Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:



Vergelijkbare documenten
3.2 Kritieke punten van functies van meerdere variabelen

WI1708TH Analyse 3. College 2 12 februari Challenge the future

III.2 De ordening op R en ongelijkheden

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

Extrema van functies van meerdere variabelen

Verbanden en functies

TENTAMEN ANALYSE 1. dinsdag 3 april 2007,

Minima en maxima van functies

De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1)

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2

x a k of.x 1 a 1 / 2 + ::+.x n a n / 2 k 2 bol om a, straal k

Lineaire dv van orde 2 met constante coefficienten

Tussentoets Analyse 1

Examenvragen Hogere Wiskunde I

Hints en uitwerkingen huiswerk 2013 Analyse 1 H18

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

Rekenen met cijfers en letters

(10 pnt) Bepaal alle punten waar deze functie een relatief extreem of een zadelpunt heeft. Opgave 3. Zij D het gebied gegeven door

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

TECHNISCHE UNIVERSITEIT EINDHOVEN

V.4 Eigenschappen van continue functies

4051CALC1Y Calculus 1

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

2.1 Lineaire functies [1]

(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.

WI1708TH Analyse 3. College 5 23 februari Challenge the future

(x x 1 ) + y 1. x x 1 x k x x x k 1

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

Uitwerkingen tentamen Wiskunde B 16 januari 2015

1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1.

De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a.

1 Eigenwaarden en eigenvectoren

More points, lines, and planes

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

Beoordelingscriteria tentamen G&O, 5 juli 2006

Meetkundige ongelijkheden Groep A

Inhoud college 5 Basiswiskunde Taylorpolynomen

Uitwerkingen Rekenen met cijfers en letters

Opgaven bij de cursus Relativiteitstheorie wiskunde voorkennis Najaar 2018 Docent: Dr. H. (Harm) van der Lek

8. Differentiaal- en integraalrekening

ax + 2 dx con- vergent? n ln(n) ln(ln(n)), n=3 (d) y(x) = e 1 2 x2 e 1 2 t2 +t dt + 2

1. Vectoren in R n. y-as

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Opgaven Functies en Reeksen. E.P. van den Ban


EERSTE DEELTENTAMEN ANALYSE C

Wiskunde Vraag 1. Vraag 2. Vraag 3. Vraag 4 21/12/2008

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

Wiskunde voor relativiteitstheorie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

Uit een handschrift gedateerd 26 Oktober 1675

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

Basisvaardigheden algebra. Willem van Ravenstein Den Haag

Functies van één veranderlijke

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Lineaire afbeeldingen

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken Gelijksoortige termen samennemen Rekenen met machten Rekenen met wortels 4

Differentiaalrekening. Elementaire techniek van het differentieren.

Uitwerkingen bij 1_0 Voorkennis: Machten en differentiëren

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

college 2: partiële integratie

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013

Rekenen met letters deel 2

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

III.3 Supremum en infimum

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: functieverloop. 22 juli dr. Brenda Casteleyn

Mathematical Modelling

Uitwerkingen Mei Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Algebra groep 2 & 3: Standaardtechnieken kwadratische functies

Korte handleiding Maple bij de cursus Meetkunde voor B

Wiskunde voor relativiteitstheorie

Oplossen van lineaire differentiaalvergelijkingen met behulp van de methode van Leibniz-MacLaurin

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal?

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Antwoordenboekje. Willem van Ravenstein

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

1. (a) Gegeven z = 2 2i, w = 1 i 3. Bereken z w. (b) Bepaal alle complexe getallen z die voldoen aan z 3 8i = 0.

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van uur.

Convexe Analyse en Optimalisering

Vectoranalyse voor TG

13.0 Voorkennis. Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen.

Ter Leering ende Vermaeck

Examen G0O17E Wiskunde II (3sp) maandag 10 juni 2013, 8:30-11:30 uur. Bachelor Geografie en Bachelor Informatica

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie

Uitwerkingen toets 9 juni 2012

Afdeling Kwantitatieve Economie

Topologie in R n 10.1

1 WAAM - Differentiaalvergelijkingen

1.1 Lineaire vergelijkingen [1]

Transcriptie:

Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van Taylor Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: f(x) = f(0) + x f (0) + 1! x f (0) + 1 3! x3 f (0) +... Met de kortere notatie (voor het gemak om dit allemaal te typen én om te lezen!) schrijven we vaak: f x d f(x = 0) dx en de stelling ziet er dan zo uit: f(x) = f + x f x + 1! x f xx + 1 3! x3 f xxx +... Het argument van de functies aan de rechterkant is dan steeds x = 0; als je rond een ander punt wilt Taylor-en, bv. x = a geldt dezelfde formule maar dan door x, x,... te vervangen door x a, (x a),...: f(x) = f + (x a) f x + 1! (x a) f xx + 1 3! (x a)3 f xxx +... met nu de afspraak dat f x d f(x = a) dx Stelling van Taylor in meer dimensies Voor functies in één variabele is er nog niet zo n groot verschil, voor de stelling voor functies met méér variabelen is het bijna noodzakelijk om stelling van Taylor leesbaar te houden. In n variabelen ziet de stelling er dan zo uit: tot en met de tweede orde h(x 1, x,...) = h + x 1 h x1 + x h x +... + x n h xn + 1 (x 1 h x1x 1 + x h xx +... + x n h xnx n ) +x 1 x h x1x + x 1 x 3 h x1x 3 +... + x n 1 x n h xn 1x n +... en de... bevat alle producten van het volgend type x 3 1, x 1x, x 1 x x 3. Ach, onthouden van die formule is niet nodig, zolang je maar weet dat hij bestaat en dat hij soms nuttig is. Op een tentamen bij mij hoef je alleen de lineaire termen te kennen (als je een hogere orde nodig hebt krijg je die erbij). Voor nu: zie appendix van dit stuk, en zorg dat je dat altijd terug kunt vinden! Los met behulp van de appendix de volgende opgave op. a Opgave: Gegeven een functie in drie variabelen x, y, z. Bepaal c 1, c in de Taylorreeks: f(x, y, z) = f + xf x +... + c 1 xyz f xyz +... + c x z f xxzz... 1

3 Optimalisatie Het onderzoeken van een functie op maxima en minima is in natuurkunde en techniek zeer relevant. Als je wilt weten wat de beste oplossing is voor een bepaald probleem moet je allereerst definiëren wat je met het beste bedoelt. Als je dat kunt vertalen in termen van wiskundige termen (de goedkoopste is degene die de minste euros kost, de snelste is degene die het minste tijd kost, etc.). Als eenmaal deze definitie bekend is gaan we de beste zoeken: ofwel we gaan het minimum of maximum van die functie proberen te vinden). In dit verhaal gaan we er vanuit dat we optima (ofwel maxima of minima) zoeken waarbij de variabelen allemaal elke waarde mogen aannemen, m.a.w. we nemen aan dat de variabelen niet beperkt zijn tot een eindig interval. Dat wil niet zeggen dat we andere problemen dan deze niet zouden kunnen oplossen, integendeel. Ook nemen we aan dat de functie voldoende differentieerbaar is. Voor een functie in é en variabele is het antwoord relatief eenvoudig: de noodzakelijke voorwaarde is f (x) = 0 (1) Met andere woorden: de functie moet in een optimum een afgeleide nul hebben. b Opgave: Is de voorwaarde ook voldoende? Met andere woorden is een punt met (1) ook altijd een maximum of een minimum? Motiveer je antwoord. (In dit geval zou je of aannemelijk moeten maken dat het zo is OF je moet een tegenvoorbeeld geven). c Opgave: Hoe bepaal je of het een minimum of maximum is? 4 Optimalisatie voor functies in meer variabelen In meer dimensies zijn de kritieke punten gelijk aan de punten waar alle partiële vergelijkingen nul zijn. We beperken ons uitsluitend tot twee dimensies. Ook zullen we geen problemen op eindige delen van de R bekijken; dat is niet erg moeilijk maar het vertroebelt wat ik wil duidelijk maken. Dus een punt (x, y) is een kritiek punt van f(x, y) indien alle partiële afgeleiden nul zijn: f(x, y) = 0, x f(x, y) = 0 y De aard van het kritieke punt wordt bepaald door de eigenwaarden van de tweede-afgeleide-matrix: [ ] J = f xx f yx f xy f yy Voorbeeld: f = 1 (x y ). Er geldt J = [ 1 0 0 1 ] zodat de eigenwaardes ±1 zijn: zadel. Voorbeeld: f = xy. Er geldt [ 0 1 1 0 ]

en de eigenwaarden volgen uit: λ 1 1 λ = λ 1 = 0 λ = ±1 dus een zadel. Kunnen we dit op een andere manier inzien? Het aard van een punt (maximum, minimum, zadel), hangt natuurlijk niet af van hoe we ons assenkruis kiezen: een functie ziet er natuurlijk hetzelfde uit als we het assenkruis bv. draaien. Een draaiing over π/4 ziet er uit als x = 1 (s + t), y = 1 (s t). () We kiezen dus een s en een t-as die samenvallen met de lijnen x = y en x = y. d Opdracht: Bereken de inverse van de transformatie (), d.w.z wat zijn s, t als functie van x, y? Wat wordt de functie f = xy in de nieuwe variabelen s, t? e Opdracht: Bepaal van f(x, y) = x 3 + y 3(x + y) + 1 f Opdracht: Bepaal van f(x, y) = x + y + 3xy 3y 5x + 15 Bepaal van f(x, y) = x 3 15x 0y + 5 16 Laat zien dat f(x, y) = x + y x + y + 6 een maximum heeft in (x, y) = (, 1) en een minimum in (x, y) = (, 1) 17 Bepaal a, b zodanig dat de integraal minimaal is. π 0 ( sin x (ax + bx) ) dx NB. Hier bepaal je dus een curve van de vorm ax + bx die in zekere zin het dichtst bij de sin ligt (immers, zou die deze integraal nul, dan zou de curve gelijk zijn aan sin) 18 Vind de kritieke punten van en classificeer ze. f(x, y) = 1xy 3xy x 3 3

5 Optimalisatie met constraints We willen voor later gemak de stelling van Taylor gebruiken. f(x) = f(0) + xf x (0) + 1 x f xx (0) +... (3) Stel dat het punt x = 0 een maximum is (voor een minimum gaat het verhaal analoog). Als we de functie f(x) iets naar links van x = 0 kijken, d.w.z. x is iets kleiner dan 0 en dus x is klein negatief dan mag f x (0) niet negatief zijn; anders zou de functie f(x) groter zijn dan f(0) en dat kan niet want f(0) was een maximum hadden we aangenomen. Omgekeerd kunnen we kijken naar x net groter dan 0. Dan komen we tot de omgekeerde conclusie dat f x (0) niet positief mag zijn. De twee resultaten samenvattend: f x (0) mag niet negatief noch positief zijn. Dus f x (0) = 0 is de enige oplossing. Een lang verhaal voor zo n eenvoudig resultaat. Toch zal het later handig blijken. In vergelijking (3) hadden de hogere ordere termen (x en hoger) geen invloed op het resultaat: de constante en lineaire termen waren allesbepalend. Wiskundigen schrijven het zo: df = f(x) f(0) = f x dx (4) In woorden: de verandering in f, die we df noemen, is gelijk aan een getal (gelijk aan f x ) maal de verandering in x die we dx noemen. Als het punt x = 0 een maximum of minimum is én omdat dx willekeurig is, geldt dat f x (0) = 0. Hoe schrijven we Taylor van een functie in n variabelen, x 1,..., x n? df = f x1 dx 1 + f x dx +... + f xn dx n Als we nu een optimaal punt willen hebben moeten we eisen dat f x1 = f x =... = f xn = 0. Immers we kunnen de dx 1,..., dx n willekeurig variëren. Het verhaal verandert als we optimalisatie met randcondities bekijken. Dit is een probleem dat in de praktijk veel vaker voorkomt. Bijvoorbeeld we willen de snelste formule 1 bouwen maar we hebben maar een budget van 1 miljoen euro. 19 Opgave: Bekijk het volgende probleem. f(x, y) = x + y, g(x, y) = x y 1 Bepaal minimum, maximum van de functie f(x, y) onder de voorwaarde dat g(x, y) = x y 1 = 0. Laat zien dat x, y = 1, 1 een minimum is. Doe het als volgt: a Los op: x als een functie van y uit g(x, y) = x y 1 = 0, b Vul dit antwood in in f waardoor f een functie van alleen y wordt, c Vind nu voor de functie f(y) de kritieke punten (dus die y-waarden waarvoor f (y) = 0). d Als je y gevonden hebt (kunnen er ook meer zijn) kun je uit deel a de waarde voor x vinden. 4

Een zwak punt is natuurlijk stap a: wat moet je doen als g(x, y) = 0 niet op te lossen is? Lagrange is weer zo n gigant uit de wiskunde. Over een paar jaar kunnen we zijn 00-jarige sterfdag vieren. Lagrange ging als volgt te werk. Bekijk eerst de verandering in f: df = f x1 dx 1 + f x dx +... + f xn dx n (5) We hebben een voorwaarde op de punten die mee mogen in de strijd om het optimum, want g = 0 moet gelden. In feite betekent dat we naar variaties dx 1,..., dx n moeten kijken die consistent zijn met g = 0. Stel nu dat het punt (0, 0,..., 0) een minimum is van een bepaalde functie f, dus (5) geldt, maar ook dat g(0, 0,..., 0) = 0. Hoe verandert g als we variaties dx 1,..., dx n bekijken? dg = g x1 dx 1 + g x dx +... + g xn dx n (6) Omdat per aanname een oplossing van het probleem vind een maximum of minimum van f onder voorwaarde g = 0 krijgen we: onder díe veranderingen dx 1,..., dx n waarvoor geldt dat dg = 0 moet ook df = 0 gelden; met andere wooorden: f x1 dx 1 + f x dx +... + f xn dx n = 0, g x1 dx 1 + g x dx +... + g xn dx n = 0 Als we deze vergelijking goed aankijken zien we dat de vectoren beide loodrecht staan op [ f x1, f x,..., f xn ], [ g x1, g x,..., g xn ] [ dx 1, dx,..., dx n ] Deze vector is volledig willekeurig; daarom kunnen we laten zien dat er maar één oplossing is, namelijk dat de beide vectoren in elkaars verlengde moeten liggen: [ f x1, f x,..., f xn ] = λ[ g x1, g x,..., g xn ] (7) g Opgave: Hoeveel vergelijkingen met hoeveel onbekenden zie je in vergelijking (7)? De waarde voor λ is nog onbekend. Deze parameter wordt de Lagrange multiplier genoemd ( de vermenigvuldigfactor van Lagrange ). Deze naam komt wellicht raar over. Lagrange bedacht de volgende truc: bekijk 1 L(x 1,..., x n, λ) = f(x 1,..., x n ) λg(x 1,..., x n ) Wat zijn de kritieke punten van L? Deze functie hangt van n+1 variabelen af, namelijk x 1,..., x n en λ. Dus f(x 1,..., x n ) = λ x 1 f(x 1,..., x n ) x 1 f(x 1,..., x n ) = λ f(x 1,..., x n ) x x. x n f(x 1,..., x n ) = λ x n f(x 1,..., x n ) g(x 1,..., x n ) = 0 1 Dat λ de vermenigvuldigfactor van Lagrange wordt genoemd zie je hier: λ wordt vemenigvuldigd met de constraintvoorwaarde g 5

De eerste n van deze vergelijkingen zijn precies de vergelijkingen in (7); de laatste is verkregen door L(x 1,..., x n, λ) te differentiëren naar λ wordt precies de constraintvergelijking. Bekijk het oude probleem: We maken eerst en differentiëren naar x, y, λ geeft f(x, y) = x + y, g(x, y) = x y 1 L = x + y λ(x y 1) x λ = 0 y + λ = 0 x y 1 = 0 hetgeen drie lineare vergelijkingen met drie onbekenden zijn. De oplossing is gegeven door x, y, λ = 1, 1, 1; natuurlijk hetzelfde antwoord als tevoren. 0 Opgave: De oppervlakte van een driehoek met zijden van lengte a, b, c wordt gegeven door A = s(s a)(s b)(s c), waarin s = (a + b + c)/ de halve omtrek is Wat is de vorm van de driehoek die maximaal is in oppervlakte bij gegeven omtrek a+b+c = 1? Als we meerdere constraints hebben moeten we meer Lagrange multipliers gebruken, voor elke constraint 1. 1 Opgave: Laat zien dat de kritieke punten van de functie { f(x, y, z) = x + y + z g 1 (x, y, z) = x + y z = 0 zdd g (x, y, z) = yz + zx xy 1 = 0 worden gegeven door 0 = x + λ 1 + λ (z y) 0 = y + λ 1 + λ (z x) 0 = z λ 1 + λ (y + x) 0 = x + y z 0 = yz + zx xy 1 Dit zijn geen lineaire vergelijkingen dit keer. Daarom kan het lastig worden om ze op te lossen. Daarom de hint: Tel vergelijking en 3 op en laat zien dat of y + z = 0 en/of λ =. Werk beide mogelijkheden uit. (Er zijn in totaal 4 oplossingen.) Opgave: We willen een rechthoekige doos zonder deksel maken, waar zoveel mogelijk in past, d.w.z. met een zo n groot mogelijk volume. Van het materiaal waarvan de doos is gemaakt hebben we maar in oppervlakte 1 dm. Wat is het volume van die grootst mogelijke doos? 6

Appendix Taylors stelling in detail: f(x, y) = f + x f x + y f y + 1 ( x f xx + xy f xy + y ) f yy! + 1 ( x3 f xxx + 3x y f xxy + 3xy f xyy + y 3 ) f yyy +... 3! Structuur is volledig bepaalt als je volgende truc onthoudt: (x + y) 1 = x + y (x + y) = x + xy + y (x + y) 3 = x 3 + 3x y + 3xy + y 3 De truc geldt ook voor alle orde maar ook voor méér variabelen! 7

Antwoorden a Gegeven een functie in drie variabelen x, y, z. Bepaal c 1, c in de Taylorreeks: f(x, y, z) = f + xf x +... + c 1 xyz f xyz +... + c x z f xxzz... Antwoord: De grootheid en (x + y + z) 3 =... + 6xyz +..., dus c 1 = 6 3! = 1 (x + y + z) 4 =... + 6x z +..., dus c = 6 4! = 1 4 b Is de voorwaarde ook voldoende? Met andere woorden is een punt met (1) ook altijd een maximum of een minimum? Motiveer je antwoord. (In dit geval zou je of aannemelijk moeten maken dat het zo is OF je moet een tegenvoorbeeld geven). Antwoord: De functie f(x) = x 3 heeft de eigenschap dat f (0) = 0 maar dat is geen minimum of maximum. c Hoe bepaal je of het een minimum of maximum is? Antwoord: De tweede afgeleide moet in dat punt positief, resp. negatief zijn. d Bereken de inverse van de transformatie (), d.w.z wat zijn s, t als functie van x, y? Wat wordt de functie f = xy in de nieuwe variabelen s, t? Antwoord: Optellen levert: x + y = s, x y = t s = 1 (x + y), t = 1 (x y) We hebben de in () zo gekozen dat de inverse transformatie er hetzelfde uit ziet: de transformatie is een draaiing over 45 graden. Zie ook WCopgaven week 7. xy = 1 (s t) 1 (s + t) = 1 (s t ) dus een zadel. e Bepaal van f(x, y) = x 3 + y 3(x + y) + 1 Antwoord: Kritiek: f x = f y = 0: 3x 3 = 0, y 3 = 0 ( 1, 3 ) en ( 1, 3 ) J = [ f xx f yx f xy f yy ] = [ 6x 0 0 ] Eigenwaarden zijn 6, voor ( 1, 3 ) en 6, voor ( 1, 3 ) ; het eerste punt is dus minimum, het tweede een zadel f Bepaal van f(x, y) = x + y + 3xy 3y 5x + Antwoord: Kritiek als f x = f y = 0: 4x + 3y 5 = 0 x 1 = 0 x = 1, y = 3 3x + y 3 = 0 3 8

dus alleen ( 1, 3). De aard van de punten volgt uit [ ] [ ] f xx f xy 4 3 J = = 3 Dus een zadel! f yx f yy 4 λ 3 3 λ = (4 λ)( λ) 9 = 0 λ = 3 ± 10 g Hoeveel vergelijkingen met hoeveel onbekenden zie je in vergelijking (7)? Antwoord: n vergelijkingen (er staat zowel links als rechts een vector ter lengte n) met n + 1 onbekenden (x i, i = 1,..., n en λ). 9