 33 W aan de weerstand Bereken de maximale waarde van de stroom Opgave 4 Een spanningsbron (signaalgenerator) levert eerst een blokspanning die afwisselend de waarden -3 V en +3 V aanneemt Daarna levert de bron een blokspanning die afwisselend de waarden 0 V en 3 V aanneemt Binnen één periode duren beide waarden even lang Zie de onderstaande twee diagrammen Leg uit hoe groot de effectieve spanning van de eerste blokspanning is Leg uit hoe groot de effectieve spanning van de tweede blokspanning is Theorie Wisselstromen, Effectieve waarden, wwwroelhendrikseu 4

6 Opgave 5 Hieronder zijn drie diagrammen getekend In het bovenste diagram is een driehoeksspanning getekend De periode van de driehoeksspanning is T Binnen een periode verloopt de spanning lineair met de tijd In het tweede diagram is de bijbehorende stroom getekend in het geval dat een weerstand op de spanningsbron is aangesloten In het derde diagram is het door de bron afgegeven vermogen als functie van de tijd weergegeven In het bovenste diagram is U max de maximale spanning en U eff de effectieve spanning Op dezelfde manier zijn in het tweede diagram de maximale stroom I max en de effectieve stroom I eff aangegeven In het onderste diagram zijn het maximale vermogen P max en het gemiddelde vermogen P gem aangegeven In het onderste diagram heeft het gearceerde gebied een oppervlakte van (1/3) P max T a Geef het verband tussen het gemiddelde vermogen P gem en het maximale vermogen P max b Geef het verband tussen de effectieve spanning U eff en de maximale spanning U max c Geef het verband tussen de effectieve stroom I eff en de maximale stroom I max Theorie Wisselstromen, Effectieve waarden, wwwroelhendrikseu 5

7 2 Spoel en condensator Spoel: verband tussen spanning en stroom In de figuur hiernaast is het schakelschema van een spoel afgebeeld De spanning over de spoel is U en de stroom door de spoel is I De zelfinductie van de spoel is L De stroom wordt positief gerekend als hij in de richting van de pijl gaat; in tegengestelde richting is de stroom negatief De spanning wordt positief gerekend als zijn polariteit overeenkomt met het plus- en minteken in de figuur Bij omgekeerde polariteit is de spanning negatief Het verband tussen U en I wordt door de volgende vergelijking gegeven ΔI U = L Δt In het limietgeval waarin tijdsinterval Δt oneindig klein wordt, wordt de formule: Elke verandering in de stroom leidt tot een spanning Bij een gelijkstroom door de spoel is de spanning nul Als de stroom in de getekende richting groter wordt, heeft de spanning over de spoel een polariteit zoals die in de figuur is aangegeven Harmonisch variërende spanning en stroom bij een spoel Stel dat we een harmonisch variërende stroom door de spoel laten gaan die beschreven wordt met: I = Imax sin( ωt) Hierin is I max de topwaarde van de stroom en ω de hoekfrequentie Met het bovenstaande verband tussen U en I volgt dan voor spanning over de spoel: U = ωlimax cos( ωt) Hieruit volgt dat voor de topwaarde U max van de spanning geldt: U = ω max LI max We zien dat als de stroom harmonisch varieert, de spanning dat ook doet en met dezelfde frequentie In het onderstaande diagram zijn U en I als functie van de tijd uitgezet Hieruit blijkt duidelijk dat spanning en stroom niet in fase met elkaar zijn Theorie Wisselstromen, Spoel en condensator, wwwroelhendrikseu 6

8 Condensator: verband tussen spanning en stroom In de figuur hiernaast is het schakelschema van een condensator afgebeeld De spanning over de condensator is U en de stroom door de condensator is I De capaciteit C van een condensator is gedefinieerd als: Q C = U Hierin is Q de lading op de platen (eigenlijk +Q op de ene plaat en Q op de andere plaat) Het verband tussen Q en I is: ΔQ I = Δt In het limietgeval waarin tijdsinterval Δt oneindig klein wordt, wordt dit: dq I = dt Als we hierin de formule voor de capaciteit C substitueren, krijgen we: Deze formule lijkt veel op die van een spoel, maar de rol van spanning en stroom zijn omgewisseld Bij een condensator leidt een verandering van de spanning tot een stroom Bij een spoel leidt een verandering van de stroom tot een spanning Harmonisch variërende spanning en stroom bij een condensator Stel dat we een harmonisch variërende spanning op de condensator aansluiten die beschreven wordt met: U = U sin( ωt) max Hierin is U max de topwaarde van de spanning en ω de hoekfrequentie Met het bovenstaande verband tussen U en I volgt dan voor stroom door de condensator: I = ωcumax cos( ωt) Hieruit volgt dat voor de topwaarde I max van de stroom geldt: I max = ωcu max We zien dat als de spanning harmonisch varieert, de stroom dat ook doet en met dezelfde frequentie In het onderstaande diagram zijn U en I als functie van de tijd uitgezet Net als bij een spoel zijn spanning en stroom niet in fase met elkaar Theorie Wisselstromen, Spoel en condensator, wwwroelhendrikseu 7

9 Faseverschil tussen spanning en stroom Als we een weerstand op een wisselspanningsbron aansluiten, is de stroom in fase met de spanning Als we een spoel of een condensator op deze wisselspanningsbron aansluiten, is de stroom echter NIET in fase met de spanning Dit blijkt onder andere uit de twee bovenstaande diagrammen waarin de spanning en de stroom tegen de tijd zijn uitgezet Hieruit volgen de volgende regels Ga dat na Bij een zuivere weerstand zijn spanning en stroom in fase Bij een spoel loopt de spanning een kwart periode voor op de stroom Bij een condensator loopt de stroom een kwart periode voor op de spanning Impedantie van een weerstand, een condensator en een spoel We kunnen een gewone weerstand ( ohmse weerstand), een spoel en een condensator opvatten als een stroomgeleidend systeem Als de spanning over zo n systeem harmonisch in de tijd varieert, verandert de stroom door dit systeem ook harmonisch We definiëren de impedantie van zo n systeem dan als volgt Onder de impedantie van een stroomgeleidend systeem verstaat men het quotiënt van de topwaarden (amplitudes) van de wisselspanning die op dit systeem is aangesloten en de wisselstroom die ten gevolge van deze spanning in het systeem loopt Het symbool voor impedantie is Z en haar eenheid is ohm Hiervoor geldt dus: Bij sinusvormige signalen geldt deze formule ook voor effectieve waarden: Ueff Z = I eff Voor een weerstand, spoel en condensator kunnen we een uitdrukking voor de impedantie vinden Voor een weerstand geldt namelijk U = RI en dus U max = RImax Hierboven vonden we voor een spoel: U max = ωlimax en voor een condensator: I max = ωcu max Daarmee krijgen we dan het volgende overzicht De impedantie van een weerstand is onafhankelijk van de frequentie De impedantie van een spoel neemt toe bij toenemende frequentie (en hoekfrequentie) Dat betekent dat de stroom er dan steeds moeilijker doorheen gaat De impedantie van een condensator neemt daarentegen af bij toenemende frequentie Dat betekent dat de stroom er dan steeds gemakkelijker doorheen gaat Kort samengevat zou je het volgende kunnen zeggen Een spoel is een kortsluiting bij lage frequenties en een isolator bij hoge frequenties Een condensator is een isolator bij lage frequenties en een kortsluiting bij hoge frequenties Theorie Wisselstromen, Spoel en condensator, wwwroelhendrikseu 8

10 Getallenvoorbeeld Een spoel met een zelfindictie van 3,0 mh wordt aangesloten op een wisselspanning met een frequentie van 2,0 khz en met een amplitude van 4,0 V Voor de impedantie van de spoel geldt dan: 3 3 Z = ωl = 2π 2,0 10 3,0 10 = 38 Ω Voor de amplitude van de stroom geldt dan: Umax 4,0 V I max = = = 0,11A Z 37,7 Ω Vermogen bij een spoel en een condensator Als we een weerstand op een harmonisch variërende spanning aansluiten, wordt het momentane vermogen (= spanning keer stroom) nooit negatief Dat komt omdat spanning en stroom in fase met elkaar zijn Bij een spoel en een condensator ligt dat anders omdat spanning en stroom daar niet in fase met elkaar zijn Het vermogen kan nu negatief worden Dat is het geval als de spanning positief en de stroom negatief is of andersom Een negatief vermogen betekent dat de spoel of condensator elektrische energie afstaat in plaats van ontvangt Gemiddeld genomen is het vermogen van een spoel en een condensator nul Theorie Wisselstromen, Spoel en condensator, wwwroelhendrikseu 9

11 Opgaven bij 2 Opgave 1 Een spoel met een zelfinductie van 20 mh wordt aangesloten op een wisselspanning met een frequentie van 100 Hz en met een amplitude van 8,0 V a Bereken de impedantie van de spoel b Bereken de amplitude van de wisselstroom die door de spoel loopt Opgave 2 Een condensator met een capaciteit van 0,60 μf wordt aangesloten op een wisselspanning met een frequentie van 2,0 khz en met een amplitude van 12 V a Bereken de impedantie van de condensator b Bereken de amplitude van de wisselstroom die door de condensator loopt Opgave 3 In de onderstaande schakeling zijn een spoel, een weerstand en een condensator op de polen van een wisselspanningsbron aangesloten In de diagrammen zijn de wisselspanning U en de drie stromen I L, I R en I C als functie van de tijd uitgezet Bij de volgende vragen worden de spoel, weerstand en condensator met element aangeduid a Door welk element loopt stroom 1? Door welk element loopt stroom 2? Door welk element loopt stroom 3? b Loopt stroom 1 door het element met de grootste of de kleinste impedantie? Theorie Wisselstromen, Spoel en condensator, wwwroelhendrikseu 10

12 Opgave 4 In de figuur hiernaast zijn een weerstand, een spoel en een condensator in serie op een wisselspanningsbron met een frequentie van 159 Hz aangesloten De wisselstroom door de stroomkring heeft een amplitude van 0,20 A a Leg uit dat de (wissel)spanning tussen de punten A en C altijd kleiner is dan de (wissel)spanning over de spoel (dus tussen A en B) en ook kleiner is dan de (wissel)spanning over de condensator (dus tussen B en C) De weerstand R bedraagt 10 Ω, de zelfinductie L bedraagt 10 mh en de capaciteit C bedraagt 100 μf b Bereken de amplitude van de wisselspanning U R over de weerstand c Bereken de amplitude van de wisselspanning U L over de spoel d Bereken de amplitude van de wisselspanning U C over de condensator e Hoe groot is de amplitude van de bronspanning U BRON? Leg uit hoe je aan je antwoord komt Theorie Wisselstromen, Spoel en condensator, wwwroelhendrikseu 11

13 3 Harmonisch variërende signalen optellen Een harmonische trilling uit een cirkelbeweging afleiden In de volgende figuren 1 en 2 varieert signaal x harmonisch met de tijd t In figuur 1 is het tijdsverloop van het signaal in een diagram weergegeven waarin de tijdas verticaal naar beneden wijst In dit diagram zijn de periode T en de amplitude A aangegeven In figuur 2 ligt punt P op de x-as en stelt de signaalwaarde voor P voert een harmonische trilling langs de x-as uit De plaats van P is gelijk aan het op de x- as geprojecteerde punt Q dat een linksom draaiende cirkelbeweging uitvoert Daarbij is de omlooptijd van Q gelijk aan de periode T en de straal van de cirkelbeweging gelijk aan de amplitude A De vector (pijl) die vanuit de oorsprong O naar punt Q loopt, wordt in deze paragraaf de amplitudevector genoemd De amplitudevector heeft een lengte ter grootte van A en draait linksom rond met hoekfrequentie ω = 2π/T Theorie Wisselstromen, Harmonisch variërende signalen optellen, wwwroelhendrikseu 12

14 Twee sinussignalen met dezelfde frequentie samenstellen In het bovenstaande figuren 3 en 4 zijn er drie harmonisch met de tijd variërende signalen van de grootheid x die met 1, 2 en S zijn aangeduid Signaal S is de som van de signalen 1 en 2 Er geldt dus op ieder moment: x S = x 1 + x2 In figuur 3 is het tijdsverloop van de signalen in een diagram weergegeven waarin de tijdas verticaal naar beneden wijst Omdat 1 en 2 dezelfde frequentie hebben, varieert S ook harmonisch met diezelfde frequentie In figuur 4 is getekend hoe elk signaal uit een cirkelbeweging volgt De amplitudevector van signaal 2 loopt voor op die van signaal 1 De hoek tussen beide vectoren is met α aangegeven De amplitudevector van S wordt gevonden door de amplitudevector van signaal 1 en signaal 2 vectorieel op te tellen (zie het geconstrueerde parallellogram) Omdat de signalen 1 en 2 niet in fase zijn (anders zou α nul zijn), is de amplitude A S van S kleiner dan de som van amplitude A 1 van signaal 1 en amplitude A 2 van signaal 2 In de figuur draait de vectorconstructie als geheel rond Bij het construeren van de resulterende amplitudevector laat men de cirkels vaak weg en kiest men één van de amplitudevectoren langs de horizontale as Zie de onderstaande voorbeelden We moeten echter steeds blijven bedenken dat het vectordiagram een momentopname is en dat het gehele stelsel van vectoren in feite voortdurend ronddraait Optellen van spanningen in een serieschakeling In de onderstaande linker figuur is een serieschakeling van weerstand R met spoel L op een bron aangesloten die een sinusvormige wisselspanning voortbrengt Omdat het een serieschakeling betreft, is de stroom I in elk punt van de stroomkring steeds gelijk De momentane spanningen (niet de effectieve spanningen!) over de bron, de weerstand en de spoel zijn met U bron, U R en U L aangeduid Er geldt op elk tijdstip: U = U + U bron R L In de middelste en de rechter figuur zijn de amplitudevectoren van U R en U L in een vectordiagram getekend Aangezien de stroom I in dit geval de gemeenschappelijke grootheid is, ligt het voor de hand om deze stroom uit te zetten langs de horizontale as De spanning U R over de weerstand is in fase met de stroom en de bijbehorende amplitudevector wijst dus ook naar rechts De spanning U L over de spoel loopt echter een kwart periode voor op de stroom In het vectordiagram komt dit overeen met 90 graden Omdat de amplitudevectoren linksom draaien, moet de amplitudevector van de spoelspanning naar boven wijzen Door beide amplitudevectoren vectorieel op te tellen, vinden we de amplitudevector van de totale spanning U bron Theorie Wisselstromen, Harmonisch variërende signalen optellen, wwwroelhendrikseu 13

15 Omdat de impedantie van een weerstand gelijk is aan R en de impedantie van een spoel gelijk is aan ωl, geldt: U R,max =RI max en U L,max = ωli max Deze waarden staan in het rechter vectordiagram Met behulp van de wet van Pythagoras vinden we dan: U bron, max = Imax R + ω L De impedantie van de serieschakeling is dan dus: Z = R + ω L We zien dat de totale spanning U bron in fase vóór loopt op de stroom, maar minder dan 90 graden Uit het vectordiagram kunnen we het faseverschil φ tussen de totale spanning en de stroom aflezen We vinden daarvoor de volgende uitdrukking ωl φ = arctan R Voor zeer lage frequenties (ωl veel kleiner dan R) gaat de uitdrukking voor Z over in Z = R en de uitdrukking voor φ over in φ = 0 Het circuit gedraagt zich dan als een weerstand en dat stemt overeen met het feit dat een spoel bij lage frequenties een kortsluiting is Voor zeer hoge frequenties (ωl veel groter dan R) gaat de uitdrukking voor Z over in Z = ωl en de uitdrukking voor φ over in φ = 90º Het circuit gedraagt zich dan als een spoel Optellen van stromen in een parallelschakeling In de onderstaande linker figuur is een parallelschakeling van weerstand R met condensator C op een bron aangesloten die een sinusvormige wisselspanning voortbrengt Omdat het een parallelschakeling betreft, is de spanning U over elke tak steeds gelijk De momentane stromen door de bron, de weerstand en de condensator zijn met I bron, I R en I C aangeduid Er geldt op elk tijdstip: I = I + I bron R C In de middelste figuur zijn de amplitudevectoren van I R en I C in een fasediagram getekend Aangezien de spanning U in dit geval de gemeenschappelijke grootheid is, ligt het voor de hand om deze langs de horizontale as uit te zetten De stroom I R door de weerstand is in fase met de spanning en zijn amplitudevector wijst dus ook naar rechts De stroom I C door een condensator loopt een kwart periode (of te wel 90 graden) voor op de spanning Omdat alle vectoren voortdurend linksom draaien, wijst de amplitudevector van de condensatorstroom naar boven Door beide amplitudevectoren vectorieel op te tellen, vinden we de amplitudevector van I BRON Theorie Wisselstromen, Harmonisch variërende signalen optellen, wwwroelhendrikseu 14

16 Omdat de impedantie van een weerstand gelijk is aan R en de impedantie van een condensator gelijk is aan 1/(ωC), geldt: I R,max =U max /R en I L,max = ωcu max Met behulp van de wet van Pythagoras vinden we dan: I bron,max = Umax + ω C 2 R De impedantie van de parallelschakeling wordt daarmee: 1 Z = ω C 2 R Dit kan herleid worden tot: R Z = ω R C We zien dat de totale stroom I bron vóór loopt op de spanning Zoals uit het rechter vectordiagram volgt, geldt voor het faseverschil: ωc φ = arctan = arctan( ωrc) 1 R Voor zeer lage frequenties (ωrc veel kleiner dan 1) gaat de uitdrukking voor Z over in Z = R en de uitdrukking voor φ over in φ = 0 Het circuit gedraagt zich dan als een weerstand en dat stemt overeen met het feit dat een condensator bij lage frequenties een isolator is Voor zeer hoge frequenties (ωrc veel groter dan 1) gaat de uitdrukking voor Z over in Z = 1/ωC en de uitdrukking voor φ over in φ = 90º Het circuit gedraagt zich dan als een condensator Theorie Wisselstromen, Harmonisch variërende signalen optellen, wwwroelhendrikseu 15

17 Opgaven bij 3 Opgave 1 Als twee harmonisch variërende signalen 1 en 2 met dezelfde frequentie bij elkaar worden opgeteld, ontstaat er een nieuw harmonisch variërend signaal R In een bepaald geval is de amplitude van R gelijk aan de amplitude van 1 plus de amplitude van 2 Aan welke voorwaarde moet dan voldaan zijn? Opgave 2 In de onderstaande linker figuur is een serieschakeling van weerstand R met condensator C op een bron aangesloten die een sinusvormige wisselspanning voortbrengt Op elk tijdstip geldt: U = U + U bron R C In de middelste figuur is een begin gemaakt met een vectordiagram waarin drie amplitudevectoren voorkomen a Teken en/of construeer in de middelste figuur de twee ontbrekende amplitudevectoren en zet er U C,max en U bron,max bij Bedenk daarbij dat de spanning over de condensator een kwart periode achterloopt op de stroom door de condensator b Teken in de rechter figuur het vectordiagram nogmaals en druk U C,max uit in I max c Stel een uitdrukking op voor de impedantie van de serieschakeling van een weerstand en een condensator d Uit het vectordiagram blijkt dat de totale spanning U bron in fase achter loopt op de stroom I Geef een uitdrukking voor het faseverschil φ tussen deze beide grootheden Theorie Wisselstromen, Harmonisch variërende signalen optellen, wwwroelhendrikseu 16

18 Opgave 3 In de onderstaande linker figuur is een parallelschakeling van weerstand R met spoel L op een bron aangesloten die een sinusvormige wisselspanning voortbrengt Op elk tijdstip geldt: I = I + I bron R L In de middelste figuur is een begin gemaakt met een fasediagram waarin drie amplitudevectoren voorkomen a Teken en/of construeer in de middelste figuur de twee ontbrekende amplitudevectoren en zet er I L,max en I bron,max bij b Teken in de rechter figuur het fasediagram nogmaals maar druk I L,max daarbij uit in U max c Stel een uitdrukking op voor de impedantie van de parallelschakeling van een weerstand en een spoel d Uit het vectordiagram blijkt dat de spanning U in fase voor loopt op de totale stroom I bron Geef een uitdrukking voor het faseverschil φ tussen deze beide grootheden Theorie Wisselstromen, Harmonisch variërende signalen optellen, wwwroelhendrikseu 17

19 Opgave 4 Deze opgave is een vervolg op de vorige opgave De schakeling wordt namelijk uitgebreid met een parallelle condensator met capaciteit C Teken opnieuw het fasediagram maar nu met vier amplitudevectoren Laat de amplitudevector behorende bij de condensatorstroom ongeveer de halve lengte hebben van de amplitudevector behorende bij de spoelstroom Stel vervolgens een uitdrukking op voor de impedantie van de nieuwe parallelschakeling Theorie Wisselstromen, Harmonisch variërende signalen optellen, wwwroelhendrikseu 18

20 4 Complexe getallen Complexe getallen In de wiskunde zijn complexe getallen een uitbreiding op de reële getallen Een complex getal z kan men schrijven als: z = a + b i Hierin zijn a en b reële getallen en i de zogenoemde imaginaire eenheid, met als eigenschap i 2 = -1 De schrijfwijze z = a + b i laat zien dat een complex getal in feite een lineaire combinatie is van een reëel getal en een imaginair getal Het getal a noemt men het reële deel en het getal b het imaginaire deel van het complexe getal Van bijvoorbeeld z = i is 3 het reële deel en 8 het imaginaire deel Met complexe getallen in de vorm a + ib kan gewoon gerekend worden, met de extra rekenregel dat overal i 2 vervangen wordt door 1 Getallenvoorbeeld Als we de complexe getallen i en i bij elkaar optellen, krijgen we: (3 + 2 i)+(1 + 5 i) = i Getallenvoorbeeld Als we de complexe getallen i en i met elkaar vermenigvuldigen, krijgen we: (3 + 2 i) (1 + 5 i) = i + 2 i + 10 i 2 = i -10 = i Carthesische coördinaten en poolcoördinaten In de onderstaande linker figuur wordt een complex getal als een punt in het complexe vlak weergegeven Dit vlak wordt opgespannen door een horizontale en een verticale as Langs de horizontale as wordt het reële deel a afgelezen en langs de verticale as het virtuele deel b Bij het punt in de figuur hoort z = i In de rechter figuur wordt een complex getal als een pijl in het complexe vlak weergegeven De lengte r van de pijl noemt men de modulus (of absolute waarde) van z De hoek φ tussen de pijl en de reële as noemt men het argument (of poolhoek) van z Vaak wordt de modulus van z met z aangeduid en het argument van z met arg(z) (in plaats van r en φ) Theorie Wisselstromen, Complexe getallen, wwwroelhendrikseu 19

21 We noemen a en b carthesische coördinaten of rechthoekige coördinaten en r en φ poolcoördinaten Het omrekenen van carthesische coördinaten naar poolcoördinaten gaat als volgt 2 2 Voor de modulus geldt: r = a + b b Voor het argument geldt: φ = arctan( ) a Het omrekenen van poolcoördinaten naar carthesische coordinaten gaat als volgt Voor het reële deel geldt: a = r cos(φ) Voor het imaginaire deel geldt: b = r sin(φ) Getallenvoorbeeld We kunnen in de bovenstaande figuur r en φ als volgt berekenen r = = 5 en φ = arctan( ) = 37 4 Vermenigvuldigen van complexe getallen Het vermenigvuldigen van twee complexe getallen z 1 en z 2 gaat het gemakkelijkst met poolcoördinaten Er gelden namelijk de volgende regels De modulus van het product is gelijk aan het product van de moduli In symbolen wordt dit: z 1 z 2 = z 1 z 2 Het argument van het product is gelijk aan de som van de argumenten In symbolen: arg(z 1 z 2 ) = arg(z 1 ) + arg(z 2 ) De bovenstaande regels over het vermenigvuldigen zijn symbolisch in de onderstaande figuren weergegeven waarin r 1 en r 2 de moduli van z 1 en z 2 zijn en φ 1 en φ 2 de argumenten Het bewijs wordt in de volgende regels geleverd (dit bewijs valt buiten de lesstof) Theorie Wisselstromen, Complexe getallen, wwwroelhendrikseu 20

22 Getallenvoorbeeld Neem z 1 = 4 + 3i Hieruit volgt: z 1 = = 5 en arg( z 1 ) = arctan( ) = 37 4 Neem z 2 = 2 + 2i Hieruit volgt: z 2 = = 2, 83 en arg( z 2 ) = arctan( ) = 45 2 Voor het product van z 1 en z 2 geldt: z 1 z 2 = (4 + 3 i) (2 + 2 i) = i + 6 i + 6 i 2 = i Hieruit volgt: z 1 z 2 = = 14, 1 en arg( z 1 z2) = arctan( ) = 82 2 We zien inderdaad dat 5 x 2,83 = 14,1 en 37º + 45º = 82º Delen van complexe getallen Net als bij het vermenigvuldigen gaat het delen van twee complexe getallen z 1 en z 2 ook het gemakkelijkst met poolcoördinaten Er gelden namelijk de volgende regels De modulus van het quotient is gelijk aan het quotient van de moduli In symbolen wordt dit: z 1 /z 2 = z 1 / z 2 (als z 2 = 0 is het quotient niet gedefinieerd) Het argument van het quotient is gelijk aan het verschil van de argumenten In symbolen: arg(z 1 /z 2 ) = arg(z 1 ) - arg(z 2 ) Opmerking 1) De eigenschap van de imaginaire eenheid i is dat i 2 = -1 Met de besproken vermenigvuldigingsregels wordt dit inzichtelijk De modulus van i is 1 zodat de modulus van i 2 ook gelijk is aan 1 (want 1x1 = 1) Het argument van i is 90º zodat het argument van i 2 gelijk is aan 90º + 90º = 180º Zodoende komen we voor i 2 uit op -1 2) Volgens de regels van het delen geldt: 1 = i i De modulus van de breuk is namelijk 1 (want 1 / 1 = 1) Het argument van de teller is 0º en het argument van de noemer is 90º zodat het argument van de breuk -90º is Zodoende komen we inderdaad uit op -i Overigens hadden we dit resultaat sneller gevonden door teller en noemer met i te vermenigvuldigen Theorie Wisselstromen, Complexe getallen, wwwroelhendrikseu 21

23 Opgaven bij 4 Opgave 1 Schrijf de som (3 + 5 i) + (3 + 3 i) als a + b i (met a en b reële getallen) Opgave 2 Werk het product (3 + 4 i) (5 + 3 i) zodanig uit dat je de vorm a + b i krijgt Opgave 3 Bereken de modulus en het argument van 4 +7 i Opgave 4 Bereken het reële en het imaginaire deel van het complexe getal dat 14 als modulus en 30º als argument heeft Opgave 5 In deze opgave geldt: z 1 = i en z 2 = i a Bepaal van z 1 de modulus en het argument b Bepaal van z 2 de modulus en het argument c Bepaal van z 1 z 2 de modulus en het argument Maak daarbij gebruik van je antwoorden op vraag a en b d Bepaal van z 1 z 2 opnieuw de modulus en het argument maar nu zonder gebruik te maken van je antwoorden op vraag a en b Controleer of de gevonden waarden hetzelfde zijn als die bij vraag c Theorie Wisselstromen, Complexe getallen, wwwroelhendrikseu 22

24 Opgave 6 In de onderstaande drie complexe vlakken zijn steeds twee complexe getallen z 1 en z 2 aangegeven Geef in alle drie de complexe vlakken aan wat de uitkomst is van het product z 1 z 2 en van de quotiënten z 1 / z 2 en z 2 / z 1 Opgave 7 In de volgende uitdrukking zijn a en b reële getallen Leg uit dat de uitkomst van (a + b i) (a - b i) reëel moet zijn Opgave i Werk de breuk zodanig uit dat je de vorm a + b i krijgt i Tip: vermenigvuldig teller en noemer eerst met (3 4 i) Theorie Wisselstromen, Complexe getallen, wwwroelhendrikseu 23

25 5 Complexe impedantie Complexe spanning en complexe stroom In de wisselstroomtechniek is het gebruikelijk om elke harmonisch variërende grootheid (zoals spanning en stroom) complex te maken door er een imaginair getal aan toe te voegen Dit wordt zodanig gedaan dat de (nieuw gemaakte) complexe grootheid in het complexe vlak een cirkel doorloopt die de oorsprong van het complexe vlak als middelpunt heeft De oorspronkelijke grootheid kan op elk tijdstip weer teruggekregen worden door van de complexe grootheid het imaginaire deel weg te laten Merk hierbij de grote overeenkomst op met de eerdere paragraaf waarin een harmonisch variërende grootheid in verband werd gebracht met een cirkelbeweging De onderstaande linker figuur heeft betrekking op een (ohmse) weerstand die is aangesloten op een harmonisch variërende wisselspanning De twee grote pijlen vertrekken vanuit de oorsprong en wijzen naar de complexe spanning en de complexe stroom op één bepaald moment Deze twee complexe grootheden doorlopen de getekende cirkels De kleine pijltjes op de cirkels geven de draairichting aan Zoals te zien is, zijn de spanning en de stroom in fase met elkaar De middelste figuur heeft betrekking op een spoel die is aangesloten op een harmonisch variërende wisselspanning Het verschil met de linker figuur is dat de spanning nu een kwart periode voor loopt op de stroom De rechter figuur heeft betrekking op een condensator Nu loopt de spanning juist een kwart periode achter op de stroom Bedenk bij het voor lopen dan wel achter lopen dat de pijlen altijd linksom draaien Dit was ook het geval bij de amplitudevectoren in de eerdere paragraaf Complexe impedantie De complexe impedantie Z van een stroomgeleidend systeem wordt gedefinieerd als het quotiënt van de complexe spanning U en de complexe stroom I Er geldt dus: Theorie Wisselstromen, Complexe impedantie, wwwroelhendrikseu 24

26 Terwijl de complexe spanning en complexe stroom continu veranderen (ze doorlopen immers cirkels in het complexe vlak), is het quotiënt van U en I constant In de bovenstaande figuren blijft de stand van de U-pijl en I-pijl ten opzichte van elkaar immers gelijk en verandert de lengte van de pijlen ook niet De modulus van de complexe impedantie is gelijk aan de impedantie zoals we die in eerdere paragrafen zijn tegen gekomen Het argument van de complexe impedantie geeft aan hoeveel de spanning in fase voorloopt op de stroom Het volgende schema geeft uitdrukkingen voor de impedantie van een weerstand, een spoel en een condensator In een eerdere paragraaf werd een soortgelijk schema gegeven maar daarin bleef het faseverschil tussen spanning en stroom buiten beschouwing In het huidige schema bevat de uitdrukking bij een spoel een extra factor j en bij een condensator een extra factor 1/j Hierbij is j het symbool voor de imaginaire eenheid Om verwarring met het symbool voor stroom te voorkomen, is de letter i door de letter j vervangen De extra factor j bij een spoel geeft aan dat de spanning een kwart periode voorloopt op de stroom De extra factor 1/j bij een condensator geeft aan dat spanning een kwart periode achterloopt op de stroom Rekenen met de complexe impedantie In de onderstaande linker figuur zijn drie stroomgeleidende elementen, zoals een weerstand, spoel of condensator, in serie op elkaar aangesloten In de rechter figuur zijn drie elementen parallel op elkaar aangesloten De complexe impedanties van de elementen zijn Z 1, Z 2 en Z 3 Voor de vervangingsimpedantie Z v van de serieschakeling geldt: Voor de vervangingsimpedantie Z v van de parallelschakeling geldt: De bewijzen van de bovenstaande formules zijn eenvoudig Voor de serieschakeling geldt dat de totale spanning gelijk is aan de som van de deelspanningen: U totaal = U1 + U2 + U3 Met de definitie van impedantie wordt dit: I ZV = I Z1 + I Z2 + I Z3 Alle termen delen door I geeft de te bewijzen formule Theorie Wisselstromen, Complexe impedantie, wwwroelhendrikseu 25

27 Voor de parallelschakeling geldt dat de totale stroom gelijk is aan de som van de deelstromen: I totaal = I1 + I2 + I3 U U U U Met de definitie van impedantie wordt dit: = + + ZV Z1 Z2 Z3 Alle termen delen door U geeft de te bewijzen formule In het geval er slechts twee elementen Z 1 en Z 2 parallel aan elkaar staan, geldt: = + Z V Z1 Z2 Deze formule kan herschreven worden tot: Voorbeelden van het gebruik van de complexe impedantie In de onderstaande linker figuur zijn een weerstand en een spoel in serie geschakeld Voor de vervangingsimpedantie geldt: Z V = Z1 + Z2 = R + jωl Voor de modulus van de vervangingsimpedantie geldt: Z V = R + ω L Voor het argument van de vervangingsimpedantie geldt: ωl φ = arctan R Merk op dat we de laatste twee resultaten in een eerdere paragraaf ook al hadden gevonden Voor lage frequenties geldt bij benadering: Z V = R en φ = 0º Dit is logisch want de spoel is voor lage frequenties een kortsluiting en houden we in de schakeling alleen de weerstand over Voor hoge frequenties geldt bij benadering Z V = ωl en φ = 90º Ook dit is logisch omdat de spoel nu overheersend is In de middelste figuur zijn een weerstand en een condensator parallel geschakeld Voor de vervangingsimpedantie geldt: 1 R Z Z1 Z2 jωc R = = = V Z + Z 1 R jωrc jωc Theorie Wisselstromen, Complexe impedantie, wwwroelhendrikseu 26

28 Voor de modulus van de vervangingsimpedantie geldt: R Z V = ω R C Voor het argument van de vervangingsimpedantie geldt: φ = arctan( ωrc) Het minteken in de laatste uitdrukking geeft aan dat de spanning in fase achter loopt op de stroom Afgezien van dit minteken hebben we de twee bovenstaande uitdrukkingen in een eerdere paragraaf ook reeds gevonden Voor lage frequenties geldt bij benadering: Z V = R en φ = 0º Dit is logisch want de condensator is voor lage frequenties een isolator en houden we in de schakeling alleen de weerstand over Voor hoge frequenties geldt bij benadering: Z V = 1/(ωC) en φ = -90º Ook dit is logisch omdat de condensator nu overheersend is In de rechter figuur zijn een spoel en een condensator in serie geschakeld Voor de vervangingsimpedantie geldt: 1 1 Z V = Z1 + Z2 = jωl + = j( ωl ) jωc ωc De impedantie wordt nul bij een hoekfrequentie ω 0 van: ω = 1 0 LC Voor de frequentie f 0 geldt dan: f = 1 0 2π LC Bij deze frequentie zijn de impedanties van de spoel en de condensator precies even groot, maar tegengesteld aan elkaar De spoelspanning en de condensatorspanning heffen elkaar dan op en de spanningsbron wordt als het ware kortgesloten Bij frequenties die kleiner zijn dan f 0 overheerst de condensator en is de impedantie dus negatief imaginair Bij frequenties die groter zijn dan f 0 overheerst de spoel en is de impedantie dus positief imaginair Theorie Wisselstromen, Complexe impedantie, wwwroelhendrikseu 27

29 Opgaven bij 5 De onderstaande figuren 1, 2 en 3 horen bij de opgaven 1, 2 en 3 Opgave 1 In figuur 1 staan een weerstand en een condensator in serie met elkaar a Stel een uitdrukking op voor de vervangingsimpedantie van deze serieschakeling b Stel een uitdrukking op voor de modulus van de vervangingsimpedantie c Stel een uitdrukking op voor het argument van de vervangingsimpedantie d Leg met de uitdrukking voor de modulus van de impedantie uit dat de wisselstroom bij lage frequenties moeilijk door de stroomkring kan lopen Overigens wisten we dit al omdat een condensator bij lage frequenties een isolator is Theorie Wisselstromen, Complexe impedantie, wwwroelhendrikseu 28

30 Opgave 2 In figuur 2 staan een weerstand, een spoel en een condensator in serie met elkaar a Stel een uitdrukking op voor de vervangingsimpedantie van deze serieschakeling b Stel een uitdrukking op voor de modulus van de vervangingsimpedantie c Stel een uitdrukking op voor het argument van de vervangingsimpedantie d De uitdrukking voor de vervangingsimpedantie kan voor lage frequenties vereenvoudigd worden door één term weg te laten Geef deze vereenvoudigde uitdrukking Kun je dat ook fysisch begrijpen? e De uitdrukking voor de vervangingsimpedantie kan voor hoge frequenties vereenvoudigd worden door één term weg te laten Geef deze vereenvoudigde uitdrukking Kun je dat ook fysisch begrijpen? Theorie Wisselstromen, Complexe impedantie, wwwroelhendrikseu 29

31 Opgave 3 In figuur 3 staan een spoel en een condensator parallel met elkaar a Stel een uitdrukking op voor de vervangingsimpedantie van deze parallelschakeling b Stel een uitdrukking op voor de modulus van de vervangingsimpedantie c Bij één frequentie wordt de modulus van de vervangingsimpedantie oneindig groot en hoeft de spanningsbron geen stroom te leveren Bij welke frequentie is dat? Theorie Wisselstromen, Complexe impedantie, wwwroelhendrikseu 30

32 6 Filters Filter Een filter in de elektronica is een elektrische schakeling die een gedeelte van het frequentiespectrum van een signaal verzwakt en/of de fase verandert Bijvoorbeeld onderdrukt een hoogdoorlaatfilter de lage frequenties en onderdrukt een laagdoorlaatfilter de hoge frequenties Een filter wordt onder andere gebruikt bij de toonregeling van een geluidsversterker Een filter bevat een ingang en een uitgang en wordt schematisch in de onderstaande linker figuur weergegeven De ingangsspanning wordt aangeduid met U IN en de uitgangsspanning met U UIT In deze paragraaf beperken we ons tot filters die een opbouw hebben zoals in de rechter figuur is weergegeven Hierin stellen Z 1 en Z 2 in het algemeen stroomgeleidende systemen voor die kunnen bestaan uit weerstanden, spoelen en condensators In de gehele paragraaf gaan we ervan uit dat er aan de uitgang van het filter geen belasting is aangesloten, zodat de uitgangsstroom nul is Dat houdt in dat de elektrische stroom door Z 1 gelijk is aan die door Z 2 De overdracht van een filter We bekijken het gedrag van een filter bij harmonische signalen We werken met complexe spanningen, complexe stromen en complexe impedanties Onder de overdracht H van een filter verstaan we het quotiënt van de uitgangsspanning U UIT en de ingangsspanning U IN In formulevorm geldt: Op basis van de rechter figuur kunnen we de overdracht uitdrukken in Z 1 en Z 2 We nemen daarbij aan dat de stroom I door Z 1 en Z 2 gelijk is Voor de ingangsspanning geldt: U IN = I ( Z 1 + Z 2 ) Voor de uitgangsspanning geldt: U UIT = I Z1 Bij de in de figuur getekende polariteiten van de spanningen geldt dan voor de overdracht: Bij het hierna te bespreken laag- en hoogdoorlaatfilter zal deze formule worden toegepast Theorie Wisselstromen, Filters, wwwroelhendrikseu 31

33 Laag- en hoogdoorlaatfilter De onderstaande linker figuur toont een eenvoudig laagdoorlaatfilter en de rechter figuur een eenvoudig hoogdoorlaatfilter In beide figuren is een signaalgenerator op de ingang aangesloten en een spanningsmeter op de uitgang Deze meter bezit een zo grote impedantie dat de uitgang van het filter hierdoor niet wordt belast De signaalgenerator levert een harmonisch met de tijd variërende spanning, waarvan de amplitude constant is Met een instelknop kan de frequentie gevarieerd worden Bij het laagdoorlaatfilter verschijnen de hoge frequenties niet of nauwelijks aan de uitgang In de schakeling is dat logisch als je bedenkt dat een condensator bij hoge frequenties een kortsluiting is Als we de bovenstaande formule toepassen op het laagdoorlaatfilter, vinden we: 1 jωc H = 1 + R jωc Dit kan herschreven worden tot: 1 H = 1 + jωrc We zien dat H wordt uitgedrukt in de vorm van een breuk, waarvan de teller gelijk is aan 1 en waarbij de noemer een imaginair deel bevat dat lineair met de frequentie toeneemt Voor lage frequenties is ωrc klein ten opzichte van 1 en geldt er bij benadering: H = 1 De uitgangsspanning is dan even groot als de ingangsspanning; bovendien zijn beide spanningen in fase met elkaar Voor hoge frequenties is ωrc groot ten opzichte van 1 en geldt er bij benadering: H = 1/(jωRC) De uitgangsspanning is dan (veel) kleiner dan de ingangsspanning en loopt bovendien bij benadering een kwart periode achter op de ingangsspanning (dit kun je zien aan de factor j in de noemer) Als we met de instelknop de frequentie van de signaalgenerator variëren en bij elke frequentie de bijbehorende grootte van de uitgangsspanning meten, kunnen we langs empirische (= proefondervindelijke) weg de modulus van de overdrachtsfunctie bepalen Hiervoor geldt: 1 H = ω R C Bij een hoogdoorlaatfilter verschijnen de lage frequenties niet of nauwelijks aan de uitgang In de schakeling is dat logisch als je bedenkt dat een condensator bij lage frequenties een isolator is en dat de uitgang dan als het ware losgekoppeld is van de ingang Als we de bovenstaande formule toepassen op het hoogdoorlaatfilter, vinden we: Theorie Wisselstromen, Filters, wwwroelhendrikseu 32

34 R H = 1 R + jωc Dit kan herschreven worden tot: jωrc H = 1 + jωrc Merk op dat deze formule dezelfde noemer heeft als de overdracht die hoort bij een laagdoorlaatfilter Bij hoge frequenties (ωrc veel groter dan 1) is de noemer bij benadering gelijk aan jωrc en geldt dus: H = 1 De uitgangsspanning is dan even groot als de ingangsspanning en is er bovendien mee in fase Voor lage frequenties (ωrc veel kleiner dan 1) is de noemer bij benadering gelijk aan 1 en geldt er: H = jωrc De uitgangsspanning is dan (veel) kleiner dan de ingangsspanning en loopt bovendien bij benadering een kwart periode voor op de ingangsspanning (dit volgt uit de factor j in de teller van de uitdrukking voor H) Kantelfrequentie bij laag- en hoogdoorlaatfilters Bij de filters in deze paragraaf geldt: Z1 H = Z1 + Z2 Bij laag- en hoogdoorlaatfilters is er enerzijds een gebied van frequenties die (redelijk) goed worden doorgelaten en anderzijds een gebied van frequenties die min of meer worden gesperd In het doorlaatgebied is de modulus van Z 2 verwaarloosbaar ten opzichte van de modulus van de Z 1 Er geldt dan bij benadering H = 1 Bij het spergebied is de modulus van Z 1 verwaarloosbaar ten opzichte van de modulus van de Z 2 Er geldt dan bij benadering H = Z 1 /Z 2 In het overgangsgebied tussen doorlaten en sperren hebben de moduli van Z 1 en Z 2 dezelfde orde van grootte Bij laag- en hoogdoorlaatfilters wordt vaak over de kantelfrequentie gesproken Deze vormt globaal de scheiding tussen het doorlaatgebied en het spergebied Kenmerkend voor de kantelfrequentie is dat de modulus van Z 1 gelijk is aan de modulus van Z 2 In de hierboven behandelde laag- en hoogdoorlaatfilters is de modulus van R dan gelijk aan de modulus van 1/(jωC) Hieruit volgt: 1 ω = RC Hieruit volgt voor de kantelfrequentie: 1 f = 2πRC Stel bijvoorbeeld dat bij een laagdoorlaatfilter geldt: R = 1 kω en C = 0,1 μf Voor de kantelfrequentie geldt dan: f 1 1 = = = 1,6 khz 3 7 2πRC 2π Theorie Wisselstromen, Filters, wwwroelhendrikseu 33

35 Als we bij de kantelfrequentie de voorwaarde ω = 1/(RC) substitueren in de formule voor de overdracht, vinden we bij het laagdoorlaatfilter respectievelijk hoogdoorlaatfilter de onderstaande uitdrukkingen 1 1 jωrc j H = = en H = = 1+ jωrc 1+ j 1+ jωrc 1+ j We zien dat bij beide filters de modulus van de overdracht dan gelijk is aan 1/ 2 Voor het argument van de overdracht vinden we φ = -45º respectievelijk φ = 45º Theorie Wisselstromen, Filters, wwwroelhendrikseu 34

36 Opgaven bij 6 Opgave 1 In de figuur hiernaast is een filter afgebeeld Aan de ingang wordt een harmonisch variërende wisselspanning aangeboden met een piek-piek-spanning van 3 V a Is de schakeling een laagdoorlaatfilter of een hoogdoorlaatfilter? b Bereken de kantelfrequentie c Geef de uitdrukking van de overdracht als functie van de hoekfrequentie ω waarbij de waarden van R en C zijn ingevuld d Bereken de overdracht bij f = 500 Hz en rond deze af e Bereken de uitgangsspanning (piek-piek) bij f = 500 Hz Ga na of dit in overeenstemming is met je antwoorden bij vraag a en b f Bereken de overdracht bij f = 100 khz en rond deze af g Bereken de uitgangsspanning (piek-piek) bij f = 100 khz Ga na of dit in overeenstemming is met je antwoorden bij vraag a en b Theorie Wisselstromen, Filters, wwwroelhendrikseu 35

37 Opgave 2 In de figuur hiernaast is een filter afgebeeld met weerstand R en spoel L a Beredeneer of het om een laag- of een hoogdoorlaatfilter gaat b Vind de formule voor de overdracht H waarbij deze is uitgedrukt in R en L c Hoe kunnen we deze formule bij hoge frequenties in goede benadering vereenvoudigen? Leg dit resultaat uit door naar het gedrag van een spoel bij hoge frequenties te kijken d Hoe kunnen we deze formule bij lage frequenties in goede benadering vereenvoudigen? e Wat kun je zeggen over het faseverschil tussen de uitgangsspanning en de ingangsspanning bij lage frequenties? f Vind een uitdrukking voor de kantelfrequentie Theorie Wisselstromen, Filters, wwwroelhendrikseu 36

38 Opgave 3 In de figuur hiernaast is een filter afgebeeld waarbij slechts één frequentie onverzwakt wordt doorgelaten a Toon aan dat voor de impedantie van de parallelschakeling van de spoel en de condensator geldt: jωl Z = 2 1 ω LC b Toon aan dat voor de overdracht H van het filter geldt: jωl H = 2 jωl + R ω RLC c Leg aan de hand van de formule voor H (zie vraag b) uit dat er voor slechts één frequentie geldt: H = 1 en dat voor alle andere frequenties de modulus van H kleiner is dan 1 Bij welke frequentie geldt H = 1? Theorie Wisselstromen, Filters, wwwroelhendrikseu 37

39 7 Opgenomen vermogen Vermogen bij een weerstand, een spoel en een condensator In de onderstaande figuren is een ohmse weerstand R op een bron aangesloten die een sinusspanning levert Zie de schakeling links Rechts zijn twee diagrammen afgebeeld In de bovenste diagram zijn de spanning en de stroom tegen de tijd uitgezet Deze twee grootheden zijn in fase met elkaar In het onderste diagram is het door de weerstand opgenomen vermogen tegen de tijd uitgezet Het vermogen varieert tussen nul en een maximum waarde Het vermogen is nooit negatief Als U eff de effectieve spanning is en I eff de effectieve stroom, geldt voor het gemiddeld opgenomen vermogen: P = U I gem eff eff In de onderstaande figuren is een spoel L op de bron aangesloten De figuren zijn analoog aan het bovenstaande geval van een weerstand Het bovenste diagram laat zien dat de spanning een kwart periode (90 graden) voorloopt op de stroom (zoals verwacht!) Uit het onderste diagram blijkt dat het vermogen zowel positief als negatief kan zijn Bij een positief vermogen ontvangt de spoel energie van de bron en bij een negatief vermogen geeft de spoel energie terug aan de bron Gemiddeld genomen is het ontvangen vermogen nul In de onderstaande figuren is een condensator C op de bron aangesloten Nu loopt de spanning een kwart periode (90 graden) achter op de stroom Uit het onderste diagram blijkt dat het gemiddelde vermogen van de condensator nul is, net als bij een spoel Theorie Wisselstromen, Opgenomen vermogen, wwwroelhendrikseu 38

BIOFYSICA: WERKZITTING 08 en 09 (Oplossingen) ELEKTRISCHE KRINGEN

BIOFYSICA: WERKZITTING 08 en 09 (Oplossingen) ELEKTRISCHE KRINGEN 1ste Kandidatuur ARTS of TANDARTS Academiejaar 2002-2003 Oefening 11 (p29) BIOFYSICA: WERKZITTING 08 en 09 (Oplossingen) ELEKTRISCHE KRINGEN Bereken de stromen in de verschillende takken van het netwerk

Nadere informatie

8.1 Rekenen met complexe getallen [1]

8.1 Rekenen met complexe getallen [1] 8.1 Rekenen met complexe getallen [1] Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. 0, 1, 2, 3, 4, 5, 6,... Het symbool voor de natuurlijke getallen is Gehele getallen: Dit zijn

Nadere informatie

Zelf een hoogspanningsgenerator (9 kv gelijkspanning) bouwen

Zelf een hoogspanningsgenerator (9 kv gelijkspanning) bouwen Zelf een hoogspanningsgenerator (9 kv gelijkspanning) bouwen Inhoud De schakeling Een blokspanning van 15 V opwekken De wisselspanning omhoog transformeren Analyse van de maximale stroom door de primaire

Nadere informatie

Impedantie V I V R R Z R

Impedantie V I V R R Z R Impedantie Impedantie (Z) betekent: wisselstroom-weerstand. De eenheid is (met als gelijkstroom-weerstand) Ohm. De weerstand geeft aan hoe goed de stroom wordt tegengehouden. We kennen de formules I R

Nadere informatie

Rekenkunde, eenheden en formules voor HAREC. 10 april 2015 presentator : ON5PDV, Paul

Rekenkunde, eenheden en formules voor HAREC. 10 april 2015 presentator : ON5PDV, Paul Rekenkunde, eenheden en formules voor HAREC 10 april 2015 presentator : ON5PDV, Paul Vooraf : expectation management 1. Verwachtingen van deze presentatie (inhoud, diepgang) U = R= R. I = 8 Ω. 0,5 A =

Nadere informatie

Aanvulling bij de cursus Calculus 1. Complexe getallen

Aanvulling bij de cursus Calculus 1. Complexe getallen Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk

Nadere informatie

9.2 Bepaal de harmonische tijdsfuncties die horen bij deze complexe getallen: U 1 = 3 + 4j V; U 2 = 3e jb/8 V; I 1 =!j + 1 ma; I 2 = 7e!jB/3 ma.

9.2 Bepaal de harmonische tijdsfuncties die horen bij deze complexe getallen: U 1 = 3 + 4j V; U 2 = 3e jb/8 V; I 1 =!j + 1 ma; I 2 = 7e!jB/3 ma. Elektrische Netwerken 21 Opgaven bij hoofdstuk 9 9.1 Geef de complexe weergave van deze tijdsfuncties: u 1 =!3.sin(Tt+0,524) V; u 2 =!3.sin(Tt+B/6) V; u 3 =!3.sin(Tt+30 ) V. (Klopt deze uitdrukking?) 9.2

Nadere informatie

Repetitie Elektronica (versie A)

Repetitie Elektronica (versie A) Naam: Klas: Repetitie Elektronica (versie A) Opgave 1 In de schakeling hiernaast stelt de stippellijn een spanningsbron voor. De spanningsbron wordt belast met weerstand R L. In het diagram naast de schakeling

Nadere informatie

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude 1 De sinus van een hoek Eenheidscirkel In de figuur hiernaast

Nadere informatie

Oefeningen Elektriciteit II Deel II

Oefeningen Elektriciteit II Deel II Oefeningen Elektriciteit II Deel II Dit document bevat opgaven die aansluiten bij de cursustekst Elektriciteit II deel II uit het jaarprogramma van het e bachelorjaar industriële wetenschappen KaHo Sint-ieven.

Nadere informatie

Uitwerking LES 10 N CURSSUS

Uitwerking LES 10 N CURSSUS 1) B De resonantiefrequentie van een afstemkring wordt bepaald door: A) uitsluitend de capaciteit van de condensator B) de capaciteit van de condensator en de zelfinductie van de spoel (zowel van de condensator

Nadere informatie

Practicum complexe stromen

Practicum complexe stromen Practicum complexe stromen Experiment 1a: Een blokspanning over een condensator en een spoel De opstelling is al voor je klaargezet. Controleer of de frequentie ongeveer op 500 Hz staat. De vorm van het

Nadere informatie

Leereenheid 3. Diagnostische toets: Enkelvoudige wisselstroomkringen

Leereenheid 3. Diagnostische toets: Enkelvoudige wisselstroomkringen Leereenheid 3 Diagnostische toets: Enkelvoudige wisselstroomkringen Let op! Bij meerkeuzevragen: Duid met een kringetje rond de letter het juiste antwoord of de juiste antwoorden aan. Vragen gemerkt met:

Nadere informatie

Opgave 2 Een spanningsbron wordt belast als er een apparaat op is aangesloten dat (in meer of mindere mate) stroom doorlaat.

Opgave 2 Een spanningsbron wordt belast als er een apparaat op is aangesloten dat (in meer of mindere mate) stroom doorlaat. Uitwerkingen 1 A Een spanningsbron wordt belast als er een apparaat op is aangesloten dat (in meer of mindere mate) stroom doorlaat. Een ideale spanningsbron levert bij elke stroomsterkte dezelfde spanning.

Nadere informatie

Inleiding tot de wisselstroomtheorie

Inleiding tot de wisselstroomtheorie Hoofdstuk 6 Inleiding tot de wisselstroomtheorie Doelstellingen 1. Kenmerkende grootheden gebruikt in wisselstroomtheorie kennen 2. Weten hoe de passieve componenten R,L en C zich gedragen in AC-regime

Nadere informatie

Condensator. Het hellingsgetal a is constant. Dit hellingsgetal noemen we de capaciteit van de condensator C. Er geldt dus: C = Q U

Condensator. Het hellingsgetal a is constant. Dit hellingsgetal noemen we de capaciteit van de condensator C. Er geldt dus: C = Q U Inhoud Condensator... 2 Het laden van een condensator... 3 Het ontladen van een condensator... 5 Opgaven... 6 Opgave: Alarminstallatie... 6 Opgave: Gelijkrichtschakeling... 6 Opgave: Boormachine... 7 1/7

Nadere informatie

Antwoorden bij Deel 1 (hfdst. 1-8)

Antwoorden bij Deel 1 (hfdst. 1-8) Elektrische netwerken Oefenopgaven: open vragen Hints en Antwoorden Antwoorden bij Deel 1 (hfdst. 1-8) Hoofdstuk 1 1.1 15 S 1.2 4,5 A 1.3 2 A, 4 A, 6 A 1.4 5 ma,!2,5 ma 1.5 B: in strijd met de stroomwet;!1

Nadere informatie

Dit tentamen bestaat uit vier opgaven verdeeld over drie bladzijden. U heeft drie uur de tijd.

Dit tentamen bestaat uit vier opgaven verdeeld over drie bladzijden. U heeft drie uur de tijd. Tentamen Signaal Verwerking en Ruis Dinsdag 10 13 uur, 15 december 2009 Dit tentamen bestaat uit vier opgaven verdeeld over drie bladzijden. U heeft drie uur de tijd. 1. Staprespons van een filter [elk

Nadere informatie

Lineaire algebra 1 najaar Complexe getallen

Lineaire algebra 1 najaar Complexe getallen Lineaire algebra 1 najaar 2008 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 + 1 steeds

Nadere informatie

Wisselstromen anders bekeken

Wisselstromen anders bekeken Wisselstromen anders bekeken In de tekst die volgt, maak je kennis met weerstanden, condensatoren en spoelen. Sommige zaken behandelde je misschien in de lessen fysica, andere nog niet. We geven daarom

Nadere informatie

Toets 1 IEEE, Modules 1 en 2, Versie 1

Toets 1 IEEE, Modules 1 en 2, Versie 1 Toets 1 IEEE, Modules 1 en 2, Versie 1 Datum: 16 september 2009 Tijd: 10:45 12:45 (120 minuten) Het gebruik van een rekenmachine is niet toegestaan. Deze toets telt 8 opgaven en een bonusopgave Werk systematisch

Nadere informatie

PRACTICUM TRILLINGSKRINGEN onderdeel van het vak Trillingen en Golven

PRACTICUM TRILLINGSKRINGEN onderdeel van het vak Trillingen en Golven PRACTICUM TRILLINGSKRINGEN onderdeel van het vak Trillingen en Golven Inleiding In dit practicum worden experimenten gedaan aan elektrische trillingskringen, bestaande uit weerstanden, condensatoren en

Nadere informatie

Signalen stroom, spanning, weerstand, vermogen AC, DC, effectieve waarde

Signalen stroom, spanning, weerstand, vermogen AC, DC, effectieve waarde Technologie 1 Elektrische en elektronische begrippen Signalen stroom, spanning, weerstand, vermogen AC, DC, effectieve waarde Opleiding Pop en Media Peet Ferwerda, januari 2002 Deze instructie wordt tijdens

Nadere informatie

Naam: Klas Practicum elektriciteit: I-U-diagram van lampje Nodig: spanningsbron, schuifweerstand (30 Ω), gloeilampje, V- en A-meter, 6 snoeren

Naam: Klas Practicum elektriciteit: I-U-diagram van lampje Nodig: spanningsbron, schuifweerstand (30 Ω), gloeilampje, V- en A-meter, 6 snoeren Naam: Klas Practicum elektriciteit: I-U-diagram van lampje Nodig: spanningsbron, schuifweerstand (30 Ω), gloeilampje, V- en A-meter, 6 snoeren Schakeling In de hiernaast afgebeelde schakeling kan de spanning

Nadere informatie

1. Opwekken van een sinusoïdale wisselspanning.

1. Opwekken van een sinusoïdale wisselspanning. 1. Opwekken van een sinusoïdale wisselspanning. Bij de industriële opwekking van de elektriciteit maakt men steeds gebruik van een draaiende beweging. Veronderstel dat een spoel met rechthoekige doorsnede

Nadere informatie

Tentamen Inleiding Meten Vakcode 8E020 22 april 2009, 9.00-12.00 uur

Tentamen Inleiding Meten Vakcode 8E020 22 april 2009, 9.00-12.00 uur Tentamen Inleiding Meten Vakcode 8E april 9, 9. -. uur Dit tentamen bestaat uit opgaven. Indien u een opgave niet kunt maken, geeft u dan aan hoe u de opgave zou maken. Dat kan een deel van de punten opleveren.

Nadere informatie

Les 1 Kwadraat afsplitsen en Verzamelingen

Les 1 Kwadraat afsplitsen en Verzamelingen Vwo 5 / Havo 4 Wis D Hoofdstuk 8 : Complexe getallen Pagina van Les Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen N = Natuurlijke getallen =,2,,.. Z

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i COMPLEXE GETALLEN Invoering van de complexe getallen Definitie Optellen en vermenigvuldigen Delen De complexe getallen zijn al behoorlijk oud; in de zestiende eeuw doken ze op bij het oplossen van algebraïsche

Nadere informatie

LABORATORIUM ELEKTRICITEIT

LABORATORIUM ELEKTRICITEIT LABORATORIUM ELEKTRICITEIT 1 Proef RL in serie... 1.1 Uitvoering:... 1.2 Opdrachten... 2 Proef RC in serie... 7 2.1 Meetschema... 7 2.2 Uitvoering:... 7 2.3 Opdrachten... 7 3 Proef RC in parallel... 11

Nadere informatie

Parallelschakeling - 2

Parallelschakeling - 2 Parallelschakeling - 2 In de vorige les over de parallelschakeling hebben we gezien dat de spanning in de parallelschakeling overal gelijk is. Verder hebben we deelstromen berekend en opgeteld tot de totale

Nadere informatie

3.4.3 Plaatsing van de meters in een stroomkring

3.4.3 Plaatsing van de meters in een stroomkring 1 De stroom- of ampèremeter De ampèremeter is een meetinstrument om elektrische stroom te meten. De sterkte van een elektrische stroom wordt uitgedrukt in ampère, vandaar de naam ampèremeter. Voorstelling

Nadere informatie

Wisselspanningen. Maximale en effectieve waarde. We gaan de wisselspanning aansluiten op een weerstand. U R. In deze situatie geldt de wet van Ohm:

Wisselspanningen. Maximale en effectieve waarde. We gaan de wisselspanning aansluiten op een weerstand. U R. In deze situatie geldt de wet van Ohm: Wisselen Maximale en effectieve waarde We gaan de wissel aansluiten op een weerstand. I I G In deze situatie geldt de wet van Ohm: I = We zien een mooie sinusvormige wissel. De hoogste waarde word ook

Nadere informatie

Inhoudsopgave. - 2 - De condensator

Inhoudsopgave.  - 2 - De condensator Inhoudsopgave Inhoudsopgave...2 Inleiding...3 Capaciteit...3 Complexe impedantie...4 De condensator in serie of parallel schakeling...4 Parallelschakeling...4 Serieschakeling...4 Aflezen van de capaciteit...5

Nadere informatie

Elektronica. Voorvoegsels van eenheden. Schakeling van een simpele audioversterker met een opamp

Elektronica. Voorvoegsels van eenheden. Schakeling van een simpele audioversterker met een opamp Elektronica 1 Spanningsbronnen 2 Weerstanden en diodes in de elektronica 3 Spanningsdeler, potentiaal, opamp 4 Stroomsterkte en lading; condensator 5 Het op- en ontladen van een condensator 6 De 555 timer

Nadere informatie

Fiche 7 (Analyse): Begrippen over elektriciteit

Fiche 7 (Analyse): Begrippen over elektriciteit Fiche 7 (Analyse): Begrippen over elektriciteit 1. Gelijkstroomkringen (DC) De verschillende elektrische grootheden bij gelijkstroom zijn: Elektrische spanning (volt) definitie: verschillend potentiaal

Nadere informatie

m C Trillingen Harmonische trilling Wiskundig intermezzo

m C Trillingen Harmonische trilling Wiskundig intermezzo rillingen http://nl.wikipedia.org/wiki/bestand:simple_harmonic_oscillator.gif http://upload.wikimedia.org/wikipedia/commons/7/74/simple_harmonic_motion_animation.gif Samenvatting bladzijde 110: rilling

Nadere informatie

Bepaal van de hieronder weergegeven spanningen en stromen: de periodetijd en de frequentie, de gemiddelde waarde en de effectieve waarde.

Bepaal van de hieronder weergegeven spanningen en stromen: de periodetijd en de frequentie, de gemiddelde waarde en de effectieve waarde. Elektrische Netwerken 13 Opgaven bij hoofdstuk 5 Bepaal van de hieronder weergegeven spanningen en stromen: de periodetijd en de frequentie, de gemiddelde waarde en de effectieve waarde. 5.1 5.2 5.3 5.4

Nadere informatie

Tentamen Inleiding Meten en Modelleren Vakcode 8C120 7 april 2010, uur. Het gebruik van een (grafische) rekenmachine is toegestaan.

Tentamen Inleiding Meten en Modelleren Vakcode 8C120 7 april 2010, uur. Het gebruik van een (grafische) rekenmachine is toegestaan. Tentamen Inleiding Meten en Modelleren Vakcode 8C1 7 april 1, 9. - 1. uur Dit tentamen bestaat uit 4 opgaven. Indien u een opgave niet kunt maken, geeft u dan aan hoe u de opgave zou maken. Dat kan een

Nadere informatie

HOOFDSTUK 3: Netwerkanalyse

HOOFDSTUK 3: Netwerkanalyse HOOFDSTUK 3: Netwerkanalyse 1. Netwerkanalyse situering analyseren van het netwerk = achterhalen van werking, gegeven de opbouw 2 methoden manuele methode = reductie tot Thévenin- of Norton-circuit zeer

Nadere informatie

Leereenheid 7. Diagnostische toets: Vermogen en arbeidsfactor van een sinusvormige wisselstroom

Leereenheid 7. Diagnostische toets: Vermogen en arbeidsfactor van een sinusvormige wisselstroom Leereenheid 7 Diagnostische toets: Vermogen en arbeidsfactor van een sinusvormige wisselstroom Let op! Bij meerkeuzevragen: Duid met een kringetje rond de letter het juiste antwoord of de juiste antwoorden

Nadere informatie

Hoofdstuk 5: Signaalverwerking

Hoofdstuk 5: Signaalverwerking Hoofdstuk 5: Signaalverwerking Natuurkunde VWO 2011/2012 www.lyceo.nl Hoofdstuk 5: Signaalverwerking Natuurkunde 1. Mechanica 2. Golven en straling 3. Elektriciteit en magnetisme 4. Warmteleer Rechtlijnige

Nadere informatie

Deel 1: Metingen Bouw achtereenvolgens de onderstaande schakelingen en meet de klemspanning en de stroomsterkte. VOORKOM STEEDS KORTSLUITING!!

Deel 1: Metingen Bouw achtereenvolgens de onderstaande schakelingen en meet de klemspanning en de stroomsterkte. VOORKOM STEEDS KORTSLUITING!! Practicum elektronica: Spanningsbron Benodigdheden: Niet-gestabiliseerde voeding of batterij, 2 multimeters, 5 weerstanden van 56 Ω (5 W), 5 snoeren, krokodillenklemmen. Deel : Metingen Bouw achtereenvolgens

Nadere informatie

Academiejaar Eerste Examenperiode Opleidingsonderdeel: Elektrische Schakelingen en Netwerken. EXAMENFOLDER maandag 27 januari 2014

Academiejaar Eerste Examenperiode Opleidingsonderdeel: Elektrische Schakelingen en Netwerken. EXAMENFOLDER maandag 27 januari 2014 Universiteit Gent naam: Faculteit Ingenieurswetenschappen en Architectuur voornaam: de Bachelor Ingenieurswetenschappen richting: Opties C,, TN en W prof. Kristiaan Neyts Academiejaar 03-04 erste xamenperiode

Nadere informatie

Practicum Zuil van Volta

Practicum Zuil van Volta Practicum Zuil van Volta Benodigdheden Grondplaat, aluminiumfolie, stuivers (munten van vijf eurocent), filtreerpapier, zoutoplossing, voltmeter, verbindingssnoeren, schaar Voorbereidende werkzaamheden

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Bijlage 2: Eerste orde systemen

Bijlage 2: Eerste orde systemen Bijlage 2: Eerste orde systemen 1: Een RC-kring 1.1: Het frequentiegedrag Een eerste orde systeem kan bijvoorbeeld opgebouwd zijn uit de serieschakeling van een weerstand R en een condensator C. Veronderstel

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Gelijke oppervlakten De parabool met vergelijking y = 4x x2 en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong O en in punt. Zie. y 4 3 2 1-1 O 1 2 3

Nadere informatie

Elektrische stroomnetwerken

Elektrische stroomnetwerken ntroductieweek Faculteit Bewegings- en evalidatiewetenschappen 25 29 Augustus 2014 Elektrische stroomnetwerken Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be Assistent: Erik

Nadere informatie

Uitwerking LES 5 N CURSSUS

Uitwerking LES 5 N CURSSUS 1) C De letter C wordt in de elektronica gebruikt voor een: A) spoel (symbool L, eenheid Henry) B) weerstand (symbool R, eenheid Ohm Ω) C) condensator (symbool C, eenheid Farad, 2 geleiders gescheiden

Nadere informatie

Naam: Klas: Repetitie elektriciteit klas 2 1 t/m 6 HAVO (versie A)

Naam: Klas: Repetitie elektriciteit klas 2 1 t/m 6 HAVO (versie A) Naam: Klas: Repetitie elektriciteit klas 2 1 t/m 6 HAVO (versie A) OPGAVE 1 Welke spanning leveren de combinaties van 1,5 volt-batterijen? Eerste combinatie: Tweede combinatie: OPGAVE 2 Stel dat alle lampjes

Nadere informatie

Van Dijk Educatie Parallelschakeling 2063NGQ0571. Kenteq Leermiddelen. copyright Kenteq

Van Dijk Educatie Parallelschakeling 2063NGQ0571. Kenteq Leermiddelen. copyright Kenteq Parallelschakeling 2063NGQ0571 Kenteq Leermiddelen copyright Kenteq Inhoudsopgave 1 Parallelschakeling 5 1.1 Inleiding 5 1.2 Doelen 5 1.3 Parallelschakeling 6 1.4 Shuntweerstand 21 1.5 Samenvatting 24

Nadere informatie

AT-142 EPD Basis 1. Zelfstudie en huiswerk 10-08

AT-142 EPD Basis 1. Zelfstudie en huiswerk 10-08 AT-142 EPD Basis 1 Zelfstudie en huiswerk 10-08 2 Inhoud INTRODUCTIE 3 DOELSTELLINGEN 4 ELEKTRISCH METEN 5 SPANNING METEN 6 STROOM METEN 7 WEERSTAND METEN 9 BASISSCHAKELINGEN 10 ELEKTRISCH VERMOGEN 11

Nadere informatie

Tentamen Analoge- en Elektrotechniek

Tentamen Analoge- en Elektrotechniek Verantwoordelijke docent: R. Hoogendoorn, H.J. Wimmenhoven Cursus Analoge- en Elektrotechniek Code MAMAET01 Cursusjaar: 2014 Datum: 2-6-2014 Tijdsduur: 90 min. Modulehouder: R. Hoogendoorn Aantal bladen:

Nadere informatie

5.12 Afgerond op twee decimalen, is de effectieve waarde van deze spanning: a: U eff = 4,18 V b: U eff = 5,00 V c: U eff = 5,70 V d: U eff = 5,98 V

5.12 Afgerond op twee decimalen, is de effectieve waarde van deze spanning: a: U eff = 4,18 V b: U eff = 5,00 V c: U eff = 5,70 V d: U eff = 5,98 V Elektrische Netwerken 17 Opgaven bij hoofdstuk 5 De volgende twee vragen hebben beide betrekking op de hiernaast weergegeven periodieke wisselspanning. 5.12 Afgerond op twee decimalen, is de effectieve

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

Opgaven bij hoofdstuk 12

Opgaven bij hoofdstuk 12 32 Meerkeuze-opgaven Opgaven bij hoofdstuk 12 12.6 Van een lineaire tweepoort is poort 1 als ingang en poort 2 als uitgang op te vatten. Bij de Z-parametervoorstelling van deze tweepoort geldt dan: a:

Nadere informatie

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel)

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel) 1 Inleiding Wortels met getallen en letters WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht

Nadere informatie

Naam: Klas: Repetitie natuurkunde voor havo (versie A) Getoetste stof: elektriciteit 1 t/m 5

Naam: Klas: Repetitie natuurkunde voor havo (versie A) Getoetste stof: elektriciteit 1 t/m 5 Naam: Klas: Repetitie natuurkunde voor havo (versie A) Getoetste stof: elektriciteit 1 t/m 5 OPGAVE 1 Teken hieronder het bijbehorende schakelschema. Geef ook de richting van de elektrische stroom aan.

Nadere informatie

Een elektrische schakeling is tot op zekere hoogte te vergelijken met een verwarmingsinstallatie.

Een elektrische schakeling is tot op zekere hoogte te vergelijken met een verwarmingsinstallatie. Inhoud Basisgrootheden... 2 Verwarmingsinstallatie... 3 Elektrische schakelingen... 4 Definities van basisgrootheden... 6 Fysische achtergrond bij deze grootheden... 6 Opgave: Geladen bollen... 7 De wet

Nadere informatie

Hfd 3 Stroomkringen. Isolator heeft geen vrije elektronen. Molecuul. Geleider heeft wel vrije elektronen. Molecuul.

Hfd 3 Stroomkringen. Isolator heeft geen vrije elektronen. Molecuul. Geleider heeft wel vrije elektronen. Molecuul. Hfd 3 Stroomkringen Enkele begrippen: Richting van de stroom: Stroom loopt van de plus naar de min pool Richting van de elektronen: De elektronen stromen van de min naar de plus. Geleiders en isolatoren

Nadere informatie

15.1 Oppervlakten en afstanden bij grafieken [1]

15.1 Oppervlakten en afstanden bij grafieken [1] 15.1 Oppervlakten en afstanden bij grafieken [1] Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte

Nadere informatie

Theorie elektriciteit - sem 2

Theorie elektriciteit - sem 2 Theorie elektriciteit - sem 2 Michael De Nil 11 februari 2004 Inhoudsopgave 1 Basisbegrippen 2 1.1 Wisselspanning/stroom gelijkspanning/stroom......... 2 1.2 Gemiddelde waarde effectieve waarde..............

Nadere informatie

NATIONALE NATUURKUNDE OLYMPIADE. Eindronde theorietoets. 13 juni 2006. beschikbare tijd: 2x2 uur. Deel 1

NATIONALE NATUURKUNDE OLYMPIADE. Eindronde theorietoets. 13 juni 2006. beschikbare tijd: 2x2 uur. Deel 1 NATIONALE NATUURKUNDE OLYMPIADE Eindronde theorietoets 3 juni 006 beschikbare tijd: x uur Deel . Een gat in een emmer (3 pt) Een hoge cilinder is gevuld met water. In de zijwand is een gaatje gemaakt waardoor

Nadere informatie

Trillingen & Golven. Practicum 1 Resonantie. Door: Sam van Leuven 5756561 Jiri Oen 5814685 Februari 2008-02-24

Trillingen & Golven. Practicum 1 Resonantie. Door: Sam van Leuven 5756561 Jiri Oen 5814685 Februari 2008-02-24 Trillingen & Golven Practicum 1 Resonantie Door: Sam van Leuven 5756561 Jiri Oen 5814685 Februari 2008-02-24 In dit verslag wordt gesproken over resonantie van een gedwongen trilling binnen een LRC-kring

Nadere informatie

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran Aanvulling aansluitingscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de Aansluitingscursus staan. Die onderwerpen zijn: complexe getallen en volledige

Nadere informatie

Opgaven bij hoofdstuk 9

Opgaven bij hoofdstuk 9 24 Meerkeuze-opgaven Opgaven bij hoofdstuk 9 9.14 Gegeven de complexe spanning: û = +12 + 5j [V]. Deze komt overeen met een wisselspanning: a: u(t) =!13.cos(Tt! 0,39) [V] b: u(t) = +13.cos(Tt! 0,39) [V]

Nadere informatie

I A (papier in) 10cm 10 cm X

I A (papier in) 10cm 10 cm X Tentamen: Fysica en Medische Fysica 2 Tijd: 15:15-18:00 uur, donderdag 28 mei 2009 Plaats: TenT blok 4 (met bijlage van formules, handrekenmachine is toegestaan) Docent: Dr. K.S.E. Eikema Puntentelling:

Nadere informatie

9 PARALLELSCHAKELING VAN WEERSTANDEN

9 PARALLELSCHAKELING VAN WEERSTANDEN 9 PARALLELSCHAKELING VAN WEERSTANDEN Een parallelschakeling komt in de praktijk vaker voor dan een serieschakeling van verbruikers. Denken we maar aan alle elektrische apparaten die aangesloten zijn op

Nadere informatie

Pajottenlandse Radio Amateurs. De multimeter

Pajottenlandse Radio Amateurs. De multimeter Pajottenlandse Radio Amateurs De multimeter ON3BL 05/03/2013 Wat is een multimeter of universeelmeter? Elektronisch meetinstrument waar we de grootheden van de wet van ohm kunnen mee meten Spanning (Volt)

Nadere informatie

Een elektrische schakeling is tot op zekere hoogte te vergelijken met een verwarmingsinstallatie.

Een elektrische schakeling is tot op zekere hoogte te vergelijken met een verwarmingsinstallatie. Inhoud Basisgrootheden... 2 Verwarmingsinstallatie... 3 Elektrische schakelingen... 4 Definities van basisgrootheden... 6 Fysische achtergrond bij deze grootheden... 6 Opgave: Geladen bollen... 7 De wet

Nadere informatie

FORMULE BLAD - VERON ZENDCURSUS

FORMULE BLAD - VERON ZENDCURSUS FORMULE BLAD - VERON ZENDCURSUS Wet van Ohm U = I R (1) U = spanning in V, I is stroom in A en r is weerstand in Ohm Eerste wet van Kirchhoff Som van alle stromen in een knooppunt is nul. Tweede wet van

Nadere informatie

Hierin is λ de golflengte in m, v de golfsnelheid in m/s en T de trillingstijd in s.

Hierin is λ de golflengte in m, v de golfsnelheid in m/s en T de trillingstijd in s. Inhoud... 2 Opgave: Golf in koord... 3 Interferentie... 4 Antigeluid... 5 Staande golven... 5 Snaarinstrumenten... 6 Blaasinstrumenten... 7 Opgaven... 8 Opgave: Gitaar... 8 Opgave: Kerkorgel... 9 1/10

Nadere informatie

NETWERKEN EN DE WETTEN VAN KIRCHHOFF

NETWERKEN EN DE WETTEN VAN KIRCHHOFF NETWERKEN EN DE WETTEN VN KIRCHHOFF 1. Doelstelling van de proef Het doel van deze proef is het bepalen van de klemspanning van een spanningsbron, de waarden van de beveiligingsweerstanden en de inwendige

Nadere informatie

R Verklaar alle antwoorden zo goed mogelijk

R Verklaar alle antwoorden zo goed mogelijk PROEFWERK TECHNOLOGIE VWO MODULE 6 ELECTRICITEIT VRIJDAG 19 maart 2010 R Verklaar alle antwoorden zo goed mogelijk 2P 2P 2P Opgave 1 Tup en Joep willen allebei in bed lezen. Ze hebben allebei een fietslampje.

Nadere informatie

1.3 Rekenen met pijlen

1.3 Rekenen met pijlen 14 Getallen 1.3 Rekenen met pijlen 1.3.1 Het optellen van pijlen Jeweetnuwatdegetallenlijnisendat0nochpositiefnochnegatiefis. Wezullen nu een soort rekenen met pijlen gaan invoeren. We spreken af dat bij

Nadere informatie

Elektriciteit (deel 1)

Elektriciteit (deel 1) Elektriciteit (deel 1) 1 Spanningsbronnen 2 Batterijen in serie en parallel 3 Stroomkring 4 Spanning, stroomsterkte, watercircuit 5 Lampjes in serie en parallel 6 Elektriciteit thuis 7 Vermogen van elektrische

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

A-examen radioamateur : Zitting van 11 oktober Reglementering

A-examen radioamateur : Zitting van 11 oktober Reglementering A-examen radioamateur : Zitting van 11 oktober 2000 Reglementering 1. Het woord EXAMEN wordt volgens het internationaal spellingsalfabet gespeld als : a. Echo X-ray Alpha Mike Echo November b. Eric X-files

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Opgaven bij hoofdstuk 20

Opgaven bij hoofdstuk 20 Elektrische Netwerken 67 Opgaven bij hoofdstuk 20 20.9 Wij willen nevenstaand weerstandsnetwerk vereenvoudigen, tussen de klemmen A en B. Voor de vervangingsweerstand R x geldt: a R x $ 19 [ks] b: 19 >

Nadere informatie

Gestabiliseerde netvoeding

Gestabiliseerde netvoeding Gestabiliseerde netvoeding Een gestabiliseerde voeding zet de netspanning van 23 volt wisselspanning om in een stabiele gelijkspanning. Dit gebeurt door middel van een handvol relatief eenvoudige elementen

Nadere informatie

Steven Werbrouck 04-02-2000 Practicum 2: Schakelen van weerstanden

Steven Werbrouck 04-02-2000 Practicum 2: Schakelen van weerstanden Practicum 2: Schakelen van weerstanden 1. Situering Het komt vaak voor dat een bepaalde stroomkring meer dan één weerstand bevat. Men zegt dan dat de weerstanden op een bepaalde manier geschakeld werden.

Nadere informatie

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag Practicum algemeen 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag 1 Diagrammen maken Onafhankelijke grootheid en afhankelijke grootheid In veel experimenten wordt

Nadere informatie

1 VRIJE TRILLINGEN 1.0 INLEIDING 1.1 HARMONISCHE OSCILLATOREN. 1.1.1 het massa-veersysteem. Hoofdstuk 1 - Vrije trillingen

1 VRIJE TRILLINGEN 1.0 INLEIDING 1.1 HARMONISCHE OSCILLATOREN. 1.1.1 het massa-veersysteem. Hoofdstuk 1 - Vrije trillingen 1 VRIJE TRILLINGEN 1.0 INLEIDING Veel fysische systemen, van groot tot klein, mechanisch en elektrisch, kunnen trillingen uitvoeren. Daarom is in de natuurkunde het bestuderen van trillingen van groot

Nadere informatie

Poolcoördinaten (kort)

Poolcoördinaten (kort) Poolcoördinaten (kort) WISNET-HBO update juli 2013 Carthesiaanse coördinaten In het algemeen gebruiken we voor de plaatsbepaling in het platte vlak de gewone (Carthesiaanse) coördinaten voor, in een rechthoekig

Nadere informatie

UITWERKINGEN Examentraining (KeCo) SET-B HAVO5-Na

UITWERKINGEN Examentraining (KeCo) SET-B HAVO5-Na UITWERKINGEN KeCo-Examentraining SET-C HAVO5-Na UITWERKINGEN Examentraining (KeCo) SET-B HAVO5-Na EX.O... Lichtstraal A verplaatst zich van lucht naar water, dus naar een optisch dichtere stof toe. Er

Nadere informatie

Opgave 1 Er zijn twee soorten lading namelijk positieve en negatieve lading.

Opgave 1 Er zijn twee soorten lading namelijk positieve en negatieve lading. itwerkingen Opgave Er zijn twee soorten lading namelijk positieve en negatieve lading. Opgave 2 Een geleider kan de elektrische stroom goed geleiden. Metalen, zout water, grafiet. c. Een isolator kan de

Nadere informatie

Inhoudsopgave Schakelen van luidsprekers

Inhoudsopgave Schakelen van luidsprekers Inhoudsopgave Inhoudsopgave...2 Inleiding...3 Vermogen...3 Impedantie...3 Serieschakeling van luidsprekers...4...4...4...4 Voorbeeld...4 Parallelschakeling van luidsprekers...4...4...4...4 Voorbeeld...5

Nadere informatie

Harmonische stromen en resonantie..zx ronde 30 augustus 2015

Harmonische stromen en resonantie..zx ronde 30 augustus 2015 Harmonische stromen en resonantie..zx ronde 30 augustus 2015 Ons elektriciteitsnet wordt bedreven met wisselspanning en wisselstroom. Als bij een lineaire belasting een sinusvormige wisselspanning aangeboden

Nadere informatie

LABO. Elektriciteit OPGAVE: Reactief vermogen in een driegeleidernet. Sub Totaal :.../80 Totaal :.../20

LABO. Elektriciteit OPGAVE: Reactief vermogen in een driegeleidernet. Sub Totaal :.../80 Totaal :.../20 LABO Elektriciteit OPGAVE: Reactief vermogen in een driegeleidernet Datum van opgave: / / Datum van afgifte: / / Verslag nr. : 9 Leerling: Assistenten: Klas: 3.1 EIT School: KTA Ieper Evaluatie :.../10

Nadere informatie

Leereenheid 1. Diagnostische toets: Soorten spanningen. Let op!

Leereenheid 1. Diagnostische toets: Soorten spanningen. Let op! Leereenheid 1 Diagnostische toets: Soorten spanningen Let op! Bij meerkeuzevragen: Duid met een kringetje rond de letter het juiste antwoord of de juiste antwoorden aan Vragen gemerkt met: J O Sommige

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Harmonischen: remedies

Harmonischen: remedies Harmonischen: remedies Harmonischen: remedies - De verbruiker - 12 en 24 pulsige gelijkrichters - Active Front End - Passieve filters - Actieve filters - Hybride filters - Het elektrisch net De verbruiker

Nadere informatie

Elektronica. Voorvoegsels van eenheden. Schakeling van een simpele audioversterker met een opamp

Elektronica. Voorvoegsels van eenheden. Schakeling van een simpele audioversterker met een opamp Elektronica 1 Spanningsbronnen 2 Weerstanden en diodes 3 IC, opamp, spanningsdeler 4 Stroomsterkte en lading; condensator 5 Een condensator op- en ontladen 6 De 555 timer 7 Het frequentieafhankelijke gedrag

Nadere informatie

Meten aan RC-netwerken

Meten aan RC-netwerken Meten aan R-netwerken Doel van deze proef: Het leren begrijpen en gebruiken van een digitale oscilloscoop Meten aan een laagdoorlaatfilter 1.1. Verslag Schrijf een verslag, inclusief tabellen en grafieken,

Nadere informatie

12 Elektrische schakelingen

12 Elektrische schakelingen Elektrische schakelingen Onderwerpen: - Stroomsterkte en spanning bij parallel- en serieschakeling - Verangingsweerstand bij parallelschakeling. - Verangingsweerstand bij serieschakeling.. Stroom en spanning

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Elektrodynamica. 25 juli 2015 dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Elektrodynamica. 25 juli 2015 dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fysica: Elektrodynamica 25 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

LABO. Elektriciteit OPGAVE: De cos phi -meter Meten van vermogen in éénfase kringen. Totaal :.../20. .../.../ Datum van afgifte:

LABO. Elektriciteit OPGAVE: De cos phi -meter Meten van vermogen in éénfase kringen. Totaal :.../20. .../.../ Datum van afgifte: LABO Elektriciteit OPGAVE: De cos phi -meter Meten van vermogen in éénfase kringen Datum van opgave:.../.../ Datum van afgifte: Verslag nr. : 7 Leerling: Assistenten: Klas: 3.1 EIT.../.../ Evaluatie :.../10

Nadere informatie