Examen Statistische Thermodynamica

Vergelijkbare documenten
Uitwerkingen van het Tentamen Moleculaire Simulaties - 8C Januari uur

Fysische Chemie Oefeningenles 1 Energie en Thermochemie. Eén mol He bevindt zich bij 298 K en standaarddruk (1 bar). Achtereenvolgens wordt:

Thermodynamica 2 Thermodynamic relations of systems in equilibrium

HERHALINGS TENTAMEN CHEMISCHE THERMODYNAMICA voor S2/F2/MNW2 Woensdag 14 januari, 2009,

TENTAMEN CHEMISCHE THERMODYNAMICA. Dinsdag 25 oktober

Opgave 2. Voor vloeibaar water bij K en 1 atm zijn de volgende gegevens beschikbaar:

TENTAMEN CHEMISCHE THERMODYNAMICA voor F2/MNW2. Vrijdag 23 december 2005

Tentamen Moleculaire Simulaties - 8C November uur

Eindtoets 3BTX1: Thermische Fysica. Datum: 3 juli 2014 Tijd: uur Locatie: paviljoen study hub 2 vak c & d

TOETS CTD voor 1 ste jaars MST (4051CHTHEY, MST1211TA1, LB1541) 10 maart uur Docenten: L. de Smet, B. Dam

Thermodynamica. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven

Tentamen Statistische Thermodynamica MS&T 27/6/08

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA

TENTAMEN. Thermodynamica en Statistische Fysica (TN )

Technische ThermoDynamica Samenvatter: Maarten Haagsma /6 Temperatuur: T = ( /U / /S ) V,N

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA

Tentamen Statistische Thermodynamica MST 19/6/2014

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 1 maart uur Docenten: L. de Smet, B. Dam

Een andere korte samenvatting van Statistische Thermodynamica

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart uur Docenten: T. Savenije, B. Dam

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 6 juli 2012, uur

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA

Bereken de luchtdruk in bar op 3000 m hoogte in de Franse Alpen. De soortelijke massa van lucht is 1,2 kg/m³. De druk op zeeniveau bedraagt 1 bar.

Uitwerkingen van het Tentamen Moleculaire Simulaties - 8C Januari uur

Fysische Chemie Werkcollege 5: Binaire mengsels-oplosbaarheid

Proefexamen Thermodynamica, april 2017 Oplossingen

Thermodynamica - A - PROEFTOETS- AT01 - OPGAVEN.doc 1/7

Thermodynamica 2 Thermodynamic relations of systems in equilibrium

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart uur Docenten: T. Savenije, B. Dam

Werkcollege 3: evenwicht bij zuivere stoffen

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 en Statistische Fysica 3CC augustus 2010,

THERMODYNAMICA 2 (WB1224)

Technische Thermodynamica 1, Deeltoets 2 Module 2, Energie en Materialen ( )

Eindtoets 3BTX1: Thermische Fysica. Datum: 12 augustus 2014 Tijd: uur Locatie: Matrix Atelier 3

Scheidingstechnologie by M.A. van der Veen and B. Eral

Welke van de drie onderstaande. figuren stellen een isobare toestandsverandering van een ideaal gas voor?

VAK: Thermodynamica - A Set Proeftoets 01

BIOFYSICA: WERKZITTING 10 (Oplossingen) THERMOFYSICA

Notaties 13. Voorwoord 17

Hoofdstuk 12: Exergie & Anergie

Eerste Hoofdwet: Deel 1

Hoofdstuk 9: Wrijving

Hoofdstuk 1: Ideale Gassen. Hoofdstuk 2: Warmte en arbeid. Hoofdstuk 3: Toestandsveranderingen bij ideale gassen

Tentamen Thermodynamica

MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM HEREXAMEN HAVO 2015

MINISTERIE VAN ONDERWIJS, WETENSCHAP EN CULTUUR UNIFORM EXAMEN HAVO 2015

Tentamen Thermodynamica

Elke opgave moet op een afzonderlijk blad worden ingeleverd.

THERMODYNAMICA 2 (WB1224)

THERMODYNAMICA 2 (WB1224) Opgave 3 moet op een afzonderlijk blad worden ingeleverd.

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB januari 2013, uur

Toestandsgrootheden en energieconversie

De twee snelheidsconstanten hangen op niet identieke wijze af van de temperatuur.

Jaarplan. Quark Quark 4.2 Handleiding. TSO-BTW/VT TSO-TeWe. ASO-Wet

Vraagstukken Thermodynamica W. Buijze H.C. Meijer E. Stammers W.H. Wisman

Calculus I, 23/11/2015

Unificatie. Zwakke Kracht. electro-zwakke kracht. Electriciteit. Maxwell theorie. Magnetisme. Optica. Sterke Kracht. Speciale Relativiteitstheorie

Van der Waals en Wilson. N.G. Schultheiss

Fysische Chemie Oefeningenles 2 Entropie. Warmtecapaciteit van het zeewater (gelijk aan zuiver water): C p,m = J K 1 mol 1.

Hoofdstuk 5: Enthalpie

Deel 2 Chemische thermodynamica

Biofysische Scheikunde: Statistische Mechanica

Tentamen Simulaties van biochemische systemen - 8C110 3 juli uur

Hertentamen Statistische en Thermische Fysica II Woensdag 14 februari 2007 Duur: 3 uur

Vraagstukken Thermische Fysica Set 1

Biofysische Scheikunde: Statistische Mechanica

Tentamen Simulaties van biochemische systemen - 8C110 8 April uur

TENTAMEN THERMODYNAMICA 1 Wb april :00-12:00

Hoofdstuk 4: Dampen 4.1 AGGREGATIETOESTANDEN SMELTEN EN STOLLEN SMELTPUNT. Figuur 4.1: Smelten zuivere stof

Tentamen Simulaties van Biochemische Systemen - 8C110 en 8CB19 4 Juli uur

THERMODYNAMICA 2 (WB1224)

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB augustus 2011, uur

TENTAMEN THERMODYNAMICA 1 Wb april :00-12:00

Exact Periode 7 Radioactiviteit Druk

TENTAMEN THERMODYNAMICA 1 Wb juni :00-12:00

Toets02 Algemene en Anorganische Chemie. 30 oktober :00-15:30 uur Holiday Inn Hotel, Leiden

Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal. Toets Kansrekenen I. 28 maart 2014

THERMODYNAMICA 2 (WB1224)

Energie, arbeid en vermogen. Het begrip arbeid op een kwalitatieve manier toelichten.

THERMODYNAMICA 2 (WB1224) 14 april u.

Hertentamen CTD voor 1 ste jaars MST (4051CHTHEY) 14 April uur Docenten: L. de Smet, B. Dam

Tentamen Simulaties van biochemische systemen - 8C April uur

v gem v rms f(v) v (m/s) v α v β f(v) v (m/s)

De beheersing van het vuur

Exact periode Youdenplot Krachten Druk

2 Van 1 liter vloeistof wordt door koken 1000 liter damp gemaakt.

Examen VWO. Wiskunde B Profi

Naam: examennummer:.

Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5

THERMODYNAMICA 2 (WB1224)

TENTAMEN SCHEIDINGSPROCESSEN

Hoofdstuk 7: Entropie

REWIC-A: Thermodynamica A : : : Opleiding Module Examenset. REWIC-A Thermodynamica A 03. Uw naam :... Begintijd :... Eindtijd :...

Fysische Chemie Oefeningenles 6 Oplosbaarheid - Fasendiagrammen

LEERWERKBOEK IMPULS 2. L. De Valck J.M. Gantois M. Jespers F. Peeters. Plantyn

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 5 juli 2013, uur

Q l = 23ste Vlaamse Fysica Olympiade. R s. ρ water = 1, kg/m 3 ( ϑ = 4 C ) Eerste ronde - 23ste Vlaamse Fysica Olympiade 1

is een dergelijk systeem één van starre lichaam Pagina 21 3 de zin

TENTAMEN THERMODYNAMICA 1 Wb juni :00-12:00

Hulpmiddelen: Niet grafische rekenmachine, binas 6 de druk. Let op dat je alle vragen beantwoordt.

Transcriptie:

Examen Statistische Thermodynamica Alexander Mertens 8 juni 014 Dit zijn de vragen van het examen statistische thermodynamica op donderdag 6 juni 014. De vragen zijn overgeschreven door Sander Belmans en zijn normaal gezien wel correct. Het examen duurde vier uur en bevatte tien vragen. Normaal gezien was dit ruim voldoende tijd. Vroeger was dit examen mondeling, dit jaar was het schriftelijk. Het gebruik van een grafisch rekenmachine was ook toegelaten. De oplossingen zijn gemaakt door mijzelf. Aangezien ik ook maar een student ben kunnen hier zeker fouten in zitten. Neem mijn oplossing dus niet al te serieus maar gebruik hem als je niet goed weet hoe je moet beginnen aan het oplossen van een vraag. 1

1 Vraag 1 1.1 Vraag a Teken isothermen van een reeël fluïdem (vloeistof of gas. Neem bijvoorbeeld CO zoals we de isothermen opmeten tussen 10 en 50 C. De kritische isotherm loopt daarbij ±1 C. Duidt ook het kritisch punt aan op je tekening. 1. Antwoord a Figuur 1 in de cursus 1. Vraag b Maak een tekening van de Gibbs vrije energie bij evenwicht in functie van de temperatuur voor ij-water-damp bij atmosferische druk. Duid op een zelfde e tekening ook aan hoe we daaruit heuristisch kunnen begrijpen dat de kooktemperatuur van zout water hoger komt te liggen. 1.4 Antwoord b Antwoord b: Figuur 0 in de cursus Vraag.1 Vraag Een ideaal gas bestaat uit een ideaal mengsel van mol stikstof (N en 5 mol helium (He. Dat gas comprimeert adiabatisch van L naar 1L bij een begintemperatuur van 5 C en een eindtemperatuur van 00 C. Wat is de bijhorende verandering in entropie voor dat mengsel?. Antwoord Antwoord: Het verschil in entropie voor een ideaal gas is S = C V log T f T i + nrlog V f V i

We weten ook dat C V = C N V + CV He f = n N R f N + n He R He. Aangezien He mono-atomisch is en N di-atomisch geldt f He = en f N = 5. Nu moeten we gewoonweg alles invullen en berekenen. Dan krijgen we dat S = 108.5 J. K Vergeet niet de temperatuur om te zetten naar K, dit maakt uiteraard uit bij het berekenen van een logaritme. Vraag.1 Vraag Water heeft een smeltwarmte van. 10 5 J bij kg 0 C. Wat is de verandering in entropie, enthalpie en Gibbs vrije energie bij het smelten van 0kg ijs?. Antwoord Bij een reversibel proces, zoals smelten, geldt S = δq rev T We kunnen dus het verschil in entropie meteen berekenen aangezien ijs smelt bij T = 0 C = 7.15K. S = 0. 105 7.15 Volgens de definitie van enthalpie: =.44 10 4 J K H = E + V Het verschil in enthalpie is dan dh = T ds + µdn + V d Aangezien we werken met een constant aantal deeltjes en onder constante druk kunnen we zeggen dat H = T S = Q rev = 0. 10 5 = 6.66 10 6 J

Volgens de definitie van de Gibbs vrije energie G = E + V T S Het verschil in Gibbs vrij energie is dan dg = SdT + V d + µdn Aangezien smelten gebeurt bij constante temperatuur, constante druk en constant aantal deeltjes is G = 0. 4 Vraag 4 4.1 Vraag Beschouw de uitdrukking ( R + b dt RT T 4 d Toon aan dat dit een exacte differentiaal is, noem die dv. Dat betekent dat de uitdrukking de kleine verandering (tot op de 1 e orde in een Taylorreeks voor V (T, van een toestandsgrootheid V uitdrukt. Bereken de meest algemene toetandsvergelijking voor het zuiver fluïdum dat met deze uitdrukking een differentiaal overeenkomt. 4. Antwoord We moeten bewijzen dat ( ( R + b T 4 T ( ( RT = T Het linkerlid kunnen we als volgt uitwerken ( ( R + b T 4 T = R en het rech- = R. Deze zijn dus gelijk aan elkaar en nu is bewezen dat RT ( terlid ( T dit een exacte differentiaal is. Om de corresponderende toestandsfunctie te vinden doen we het volgende: ( R V = dv = + b dt = RT T 4 b T + C( 4

Ook geldt: V = dv = RT RT d = + C(T Hieruit kunnen we dus concluderen dat V (T, = RT b T. 5 Vraag 5 5.1 Vraag In een cilinder van een dieselmotor bevindt zich lucht bij 0 C. Het wordt gecomprimeerd van een begindruk van 1 tam en een volume van 800 cm naar een volume van 60 cm. De compressie is reversibel en adiabatisch. Lucht wordt hier als een ideaal diatonisch gas beschouwd. Vind de einddruk en eindtemperatuur van de lucht. Wat is de geleverde arbeid? 5. Antwoord Voor een adiabaat geldt i V γ i = f V γ f met γ = f + f = 1.4 Hieruit kunnen we dus rechtstreeks de einddruk berekenen: f =.81 10 6 a. Als we de ideale gaswet toepassen kunnen we ook afleiden dat T i V γ 1 i = T f V f γ 1 Hieruit kunnen we ook rechtstreeks de eindtemperatuur berekenen: T f = 86. K. Volgens de definitie van een adiabaat is Q = 0. Volgens de eerste wet geldt dan E = W. equipartitie toepassen. Dan wordt Om de arbeid te berekenen kunnen we dus de wet van W = f nr(t f T i Als we op deze vergelijking de ideale gaswet opnieuw toepassen krijgen we: W = f ( fv f i V i = 9.5 J 5

6 Vraag 6 6.1 Vraag Veronderstel dat de volgende relatie geldt tussen entropie S, het volume V, de inwendige energie E en het deeltjesaantal N van een thermodynamisch systeem: S = a(nv E 1 Bepaal de toestandsvergelijking; Dat is een vergelijking tussen de druk, het deeltjesaantal N, het volume V en de temperatuur T. 6. Antwoord Volgens de thermodynamische identiteit geldt T ds = de + dv µdn Of we kunnen dus ook zeggen dat: ( S = 1 ( S E T en V V,N E,N = T Als we dit uitwerken voor de gegeven S krijgen we: 1 T = a(nv E Wanneer we dit verder uitwerken krijgen we: ( E 1 at (NV 1 1 = Zo wordt dit dus uiteindelijk 1 en T = a(ne 1 V en T = a(n1 V V 1 = (at N 1 ( at (NV 1 1 6

7 Vraag 7 7.1 Vraag Een gas bestaande uit heel veel (N deeltjes (met dezelfde massa m is opgesloten in een kubusvormige container Λ l met de oorsprong in het midden en met zijde l. Het gas is in evenwicht bij een temperatuur T met energie als functie van de (micro-toestand gegeven door: E( r 1,..., r N, p 1,..., p N = N i=1 ( p i m + w r i met r i Λ l waar per definitie r i = x i + y i + z i, de som is van de absolute waarde van de drie componenten van de positie r i = (x i, y i, z i en w > 0 is een constante. Wat is de gemiddelde energie en wat is de druk? 7. Antwoord We gaan deze vraag oplossen met behulp van het canonisch ensemble. We weten dus het volgend: ρ( r 1,..., r N, p 1,..., p N = 1 Z e βe( r 1,..., r N, p 1,..., p N We berekenen eerst de normalisatiefactor Z, deze is gelijk aan Z = d r 1... dr N d p 1... dp N e Λ l Λ l R βe( r 1,..., r N, p 1,..., p N R Dit kunnen we verder uitwerken, we krijgen dan Z = Z = ( l l e βw r dr ( (e lβw 1 βw p β e m πm β N N Om de gemiddelde energie < E > te berekenen gebruiken we < E >= ln(z β 7

Hierdoor krijgen we dat < E >= 1 β e lβw + e lβw e lβw 1 Om de druk te berekenen gebruiken we de volgende twee dingen: F = ln(z ( F en = β V Met V = l. Hieruit kunnen we het volgende concluderen: ( ( F l 1 = = 1 ( F l T,N l l l T,N We berekenen dan het volgende: 8 Vraag 8 8.1 Vraag = Nw l lβw e e lβw 1 We beschouwen een systeem van heel veel (N driewaardige spins σ i {, 0, } met als energiefunctie: T,N E(σ = N ( a(σ i 8 + b(σ i 1 i=1 voor bepaalde constante a en b. Bereken de verwachte magnetisatie 1 N N i=1 σ i in het canonisch ensemble bij temperatuur T. Bepaal daarvoor het limietgedrag bij zeer hoge(t en zeer lage(t 0 temperaturen, in het geval dat a >> b > 0. 8. Antwoord Bij het canonisch ensemble weten we dat: prob[σ] = 1 Z e βe(σ 8

We berekenen eerst de normalisatiefactor Z dus: Z = prob[σ] = σ σ i {,0,} e βa(σ i 8+b(σ i 1 Als we dit uitrekenen krijgen we: Z = ( e β( 8a+b + e β( 4a+9b + e β( 4a+b N Om nu de verwachte magnetisatie te berekenen gebruiken we het feit dat < 1 N N σ i >= 1 N i=1 N < σ i >=< σ 1 > Dit rekenen we dan uit volgens de definitie van de verwachte waarde: i=1 N < σ 1 >= σ σ 1 prob[σ] < σ 1 >= ( e β( 8a+b + e β( 4a+9b + e β( 4a+b N 1 σ 1 {,0,} e β( 4a+b e β( 4a+9b < σ 1 >= e β( 8a+b + e β( 4a+9b + e β( 4a+b Dit kunnen we vereenvoudigen naar < σ 1 >= e βb e 9βb e β( 4a+b + e 9βb + e βb σ 1 Z e βa(σ 1 8+b(σ 1 1 Als we dan gaan kijken we naar de magnetisatie bij hoge temperaturen krijgen we (vergeet niet β = 1 k B T : En bij lage temperaturen: lim < σ 1 >= lim < σ 1 >= 0 T β 0 lim < σ 1 >= β Aangezien we weten dat a >> b > 0 lim < σ 1 >= β 0 lim β (e β( 4a+b 0 lim β (e β4a = 0 9

9 Vraag 9 9.1 Vraag Geef de Maxwell relatie voor: ( V S =... en geef de bijhorende thermodynamische potentiaal die de gelijkheid genereert. 9. Antwoord ( ( V T = S S Deze relatie wordt gegenereerd door enthalpie H want 10 Vraag 10 10.1 Vraag ( V S = ( T S = H S Geef een fysische uitleg waarom de warmtecapaciteit C V van 1 mol helium bij kamertemperatuur niet afhangt van het volume V waarin dat het gas zich bevindt. (Dat vraagt hoogsten een drietal lijnen schrijven Geef ook de warmtecapaciteit C van mol helium in een vat van L. 10. Antwoord Aangezien volgens de definitie van warmtecapaciteit C V = ( δq, volgens dt V de wet van behoud van energie bij constant volume: E = Q en volgens equipartitie E = f nrt geldt: ( E C V = T N,V = f nr = 1.5 J K 10

Dit is duidelijk onafhankelijk van het volume. Om de C te berekenen gebruiken we de mayer relatie C = C V + nr. We kunnen dus zeggen dat: ( f C = + 1 nr = 41.6 J K 11