TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA

Maat: px
Weergave met pagina beginnen:

Download "TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA"

Transcriptie

1 TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA Tentamen Thermische Fysica 1 (3NB60), op woensdag 13 april 2011, uur Het tentamen levert maximaal 100 punten op waarvan de verdeling hieronder is aangegeven (24 pnt) 1 Beantwoord de volgende acht vragen met ja of nee en geef daarbij een korte argumentatie Bij een goed antwoord met goede argumentatie krijgt men per vraag 3 punten Bij een ernstige fout in de argumentatie worden geen punten toegekend Voor een correct antwoord zonder argumentatie wordt slechts 1 punt toegekend (a) Beschouw de toestandsvergelijking van een gas volgens Dieterici, p = RT exp( a V m b RT V m ) Is het kritisch volume van een gas dat beschreven wordt door deze toestandsvergelijking V c = 3b? (b) Beschouw een gas bestaande uit stikstofmoleculen (N 2 ) We mogen veronderstellen dat het gas zich ideaal gedraagt Is het waar dat de molaire soortelijke warmte bij constant druk gelijk is aan C p,m = 7 2 R? (c) Beschouw de verbrandingsreactie van propaan: C 3 H 8 (g) + 5O 2 (g) 3CO 2 (g) + 4H 2 O (l) De volgende standaard vormingsenthalpieën zijn gegeven: f H (C 3 H 8 ) = 103, 85 kj/mol, f H (CO 2 ) = 393, 51 kj/mol, f H (H 2 O) = 285, 83 kj/mol Is de standaard verbrandingsenthalpie c H van deze reactie gelijk aan 2220 kj/mol? 1

2 (d) Beschouw de chemische reactie voor de omzetting van calciumchloride (CaCl 2 )in calciumbromide (CaBr 2 ): CaCl 2 (s) + Br 2 (l) CaBr 2 (s) + Cl 2 (g) We veronderstellen standaardomstandigheden (1 bar, 298 K) Zal deze reactie spontaan plaatsvinden? De volgende standaard Gibbsenergieën zijn gegeven: f G (CaCl 2 ) = 748, 1 kj/mol, f G (CaBr 2 ) = 663, 6 kj/mol (e) De reactie-enthalpie van een willekeurige chemische reactie onder standaardomstandigheden (p = 1 bar, T 1 = 298 K) is gegeven door r H (T 1 ) We bekijken nu deze reactie bij dezelfde standaard druk, maar voeren de reactie uit bij een hogere temperatuur T 2 > T 1 Is het algemeen waar dat r H (T 2 ) > r H (T 1 )? ( (f) Is de volgende relatie geldig: S ) = α V T κ T? Hierbij is α de uitzettingscoëfficiënt en κ T de isotherme compressibiliteit (g) Wordt de vloeistof-damp lijn in een pt -fasendiagram benaderd met de volgende uitdrukking: p p 0 e ξ, met ξ = vap H m T R 0 ( 1 1 )? p T 2 T0 2 0 en T 0 representeren een referentiedruk en -temperatuur Maak gebruik van de Clapeyron relatie: = vaphm dt T vap V m dp (h) We hebben 2,0 mol van de vloeistof A en 3,0 mol van de vloeistof B, en deze twee vloeistoffen worden bij kamertemperatuur (T = 298 K) gemengd Het mengsel gedraagt zich ideaal Is het waar dat de verandering van de Gibbs energie na menging gelijk is aan mix G = 8, 338 kj? 2

3 (26 pnt) 2 We beschouwen de ideale Brayton cyclus Deze werd voorgesteld door George Brayton in 1870 en vindt toepassing in gasturbines bij het opwekken van elektriciteit De gasturbine staat hieronder schematisch weergegeven: De ideale Brayton cyclus bestaat uit 4 stappen: stap A: 1 2: Isentropische compressie stap B: 2 3: Isobare verhitting stap C: 3 4: Isentropische expansie stap D: 4 1: Isobare afkoeling Voor deze gasturbine mag je aannemen dat het lucht-brandstof mengsel zich gedraagt als droge lucht We nemen tevens aan dat het mengsel zich ideaal gedraagt met C v,m = (5/2)R en C p,m = (7/2)R (R = 8, 3145 J mol 1 K 1 ) die we onafhankelijk van de temperatuur veronderstellen De gasturbine zuigt buitenlucht aan met een temperatuur T 1 = 300 K en p 1 = 1 atm ( Pa) De maximum temperatuur (T 3 = 1100 K) in de cyclus wordt bereikt aan het einde van proces B en wordt gelimiteerd door metallurgische eigenschappen van de toegepaste materialen omdat de turbinebladen niet te heet mogen worden De gasturbine zuigt 5 kg lucht-brandstof mengsel per seconde aan Dit komt overeen met 175 mol s 1 (1 pnt) (a) In een isentropisch proces verandert de entropie niet Leg uit waarom dit equivalent is met een reversibel adiabatisch proces 3

4 (4 pnt) (4 pnt) (4 pnt) (6 pnt) (1 pnt) (6 pnt) (b) Teken het p V en het T S diagram van de ideale Brayton cyclus (c) Bereken T 2 en T 4 als gegeven is dat p 2 = 4, 5p 1 (d) Bereken de warmte die per seconde toegevoerd of afgevoerd wordt in elk van de 4 stappen (e) Bereken de arbeid die per seconde verricht of uitgeoefend wordt in elk van de 4 stappen (f) Wat is het netto vermogen dat deze gasturbine opwekt? (g) Leid af dat het rendement van de Brayton cyclus voldoet aan de uitdrukking: ɛ = 1 (p 2 /p 1 ) (1 γ)/γ, met γ = C p,m /C v,m en bereken het rendement 4

5 (25 pnt) 3 Een systeem bestaat uit een monster van 1,00 mol diatomair ideaal gas met C V,m = 5 R Het gas heeft een begintemperatuur en 2 beginvolume van, respectievelijk, T i = 298 K en V i = 10, 0 L en wordt geëxpandeerd tot een eindvolume van V f = 30, 0 L De omgevingstemperatuur blijft constant op T omg = 298 K Op twee manieren voeren we dit expansieproces uit, namelijk: (1) isotherm en reversibel, (2) isotherm en tegen een constante externe druk van 0,50 atm (a) Bereken voor geval 1 de geleverde arbeid en de opgenomen warmte door het systeem (b) Bereken voor geval 1 S sys, S omg, H, A, G en T (c) Bereken voor geval 2 eveneens de geleverde arbeid en de opgenomen warmte door het systeem (d) Bereken voor geval 2 eveneens S sys, S omg, H, A, G en T (e) Wat is de maximale arbeid die geleverd kan worden bij dit expansieproces van (V i, T i, p i ) (V f, T f, p f ) (zie geval 1 en 2)? Verklaar uw antwoord 5

6 (25 pnt) (3 pnt) (1 pnt) (3 pnt) (2 pnt) (3 pnt) (3 pnt) 4 Een zeer groot aantal N identieke deeltjes beweegt in een afgesloten ééndimensionaal vat met lengte L Het vat is dus een lijnsegment en de snelheid heeft alleen een x-component v x Als gevolg van een zeer vreemde wisselwerking tussen de deeltjes onderling en tussen de deeltjes en de uiteinden ( wanden ) van het segment ontstaat een stationaire niet-evenwichtsverdeling in de snelheidsruimte: P v (v) = C voor v v 0 en P v (v) = 0 voor v > v 0 Daarbij is C een constante en v = v x De deeltjes zijn ruimtelijk uniform verdeeld Veronderstel een ideaal gasgedrag, dus kortstondige interacties bij botsingen en geen interactie op afstand tussen deeltjes (a) Bepaal de constante C (b) Bepaal de deeltjesdichtheid n (aantal deeltjes per lengteeenheid van het segment) (c) Bepaal v 2 (d) Bepaal P vx (v x ) (e) Veronderstel elastische botsingen met de uiteinden ( wanden ) van het segment Gegeven de massa m van een deeltje Bepaal de kracht F x op een uiteinde van het segment (f) Bepaal de gemiddelde kinetische energie E van de deeltjes in het ééndimensionale vat (g) Veronderstel dat de vreemde wisselwerking plotseling wordt uitgeschakeld en dat de deeltjes een evenwicht bereiken zonder uitwisseling van energie met de omgeving Beschouw het gas als ideaal In de evenwichtsituatie geldt P vx (v x ) = 1 ( ) α π exp v2 x, α 2 2k met α = B T Bepaal de evenwichtswaarde van P m v(v) en de bijbehorende temperatuur T (h) Bepaal voor deze evenwichtssituatie het aantal deeltjes dat per tijdseenheid met een uiteinde van het segment botst 6

7 TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE VAKGROEP TRANSPORTFYSICA Uitwerkingen Tentamen Thermische Fysica 1 (3NB60) van vrijdag 21 januari (a) Nee, voor het kritische punt moet gelden: dp RT exp( a ( RT V = m ) a 1 ) = 0, dv m V m b RT Vm 2 V m b d 2 a ( p RT exp( RT V = m ) a 1 ) 2 dvm 2 V m b RT Vm 2 V m b a ( RT exp( RT V + m ) 2a ) 1 + = 0 V m b RT Vm 3 (V m b) 2 Uit de eerste relatie volgt: tweede relatie geeft V m = 2b a RT V 2 m = 1 V m b en substitutie in de (b) Ja, voor een diatomair ideaal gas geldt: U m = U m (0) + 5RT 2 (drie tranlatie- en twee rotatievrijheidsgraden) Dan is snel af te leiden dat C V,m = ( ) U m = 5 R Voor een ideaal gas T V 2 geldt: C p,m = C V,m + R = 7R 2 (c) Ja, voor de verbrandingsenthalpie krijgen we: c H = 3 f H (CO 2,g) +4 f H (H 2 O,l) f H (C 3 H 8,g) 5 f H (O 2,g) = [3(-393,51) + 4(-285,83) - (-103,85) - 5(0)] = kj/mol (d) Nee De standaard Gibbs energie van deze reactie is: r G = f G (CaBr 2,s) f G (CaCl 2,s) = ( 663, 6) ( 748, 1) = 84, 5 kj/mol r G > 0, dus de reactie verloopt niet spontaan (e) Nee, want uit de wet van Kirchhoff, r H (T 2 ) = r H (T 1 )+ T2 T 1 r C p dt, blijkt dat het teken van r H (T 2 ) r H (T 1 ) afhangt van het teken van r C p Deze laatste mag negatief zijn 7

8 (f) Ja, mbv de Maxwell relatie ( S V volgt: ( ) ( ) ( ) S V p = V T T p V T )T = ( ) p T V = α κ T en de -1-regel (g) Nee, met vap V m V m (g) = RT/p volgt uit de Clapeyron dlnp relatie de Clausius-Clapeyron vergelijking: = vaphm dt RT 2 Integreren van p 0 naar p (en T 0 naar T ) levert: p p 0 e ξ, met ξ = vaphm ( 1 1 R T T 0 ) (h) Ja, voor ideale mengsels geldt altijd dat de Gibbs energie afneemt(de menging zal spontaan verlopen), dus we krijgen mix G = nrt (x A ln x A + x B ln x B ) < 0 met n = n A + n B = 5 mol, x A = n A /n = 0, 4 en x B = n B /n = 0, 6 Invullen van de getallen levert: mix G = 8338 kj 2 (a) Voor een reversibel adiabatisch proces geldt q = q rev = 0 Dus: ds = dq rev /T = 0 (b) p V diagram: 1 2: p neemt toe, V neemt af; 2 3: p constant, V neemt toe; 3 4: p neemt af, V neemt toe; 4 1: p constant, V neemt af T S diagram: 1 2: T neemt toe, S constant; 2 3: T neemt toe, S neemt toe; 3 4 T neemt af, S constant; 4 1 T neemt af, S neemt af (c) Voor een adiabaat geldt: T γ p 1 γ = constant, waarbij γ = C p,m /C v,m Dan is T 2 = T 1 (p 1 /p 2 ) (γ 1)/γ = 300(4, 5) 0,4/1,4 = 461 K en T 4 = T 3 (p 2 /p 1 ) (γ 1)/γ = 1100(4, 5) 04/14 = 716 K (d) q A = 0; q B = nc p,m (T 3 T 2 ) = 3254 kj; q C = 0; q D = nc p,m (T 1 T 4 ) = 2117 kj (e) A: Omdat q A = 0 geldt U A = q A + w A = w A U A volgt uit U A = nc v,m (T 2 T 1 ) Dus w A = U A = 586 kj B: w B = p 2 V = nrp 2 (T 3 /p 3 T 2 /p 2 ) = nr(t 3 T 2 ) = 930 kj C: (als A): q C = 0 en dus w C = U C = nc v,m (T 4 T 3 ) Dus w C = U C = 1398 kj D: (als B): w D = p 1 V = nrp 1 (T 1 /p 1 T 4 /p 1 ) = nr(t 1 T 4 ) = 605 kj 8

9 (f) Netto vermogen is netto arbeid per seconde: ẇ tot = kj s 1 = 1137 kw (g) Voor ẇ tot geldt: ẇ tot = nc v,m (T 2 T 1 ) nr(t 3 T 2 ) + nc v,m (T 4 T 3 ) nr(t 1 T 4 ) = nc p,m T 2 T 1 +T 4 T 3 ; voor q in = q B = nc p,m (T 3 T 2 ) Dus ɛ = T 2 T 1 + T 4 T 3 /(T 3 T 2 ) = (T 1 T 2 + T 3 T 4 )/(T 3 T 2 ) = 1 (T 4 T 1 )/(T 3 T 2 ) = 1 (T 1 /T 2 )((T 4 /T 1 ) 1)/((T 3 /T 2 ) 1) Met T 2 /T 1 = (p 2 /p 1 ) (1 γ)/γ = T 3 /T 4, kun je laten zien dat de laatste term gelijk 1 is Daarmee is ɛ = 1 (T 1 /T 2 ) = 1 (p 2 /p 1 ) (1 γ)/γ Rendement ɛ = w tot /q in = w tot /q B = 0, 349 komt overeen met ɛ = 1 (p 2 /p 1 ) (1 γ)/γ = 0, De toestandsverandering betreft een temperatuurverandering van het ideale gas, T i = 298 K T f, en een volumeverandering van het gas, V i = 10, 0 L V f = 30, 0 L We hebben 1 mol gas (a) Voor een ideaal gas dat isotherm en reversibel expandeert geldt U = q + w = 0 ofwel q = w De arbeid is dan w = nrt V f dv = nrt ln V f V i V V i Invullen gegevens geeft: w = 2722 J, ofwel de geleverde arbeid bedraagt 2722 J De toegevoerde warmte bedraagt eveneens 2722 J (b) Dit proces vindt isotherm en reversibel plaats Dan: T f = T i ofwel T = 0 K en S tot = 0 Het gas is ideaal, dus H = U+ (pv ) = U+nR T = 0 omdat zowel U = 0 als T = 0 De entropieverandering ( van het gas vinden we via S = Vf nr ln = 9, 13 J K 1 De entropieverandering van de V i ) omgeving is dan S omg = S tot S = 9, 13 J K 1 De Helmholtz energie bij deze toestandsverandering is gedefinieerd als A = U (T S) = T S Invullen gegevens geeft: A = 2722 J De verandering van de Gibbs energie is: G = H (T S) = T S = 2722 J (c) Wederom geldt bij isotherme expansie U = q +w = 0 ofwel q = w De arbeid is nu w = p ext (V f V i ) Invullen gegevens geeft: w = 1013 J, ofwel de geleverde arbeid bedraagt 1013 J De toegevoerde warmte bedraagt eveneens 1013 J (d) Dit proces vindt nu isotherm plaats tegen een constante externe druk p ext = 0, 50 atm We hebben met dezelfde toe- 9

10 standsverandering te maken als bij 1, dus: T = 0, H = 0, en S = 9, 13 J K 1 De verandering van de entropie van de omgeving is: S omg = q omg T omg = q T omg = p ext(v f V i ) T omg = 3, 40 J K 1 De totale entropieverandering is nu: S tot = 5, 73 J K 1 > 0 Het betreft dezelfde toestandsverandering als bij 1, dus: A = 2722 kj en G = 2722 kj (e) De maximaal te leveren arbeid w is gelijk aan A en kan geleverd worden tijdens een reversibele toestandsverandering (dus geval 1) Dus: w = A = 2722 kj en is gelijk aan het in (a) berekende resultaat 4 (a) Gegeven is dat P v (v) = C voor v v 0 en P v (v) = 0 voor v > v 0 met C een constante en v = v x Uit de normeringsvoorwaarde + P 0 v (v) dv = 1 volgt dan + P 0 v (v) dv = v0 P 0 v (v) dv = C v 0 dv = C v 0 0 = 1 oftewel C = 1 v 0 (b) Voor de deeltjesdichtheid geldt n = N L (c) v 2 = v 2 P 0 v (v) dv = v 0 v 2 P 0 v (v) dv = v2 0 3 (d) Uit de normeringsvoorwaarde + P v x (v x ) dv x = 1 volgt + P v x (v x ) dv x = + 2P 0 vx (v x ) dv x = + P 0 v (v) dv = 1 oftewel P vx (v x ) = 1P 2 v(v) (e) De kracht F x volgt uit F x = + (2mv 0 x ) N v L xp vx (v x ) dv x = 2mN + v 2 L 0 xp vx (v x ) dv x = mn + v 2 P L 0 v (v) dv = mn L v2 = 1 3 mn L v2 0 (f) E = 1 2 mn v2 = mnv2 0 6 (g) Uit de eerder gevonden relatie P vx (v x ) = 1P 2 v(v) en gebruikmakend van evenwichtsverdeling P vx (v x ) volgt direct P v (v) = 2 α exp( v2 x ) Er is evenwicht zodat E = 1k π α 2 2 BT Er heeft geen uitwisseling van energie met de omgeving plaatsgevonden zodat 1k 2 BT = mv2 0 oftewel T = mv2 0 6 (f) Φ + deeltjes = + N v 0 L xp vx (v x ) dv x = N 2L N + 2 2L 0 α exp( v2 x ) = N α π α 2 L π 3k B + 0 P v (v) dv = 10

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA TECHNISCHE UNIERSITEIT EINDHOEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA Tentamen Thermische Fysica 1 (3NB60, op vrijdag 20 april 2012, 09.00-12.00. Het tentamen levert maximaal 100 punten

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE GROEP TRANSPORTFYSICA ECHNISCHE UNIVERSIEI EINDHOVEN FACULEI DER ECHNISCHE NAUURKUNDE GROEP RANSPORFYSICA entamen hermische Fysica 1 (3NB60), op vrijdag 21 januari 2011, 14.00-17.00 uur. Het tentamen levert maximaal 100 punten

Nadere informatie

TENTAMEN CHEMISCHE THERMODYNAMICA. Dinsdag 25 oktober 2011 13.15 15.15

TENTAMEN CHEMISCHE THERMODYNAMICA. Dinsdag 25 oktober 2011 13.15 15.15 TENTAMEN CHEMISCHE THERMODYNAMICA Dinsdag 25 oktober 2011 13.15 15.15 Bij het tentamen mag gebruik worden gemaakt van BINAS en een (grafische) rekenmachine. Let op eenheden en significante cijfers. 1.

Nadere informatie

TENTAMEN CHEMISCHE THERMODYNAMICA voor F2/MNW2. Vrijdag 23 december 2005

TENTAMEN CHEMISCHE THERMODYNAMICA voor F2/MNW2. Vrijdag 23 december 2005 TENTAMEN CHEMISCHE THERMODYNAMICA voor F/MNW Vrijdag 3 december 005 Bij het tentamen mag gebruik worden gemaakt van een GR. Mogelijk nodige constantes: Gasconstante R = 8.31447 Jmol 1 K 1 = 8.0574 10 L

Nadere informatie

HERHALINGS TENTAMEN CHEMISCHE THERMODYNAMICA voor S2/F2/MNW2 Woensdag 14 januari, 2009, 18.30 20.30

HERHALINGS TENTAMEN CHEMISCHE THERMODYNAMICA voor S2/F2/MNW2 Woensdag 14 januari, 2009, 18.30 20.30 HERHALINGS TENTAMEN CHEMISCHE THERMODYNAMICA voor S2/F2/MNW2 Woensdag 14 januari, 2009, 18.30 20.30 Bij het tentamen mag gebruik worden gemaakt van een GR en BINAS. NB: Geef bij je antwoorden altijd eenheden,

Nadere informatie

Thermodynamica. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven

Thermodynamica. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Thermodynamica Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Academiejaar 2009-2010 Inhoudsopgave Eerste hoofdwet - deel 1 3 Oefening 1.1......................................

Nadere informatie

Fysische Chemie Oefeningenles 1 Energie en Thermochemie. Eén mol He bevindt zich bij 298 K en standaarddruk (1 bar). Achtereenvolgens wordt:

Fysische Chemie Oefeningenles 1 Energie en Thermochemie. Eén mol He bevindt zich bij 298 K en standaarddruk (1 bar). Achtereenvolgens wordt: Fysische Chemie Oefeningenles 1 Energie en Thermochemie 1 Vraag 1 Eén mol He bevindt zich bij 298 K en standaarddruk (1 bar). Achtereenvolgens wordt: Bij constante T het volume reversibel verdubbeld. Het

Nadere informatie

Examen Statistische Thermodynamica

Examen Statistische Thermodynamica Examen Statistische Thermodynamica Alexander Mertens 8 juni 014 Dit zijn de vragen van het examen statistische thermodynamica op donderdag 6 juni 014. De vragen zijn overgeschreven door Sander Belmans

Nadere informatie

TENTAMEN. Thermodynamica en Statistische Fysica (TN )

TENTAMEN. Thermodynamica en Statistische Fysica (TN ) TENTAMEN Thermodynamica en Statistische Fysica (TN - 141002) 25 januari 2007 13:30-17:00 Het gebruik van het diktaat is NIET toegestaan Zet op elk papier dat u inlevert uw naam Begin iedere opgave bovenaan

Nadere informatie

Opgave 2. Voor vloeibaar water bij 298.15K en 1 atm zijn de volgende gegevens beschikbaar:

Opgave 2. Voor vloeibaar water bij 298.15K en 1 atm zijn de volgende gegevens beschikbaar: Oefenopgaven Thermodynamica 2 (29-9-2010) Opgave 1. Een stuk ijs van -20 C en 1 atm wordt langzaam opgewarmd tot 110 C. De druk blijft hierbij constant. Schets hiervoor in een grafiek het verloop van de

Nadere informatie

Eindtoets 3BTX1: Thermische Fysica. Datum: 3 juli 2014 Tijd: uur Locatie: paviljoen study hub 2 vak c & d

Eindtoets 3BTX1: Thermische Fysica. Datum: 3 juli 2014 Tijd: uur Locatie: paviljoen study hub 2 vak c & d Eindtoets 3BTX1: Thermische Fysica Datum: 3 juli 2014 Tijd: 9.00-12.00 uur Locatie: paviljoen study hub 2 vak c & d Deze toets bestaat uit 3 opgaven die elk op een nieuwe pagina aanvangen. Maak de opgaven

Nadere informatie

TOETS CTD voor 1 ste jaars MST (4051CHTHEY, MST1211TA1, LB1541) 10 maart 2015 14.00-15.30 uur Docenten: L. de Smet, B. Dam

TOETS CTD voor 1 ste jaars MST (4051CHTHEY, MST1211TA1, LB1541) 10 maart 2015 14.00-15.30 uur Docenten: L. de Smet, B. Dam TOETS CTD voor 1 ste jaars MST (4051CHTHEY, MST1211TA1, LB1541) 10 maart 2015 14.00-15.30 uur Docenten: L. de Smet, B. Dam Naam:. Studentnummer Leiden:... En/of Studentnummer Delft:... Dit tentamen bestaat

Nadere informatie

TENTAMEN THERMODYNAMICA 1 Wb april :00-12:00

TENTAMEN THERMODYNAMICA 1 Wb april :00-12:00 TENTAMEN THERMODYNAMICA 1 Wb 4100 13 april 2011 9:00-12:00 Linksboven op elk blad vermelden: naam, studienummer en studierichting. Puntentelling: het tentamen bestaat uit 14 meerkeuzevragen en twee open

Nadere informatie

TENTAMEN THERMODYNAMICA voor BMT (8W180) Maandag 20 November van uur. Dit tentamen omvat 4 opgaven, die alle even zwaar meetellen.

TENTAMEN THERMODYNAMICA voor BMT (8W180) Maandag 20 November van uur. Dit tentamen omvat 4 opgaven, die alle even zwaar meetellen. TENTAMEN THERMODYNAMICA voor BMT (8W180) Maandag 20 November van 14.00 17.00 uur. Dit tentamen omvat 4 opgaven, die alle even zwaar meetellen. Als u vastloopt in een sub-vraag, kunt u voor het vervolg

Nadere informatie

UITWERKING. Thermodynamica en Statistische Fysica (TN ) 3 april 2007

UITWERKING. Thermodynamica en Statistische Fysica (TN ) 3 april 2007 UITWERKIG Thermodynamica en Statistische Fysica T - 400) 3 april 007 Opgave. Thermodynamica van een ideaal gas 0 punten) a Proces ) is een irreversibel proces tegen een constante buitendruk, waarvoor geldt

Nadere informatie

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 1 maart uur Docenten: L. de Smet, B. Dam

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 1 maart uur Docenten: L. de Smet, B. Dam TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 1 maart 2016 13.30-15.00 uur Docenten: L. de Smet, B. Dam Dit tentamen bestaat uit 30 multiple-choice vragen Hiermee zijn in totaal 20 punten te verdienen Voor

Nadere informatie

THERMODYNAMICA 2 (WB1224)

THERMODYNAMICA 2 (WB1224) THERMODYNAMICA 2 (WB1224) donderdag 27 januari 2005 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit twee of drie open vragen en 15 meerkeuzevragen. Voor de beantwoording van de meerkeuzevragen is

Nadere informatie

Uitwerkingen van het Tentamen Moleculaire Simulaties - 8C Januari uur

Uitwerkingen van het Tentamen Moleculaire Simulaties - 8C Januari uur Uitwerkingen van het Tentamen Moleculaire Simulaties - 8C030 25 Januari 2007-4.00-7.00 uur Vier algemene opmerkingen: Het tentamen bestaat uit 6 opgaven verdeeld over 3 pagina s. Op pagina 3 staat voor

Nadere informatie

Technische Thermodynamica 1, Deeltoets 2 Module 2, Energie en Materialen ( )

Technische Thermodynamica 1, Deeltoets 2 Module 2, Energie en Materialen ( ) Technische Thermodynamica 1, Deeltoets 2 Module 2, Energie en Materialen (201300156) Werktuigbouwkunde, B1 Faculteit der Construerende Technische Wetenschappen Universiteit Twente Datum: Oefentoets (TTD

Nadere informatie

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart uur Docenten: T. Savenije, B. Dam

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart uur Docenten: T. Savenije, B. Dam TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart 2017 13.30-15.00 uur Docenten: T. Savenije, B. Dam Dit tentamen bestaat uit 30 multiple-choice vragen Hiermee zijn in totaal 20 punten te verdienen Voor

Nadere informatie

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart uur Docenten: T. Savenije, B. Dam

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart uur Docenten: T. Savenije, B. Dam TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 7 maart 2017 13.30-15.00 uur Docenten: T. Savenije, B. Dam Dit tentamen bestaat uit 30 multiple-choice vragen Hiermee zijn in totaal 20 punten te verdienen Voor

Nadere informatie

Tentamen Moleculaire Simulaties - 8C November uur

Tentamen Moleculaire Simulaties - 8C November uur Tentamen Moleculaire Simulaties - 8C030 11 November 2008-14.00-17.00 uur Vier algemene opmerkingen: Het tentamen bestaat uit 6 opgaven verdeeld over 3 pagina's. Op pagina 3 staat voor iedere opgave het

Nadere informatie

en tot hetzelfde resultaat komen, na sommatie: (9.29)

en tot hetzelfde resultaat komen, na sommatie: (9.29) 9.11 KRINGPROCESSEN In deze paragraaf wordt nagegaan wat de invloed is van wrijving op een kringproces, i.h.b. wat is de invloed van wrijving op het thermisch rendement en koelfactor. Beschouw een kringproces

Nadere informatie

THERMODYNAMICA 2 (WB1224)

THERMODYNAMICA 2 (WB1224) THERMODYNAMICA 2 (WB1224) dinsdag 21 januari 2003 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit twee open vragen en 15 meerkeuzevragen. Voor de beantwoording van de meerkeuzevragen is een formulier

Nadere informatie

Thermodynamica 2 Thermodynamic relations of systems in equilibrium

Thermodynamica 2 Thermodynamic relations of systems in equilibrium Thermodynamica 2 Thermodynamic relations of systems in equilibrium Thijs J.H. Vlugt Engineering Thermodynamics Process and Energy Department Lecture 3 ovember 15, 2010 1 Today: Introductie van Gibbs energie

Nadere informatie

Hoofdstuk 12: Exergie & Anergie

Hoofdstuk 12: Exergie & Anergie Hoofdstuk : Exergie & Anergie. ENERGIEOMZEINGEN De eerste hoofdwet spreekt zich uit over het behoud van energie. Hierbij maakt zij geen onderscheid tussen de verschillende vormen van energie: inwendige

Nadere informatie

Tentamen Statistische Thermodynamica MS&T 27/6/08

Tentamen Statistische Thermodynamica MS&T 27/6/08 Tentamen Statistische Thermodynamica MS&T 27/6/08 Vraag 1. Toestandssom De toestandssom van een systeem is in het algemeen gegeven door de volgende uitdrukking: Z(T, V, N) = e E i/k B T. i a. Hoe is de

Nadere informatie

THERMODYNAMICA 2 (WB1224)

THERMODYNAMICA 2 (WB1224) THERMODYNAMICA 2 (WB1224) donderdag 2 februari 2006 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit twee of drie open vragen en 15 meerkeuzevragen. Voor de beantwoording van de meerkeuzevragen is

Nadere informatie

Hertentamen Statistische en Thermische Fysica II Woensdag 14 februari 2007 Duur: 3 uur

Hertentamen Statistische en Thermische Fysica II Woensdag 14 februari 2007 Duur: 3 uur Hertentamen Statistische en Thermische Fysica II Woensdag 14 februari 2007 Duur: 3 uur Vermeld op elk blad duidelijk je naam, studierichting, en evt. collegekaartnummer! (TIP: lees eerst alle vragen rustig

Nadere informatie

Werkcollege 3: evenwicht bij zuivere stoffen

Werkcollege 3: evenwicht bij zuivere stoffen Werkcollege 3: evenwicht bij zuivere stoffen Vraag 1 Devormings-vrijeenthalpie G f vanbr 2(g)enBr 2 (l)bedraagtrespectievelijk3.11kjmol 1 en 0 kjmol 1. Wat is de dampdruk van Br 2 (g) bij 298K? Een eenvoudig

Nadere informatie

Fysische Chemie Oefeningenles 2 Entropie. Warmtecapaciteit van het zeewater (gelijk aan zuiver water): C p,m = 75.29 J K 1 mol 1.

Fysische Chemie Oefeningenles 2 Entropie. Warmtecapaciteit van het zeewater (gelijk aan zuiver water): C p,m = 75.29 J K 1 mol 1. Fysische Chemie Oefeningenles 2 Entropie Vraag 1 Een matroos staat op een schip en pinkt een traan weg. De traan valt in zee. Wat is de entropieverandering van het universum? Maak logische schattingen

Nadere informatie

TENTAMEN THERMODYNAMICA 1 Wb juni :00-12:00

TENTAMEN THERMODYNAMICA 1 Wb juni :00-12:00 TENTAMEN THERMODYNAMICA 1 Wb 4100 25 juni 2010 9:00-12:00 Linksboven op elk blad vermelden: naam, studienummer en studierichting. Puntentelling: het tentamen bestaat uit 14 meerkeuzevragen en twee open

Nadere informatie

Scheidingstechnologie by M.A. van der Veen and B. Eral

Scheidingstechnologie by M.A. van der Veen and B. Eral Scheidingstechnologie 2017 by M.A. van der Veen and B. Eral Praktische zaken Docenten: M.A. van der Veen & Burak Eral Rooster: zie Brightspace Boeken: Thermodynamics and Statistica Mechanics, M. Scott

Nadere informatie

Tentamen Statistische Thermodynamica MST 19/6/2014

Tentamen Statistische Thermodynamica MST 19/6/2014 Tentamen Statistische Thermodynamica MST 19/6/214 Vraag 1. Soortelijke warmte ( heat capacity or specific heat ) De soortelijke warmte geeft het vermogen weer van een systeem om warmte op te nemen. Dit

Nadere informatie

Vraagstukken Thermodynamica W. Buijze H.C. Meijer E. Stammers W.H. Wisman

Vraagstukken Thermodynamica W. Buijze H.C. Meijer E. Stammers W.H. Wisman Vraagstukken Thermodynamica W. Buijze H.C. Meijer E. Stammers W.H. Wisman VSSD VSSD Eerste druk 1989 Vierde druk 1998, verbeterd 2006-2010 Uitgegeven door de VSSD Leeghwaterstraat 42, 2628 CA Delft, The

Nadere informatie

Elke opgave moet op een afzonderlijk blad worden ingeleverd.

Elke opgave moet op een afzonderlijk blad worden ingeleverd. HERMODYNAMICA (WB14) 4 augustus 011 18.30-1.30 u. AANWIJZINGEN Het tentamen bestaat uit twee open vragen op 7 bladzijden. Het tentamen is een GESLOEN BOEK tentamen. Dit betekent dat tijdens het tentamen

Nadere informatie

Technische ThermoDynamica Samenvatter: Maarten Haagsma /6 Temperatuur: T = ( /U / /S ) V,N

Technische ThermoDynamica Samenvatter: Maarten Haagsma /6 Temperatuur: T = ( /U / /S ) V,N 2001-1/6 Temperatuur: T = ( /U / /S ) dw = -PdV Druk: P = - ( /U / /V ) S,N dq = TdS Chemisch potentiaal: = ( /U / /N ) S,V Energie representatie: du = TdS + -PdV + dn Entropie representatie: ds = du/t

Nadere informatie

THERMODYNAMICA 2 (WB1224) 14 april u.

THERMODYNAMICA 2 (WB1224) 14 april u. wb1224, 14 april 2010 1 THERMODYNAMICA 2 (WB1224) 14 april 2010 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit drie open vragen en 14 meerkeuzevragen. Voor de beantwoording van de meerkeuzevragen

Nadere informatie

TENTAMEN THERMODYNAMICA 1 Wb juni :00-12:00

TENTAMEN THERMODYNAMICA 1 Wb juni :00-12:00 TENTAMEN THERMODYNAMICA 1 Wb 4100 19 juni 2009 9:00-12:00 Rechts boven op elk blad vermelden: naam, studienummer en studierichting. Puntentelling: het tentamen bestaat uit 14 meerkeuzevragen en twee open

Nadere informatie

Deel 2 Chemische thermodynamica

Deel 2 Chemische thermodynamica 1 Deel 2 Chemische thermodynamica 2 Scheikunde bestudeert materie eigenschappen van materie veranderingen van materie energieveranderingen Experimenteel meetbare grootheden P, T, V, n (reactiestoichiometrie)

Nadere informatie

VAK: Thermodynamica - A Set Proeftoets 01

VAK: Thermodynamica - A Set Proeftoets 01 VAK: Thermodynamica - A Set Proeftoets 01 Thermodynamica - A - PROEFTOETS- set 01 - E_2016 1/8 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare tijd: 100 minuten Uw naam:... Klas:...

Nadere informatie

TENTAMEN THERMODYNAMICA 1 Wb juni :00-12:00

TENTAMEN THERMODYNAMICA 1 Wb juni :00-12:00 TENTAMEN THERMODYNAMICA 1 Wb 4100 24 juni 2011 9:00-12:00 Linksboven op elk blad vermelden: naam, studienummer en studierichting. Puntentelling: het tentamen bestaat uit 14 meerkeuzevragen en twee open

Nadere informatie

REWIC-A: Thermodynamica A : : : Opleiding Module Examenset. REWIC-A Thermodynamica A 03. Uw naam :... Begintijd :... Eindtijd :...

REWIC-A: Thermodynamica A : : : Opleiding Module Examenset. REWIC-A Thermodynamica A 03. Uw naam :... Begintijd :... Eindtijd :... Opleiding Module Examenset : : : REWIC-A Thermodynamica A 03 Uw naam :... Begintijd :... Eindtijd :... Lees onderstaande instructies zorgvuldig door: 1. Beschikbare tijd : 100 minuten 2. Aantal vragen

Nadere informatie

THERMODYNAMICA 2 (WB1224) Opgave 3 moet op een afzonderlijk blad worden ingeleverd.

THERMODYNAMICA 2 (WB1224) Opgave 3 moet op een afzonderlijk blad worden ingeleverd. wb1224, 21 januari 2010 1 THERMODYNAMICA 2 (WB1224) 21 januari 2009 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit drie open vragen en 14 meerkeuzevragen. Voor de beantwoording van de meerkeuzevragen

Nadere informatie

Notaties 13. Voorwoord 17

Notaties 13. Voorwoord 17 INHOUD Notaties 13 Voorwoord 17 Hoofdstuk : Ideale Gassen. Definitie 19. Ideale gaswet 19. Temperatuur 20. Soortelijke warmte 20. Mengsels van ideale gassen 21 1.5.1 De wet van Dalton 21 1.5.2 De equivalente

Nadere informatie

Voorbeeld EXAMEN Thermodynamica OPEP Niveau 4. Vraag 1: Van een ideaal gas is gegeven dat de dichtheid bij 0 C en 1 bara, 1,5 kg/m 3 bedraagt.

Voorbeeld EXAMEN Thermodynamica OPEP Niveau 4. Vraag 1: Van een ideaal gas is gegeven dat de dichtheid bij 0 C en 1 bara, 1,5 kg/m 3 bedraagt. Voorbeeld EXAMEN Thermodynamica OPEP Niveau 4 Vraag : Van een ideaal gas is gegeven dat de dichtheid bij 0 C en bara,,5 kg/m bedraagt. Bereken: (0) a. De specifieke gasconstante R s. (0) b. De druk die

Nadere informatie

-- zie vervolg volgende pagina --

-- zie vervolg volgende pagina -- PT-1 hertentamen, 13-08-2013, 9:00-12:00 Cursus: 4051PRTE1Y Procestechnologie 1 Docenten: F. Kapteijn & V. van Steijn Lees elke vraag goed door voordat je begint Schrijf op elk blad in ieder geval je naam

Nadere informatie

Fysische Chemie Werkcollege 5: Binaire mengsels-oplosbaarheid

Fysische Chemie Werkcollege 5: Binaire mengsels-oplosbaarheid Fysische Chemie Werkcollege 5: Binaire mengsels-oplosbaarheid Vraag Gegeven is de volgende cis-trans isomerisatiereactie Et: C 2 H 5, Pr: C 3 H 5 ): cis-ethc=chprg) trans-ethc=chprg) Met H 0 300 = -3.8

Nadere informatie

PT-1 tentamen, , 9:00-12:00. Cursus: 4051PRTE1Y Procestechnologie 1 Docenten: F. Kapteijn & V. van Steijn

PT-1 tentamen, , 9:00-12:00. Cursus: 4051PRTE1Y Procestechnologie 1 Docenten: F. Kapteijn & V. van Steijn PT-1 tentamen, 26-06-2013, 9:00-12:00 Cursus: 4051PRTE1Y Procestechnologie 1 Docenten: F. Kapteijn & V. van Steijn Lees elke vraag goed door voordat je begint Schrijf op elk blad in ieder geval je naam

Nadere informatie

TENTAMEN THERMODYNAMICA 1 Wb april :00-12:00

TENTAMEN THERMODYNAMICA 1 Wb april :00-12:00 TENTAMEN THERMODYNAMICA 1 Wb 4100 16 april 2010 9:00-12:00 Linksboven op elk blad vermelden: naam, studienummer en studierichting. Puntentelling: het tentamen bestaat uit 14 meerkeuzevragen en twee open

Nadere informatie

PT-1 tentamen, , 9:00-12:00. Cursus: 4051PRTE1Y Procestechnologie 1 Docenten: F. Kapteijn & V. van Steijn

PT-1 tentamen, , 9:00-12:00. Cursus: 4051PRTE1Y Procestechnologie 1 Docenten: F. Kapteijn & V. van Steijn PT-1 tentamen, 26-06-2013, 9:00-12:00 Cursus: 4051PRTE1Y Procestechnologie 1 Docenten: F. Kapteijn & V. van Steijn Lees elke vraag goed door voordat je begint Schrijf op elk blad in ieder geval je naam

Nadere informatie

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 6 juli 2012, uur

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 6 juli 2012, uur Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 6 juli 2012, 14.00-17.00 uur Het tentamen bestaat uit drie, de hele stof omvattende opgaven, onderverdeeld in 15 deelopgaven die bij

Nadere informatie

Eerste Hoofdwet: Deel 1

Eerste Hoofdwet: Deel 1 Eerste Hoofdwet: Deel 1 Jeroen Heulens & Bart Klaasen Oefenzitting 1 Academiejaar 2009-2010 Oefenzitting 1 - Thermodynamica - (2) Praktische afspraken Oefenzittingen 6 zittingen van 2 uren, 2 reeksen en

Nadere informatie

THERMODYNAMICA 2 (WB1224)

THERMODYNAMICA 2 (WB1224) wb1224, 22 januari 2009 1 THERMODYNAMICA 2 (WB1224) 22 januari 2009 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit twee of drie open vragen en 14 meerkeuzevragen. Voor de beantwoording van de meerkeuzevragen

Nadere informatie

oefenopgaven wb oktober 2003

oefenopgaven wb oktober 2003 oefenopgaven wb1224 2 oktober 2003 Opgave 1 Stoom met een druk van 38 bar en een temperatuur van 470 C wordt geëxpandeerd in een stoom-turbine tot een druk van 0,05 bar. De warmteuitwisseling van de turbine

Nadere informatie

Thermodynamica - A - PROEFTOETS- AT01 - OPGAVEN.doc 1/7

Thermodynamica - A - PROEFTOETS- AT01 - OPGAVEN.doc 1/7 VAK: Thermodynamica A Set Proeftoets AT01 Thermodynamica - A - PROEFTOETS- AT01 - OPGAVEN.doc 1/7 DIT EERST LEZEN EN VOORZIEN VAN NAAM EN LEERLINGNUMMER! Beschikbare tijd: 100 minuten Uw naam:... Klas:...

Nadere informatie

Bereken de luchtdruk in bar op 3000 m hoogte in de Franse Alpen. De soortelijke massa van lucht is 1,2 kg/m³. De druk op zeeniveau bedraagt 1 bar.

Bereken de luchtdruk in bar op 3000 m hoogte in de Franse Alpen. De soortelijke massa van lucht is 1,2 kg/m³. De druk op zeeniveau bedraagt 1 bar. 7. Gaswetten Opgave 1 Opgave 2 Opgave 3 Opgave 4 Opgave 5 Opgave 6 Opgave 7 Bereken de luchtdruk in bar op 3000 m hoogte in de Franse Alpen. De soortelijke massa van lucht is 1,2 kg/m³. De druk op zeeniveau

Nadere informatie

Tentamen Thermodynamica

Tentamen Thermodynamica Tentamen Thermodynamica 4B420 3 november 2011, 9.00 12.00 uur Dit tentamen bestaat uit 4 opeenvolgend genummerde opgaven, die alle even zwaar worden beoordeeld. Advies: besteed daarom tenminste een half

Nadere informatie

THERMODYNAMICA 2 (WB1224)

THERMODYNAMICA 2 (WB1224) THERMODYNAMICA 2 (WB1224) donderdag 15 januari 2004 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit twee open vragen en 15 meerkeuzevragen. Voor de beantwoording van de meerkeuzevragen is een formulier

Nadere informatie

Vraagstukken Thermische Fysica Set 1

Vraagstukken Thermische Fysica Set 1 Vraagstukken Thermische Fysica Set 1 Opgave 0 De Eifeltoren werd geconstrueerd in 1889 naar het ontwerp van Alexandre Gustave Eiffel. De toren is gemaakt uit staal en is bij 22 C 301 m hoog. Wat is de

Nadere informatie

De twee snelheidsconstanten hangen op niet identieke wijze af van de temperatuur.

De twee snelheidsconstanten hangen op niet identieke wijze af van de temperatuur. In tegenstelling tot een verandering van druk of concentratie zal een verandering in temperatuur wel degelijk de evenwichtsconstante wijzigen, want C k / k L De twee snelheidsconstanten hangen op niet

Nadere informatie

Oefening-examen fysische chemie 2e bachelor materiaalkunde & chemische ingenieurstechnieken

Oefening-examen fysische chemie 2e bachelor materiaalkunde & chemische ingenieurstechnieken Oefening-examen fysische chemie 2e bachelor materiaalkunde & chemische ingenieurstechnieken Prof. Zeger Hens 16 juni 2009 08:30 Vraag 1 Magnesium (Mg) is een metaal dat tegenwoordig bestudeerd wordt als

Nadere informatie

Biofysische Scheikunde: Statistische Mechanica

Biofysische Scheikunde: Statistische Mechanica Biofysische Scheikunde: Statistische Mechanica De Boltzmannverdeling Vrije Universiteit Brussel 4 december 2009 Outline 1 De Boltzmannverdeling 2 Outline De Boltzmannverdeling 1 De Boltzmannverdeling 2

Nadere informatie

v gem v rms f(v) v (m/s) 0.0020 v α v β 0.0015 f(v) 0.0010 0.0005 v (m/s)

v gem v rms f(v) v (m/s) 0.0020 v α v β 0.0015 f(v) 0.0010 0.0005 v (m/s) Uitwerkingen Hertentamen E.K.T., november. We berekenen eerst het volume van de gases: V : :6 : m. Bij aanvang is de es gevuld tot een druk van :4 6 Pa bij een temperatuur van 9 K. We berekenen het aantal

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT WERKTUIGBOUWKUNDE DIVISIE COMPUTATIONAL AND EXPERIMENTAL MECHANICS

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT WERKTUIGBOUWKUNDE DIVISIE COMPUTATIONAL AND EXPERIMENTAL MECHANICS TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT WERKTUIGBOUWKUNDE DIVISIE COMPUTATIONAL AND EXPERIMENTAL MECHANICS Tentamen Polymeerverwerking (4K550) donderdag 5 juli 2007, 14:00-17:00. Bij het tentamen mag

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT WERKTUIGBOUWKUNDE DIVISIE COMPUTATIONAL AND EXPERIMENTAL MECHANICS

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT WERKTUIGBOUWKUNDE DIVISIE COMPUTATIONAL AND EXPERIMENTAL MECHANICS TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT WERKTUIGBOUWKUNDE DIVISIE COMPUTATIONAL AND EXPERIMENTAL MECHANICS Tentamen Polymeerverwerking (4K550) vrijdag 8 oktober 2004, 09:00-12:00. Bij het tentamen

Nadere informatie

Inhoud. Inleiding 13. Noordhoff Uitgevers bv

Inhoud. Inleiding 13. Noordhoff Uitgevers bv Inhoud Inleiding 13 1 Algemene begrippen 15 1.1 Eenhedenstelsel 16 1.1.1 Druk en vermogen 18 1.1.2 Volume en dichtheid 19 1.2 Soortelijke warmte 19 1.2.1 Gemiddelde soortelijke warmte 20 1.3 Verbrandingswaarde

Nadere informatie

Toestandsgrootheden en energieconversie

Toestandsgrootheden en energieconversie Toestandsgrootheden en energieconversie Dr.ir. Gerard P.J. Dijkema Faculty of Technology, Policy and Management Industry and Energy Group PO Box 5015, 2600 GA Delft, The Netherlands Eemscentrale, Eemshaven,

Nadere informatie

Introductie 1) 2) 3) 4) 5) J79 - Turbine Engines_ A Closer Look op youtube: toets form 1 okt 2013

Introductie 1) 2) 3) 4) 5) J79 - Turbine Engines_ A Closer Look op youtube:   toets form 1 okt 2013 Introductie zondag 4 september 2016 22:09 1) 2) 3) 4) 5) Inleiding: Wat gaan we doen? introductiefilm over onderdelen J79 herhaling hoofdonderdelen en toestands-diagrammen. Natuurkunde wetten toegepast

Nadere informatie

Hoofdstuk 1: Ideale Gassen. Hoofdstuk 2: Warmte en arbeid. Hoofdstuk 3: Toestandsveranderingen bij ideale gassen

Hoofdstuk 1: Ideale Gassen. Hoofdstuk 2: Warmte en arbeid. Hoofdstuk 3: Toestandsveranderingen bij ideale gassen Hoofdstuk 1: Ideale Gassen 1.1 Definitie 1 1.2 Ideale gaswet 1 1.3 Temperatuur 1 1.4 Soortelijke warmte 2 1.5 Mengsels van ideale gassen 1.5.1 Wet van Dalton 3 1.5.2 Equivalente molaire massa 4 1.5.3 Soortelijke

Nadere informatie

Dampdruk, verdampingswarmte en verdampingsentropie van chloroform

Dampdruk, verdampingswarmte en verdampingsentropie van chloroform Dampdruk, verdampingswarmte en verdampingsentropie van chloroform Bettens Stijn en Bronders Piet 17 november 2010 1 Inhoudsopgave 1 Praktisch Gedeelte 3 1.1 heorie........................................

Nadere informatie

BIOFYSICA: WERKZITTING 10 (Oplossingen) THERMOFYSICA

BIOFYSICA: WERKZITTING 10 (Oplossingen) THERMOFYSICA 1ste Kandidatuur ARTS of TANDARTS Academiejaar 2002-2003 Oefening 2 (p49) BIOFYSICA: WERKZITTING 10 (Oplossingen) THERMOFYSICA Met een stalen rolmeter meten we bij 10 C de lengte van een koperen staaf.

Nadere informatie

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 5 juli 2013, uur

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 5 juli 2013, uur Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 5 juli 2013, 9.00-12.00 uur Het tentamen bestaat uit drie, de hele stof omvattende opgaven, onderverdeeld in 15 deelopgaven die bij

Nadere informatie

Doel is: Verdieping m.b.v. 2 REWIC Readers en koppeling aan de natuurkunde-les. periode 3 Rendementsverbetering door aftapvoorwarming en herverhitting

Doel is: Verdieping m.b.v. 2 REWIC Readers en koppeling aan de natuurkunde-les. periode 3 Rendementsverbetering door aftapvoorwarming en herverhitting 3 C=meng, E, en B=maint Pagina 1 programma 3e jaar woensdag 27 januari 2016 12:31 Doel is: Verdieping m.b.v. 2 REWIC Readers en koppeling aan de natuurkundeles periode 3 Rendementsverbetering door aftapvoorwarming

Nadere informatie

kringloop TS diagram berekeningen. omgevingsdruk / aanzuigdruk na compressor na de verbrandingskamers na de turbine berekend:

kringloop TS diagram berekeningen. omgevingsdruk / aanzuigdruk na compressor na de verbrandingskamers na de turbine berekend: kringloop vrijdag 12 september 2014 10:33 TS diagram berekeningen. p1 p2 p3 p4 omgevingsdruk / aanzuigdruk na compressor na de verbrandingskamers na de turbine berekend: q toe. q af, w en rendement theoretisch

Nadere informatie

Welke van de drie onderstaande. figuren stellen een isobare toestandsverandering van een ideaal gas voor?

Welke van de drie onderstaande. figuren stellen een isobare toestandsverandering van een ideaal gas voor? jaar: 1989 nummer: 01 Welke van de drie onderstaande. figuren stellen een isobare toestandsverandering van een ideaal gas voor? o a. 1 o b. 1 en 2 o c. 1 en 3 o d. 1, 2 en 3 jaar: 1989 nummer: 02 De volumeuitzetting

Nadere informatie

De stoominstallatie met: ketel, turbine, condensor en voedingspomp. Eigenlijk wordt maar weinig energie nuttig gebruikt in een installatie:

De stoominstallatie met: ketel, turbine, condensor en voedingspomp. Eigenlijk wordt maar weinig energie nuttig gebruikt in een installatie: Si Klas 3 Pagina 1 Inleiding 3F maandag 29 januari 2018 11:03 De stoominstallatie met: ketel, turbine, condensor en voedingspomp. Eigenlijk wordt maar weinig energie nuttig gebruikt in een installatie:

Nadere informatie

Hoofdstuk 9: Wrijving

Hoofdstuk 9: Wrijving Hoofdstuk 9: Wrijving 9. EERSTE HOOFDWET VOOR GESLOTEN SYSTEMEN 9.. WRIJVINGSARBEID W In de praktijk ondersheidt men tee vershillende soorten rijving: anneer een zuiger beeegt in een ilinder rijft de zuiger

Nadere informatie

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 en Statistische Fysica 3CC augustus 2010,

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 en Statistische Fysica 3CC augustus 2010, Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 en Statistische Fysica 3CC10 23 augustus 2010, 09.00-12.00 uur Het tentamen bestaat uit drie, de hele stof omvattende opgaven, onderverdeeld

Nadere informatie

2 Van 1 liter vloeistof wordt door koken 1000 liter damp gemaakt.

2 Van 1 liter vloeistof wordt door koken 1000 liter damp gemaakt. Domein D: Warmteleer Subdomein: Gas en vloeistof 1 niet expliciet genoemd in eindtermen, moet er een groep vragen gemaakt worden waarin die algemene zaken zijn vervat? zie ook mededelingen voor eindexamendocenten.

Nadere informatie

NIVEAU 5. STOOMTECHNIEK EPT: Proefexamen

NIVEAU 5. STOOMTECHNIEK EPT: Proefexamen NIVEAU 5. STOOMTECHNIEK EPT: Proefexamen TIJD 2 UUR:TOEGESTANE HULPMIDDELEN, REKENMACHINE, STOOMTABEL EN h-s en T-s DIAGRAM. Wat wordt verstaan onder het triple punt? 2. Bereken de entropie van natte stoom

Nadere informatie

Tentamen Verbrandingstechnologie d.d. 9 maart 2009

Tentamen Verbrandingstechnologie d.d. 9 maart 2009 Tentamen Verbrandingstechnologie d.d. 9 maart 2009 Maak elke opgave op een afzonderlijk vel papier Diktaat mag gebruikt worden, aantekeningen niet Succes! Opgave 1: Diversen (a) Geef de algemene reactie

Nadere informatie

Eindantwoorden PT-1 toets , 8:45-10:30

Eindantwoorden PT-1 toets , 8:45-10:30 Eindantwoorden PT-1 toets 2-28-05-2014, 8:45-10:30 Cursus: 4051PRTE1Y Procestechnologie 1 Docenten: F. Kapteijn & V. van Steijn Lees elke vraag goed door voordat je begint. Schrijf op elk blad je naam

Nadere informatie

Eindtoets 3BTX1: Thermische Fysica. Datum: 12 augustus 2014 Tijd: uur Locatie: Matrix Atelier 3

Eindtoets 3BTX1: Thermische Fysica. Datum: 12 augustus 2014 Tijd: uur Locatie: Matrix Atelier 3 Eindtoets 3BTX: Thermische Fysica Datum: augustus 04 Tijd: 4.00-7.00 uur Locatie: Matrix Atelier 3 Deze toets bestaat uit 3 opgaven. Begin de beantwoording van elke opgave op een nieuw antwoordvel. Een

Nadere informatie

Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1

Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1 Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1 Opgave 1 Botsend blokje (5p) Een blok met een massa van 10 kg glijdt over een glad oppervlak. Hoek D botst tegen een klein vastzittend blokje S

Nadere informatie

Thermodynamica 2 Thermodynamic relations of systems in equilibrium

Thermodynamica 2 Thermodynamic relations of systems in equilibrium Thermodnamica 2 Thermodnamic relations of sstems in equilibrium Thijs J.H. Vlugt Engineering Thermodnamics Process and Energ Department Lecture 2 November 11, 2010 1 Toda: Partiële afgeleiden, Mawell relaties,

Nadere informatie

Exact periode Youdenplot Krachten Druk

Exact periode Youdenplot Krachten Druk Exact periode 10.2 Youdenplot Krachten Druk Youdenplot. De Youdenplot wordt uitgelegd aan de hand van een presentatie. Exact Periode 10.2 2 Krachten. Een kracht kan een voorwerp versnellen of vervormen.

Nadere informatie

De verliezen van /in het systeem zijn ook het gevolg van energietransformaties!

De verliezen van /in het systeem zijn ook het gevolg van energietransformaties! Centrale Verwarmingssysteem Uitwerking van de deelvragen 1 ) Wat zijn de Energietransformaties in het systeem? De Energietransformaties die optreden in het CV-systeem zijn a. Boven de brander c.q. in de

Nadere informatie

Tentamen Thermodynamica

Tentamen Thermodynamica Tentamen Thermodynamica 4B420 25 januari 2011, 14.00 17.00 uur Dit tentamen bestaat uit 4 opeenvolgend genummerde opgaven, die alle even zwaar worden beoordeeld. De opgaven dienen duidelijk leesbaar beantwoord

Nadere informatie

Toets02 Algemene en Anorganische Chemie. 30 oktober 2015 13:00-15:30 uur Holiday Inn Hotel, Leiden

Toets02 Algemene en Anorganische Chemie. 30 oktober 2015 13:00-15:30 uur Holiday Inn Hotel, Leiden Toets02 Algemene en Anorganische Chemie 30 oktober 2015 13:00-15:30 uur Holiday Inn Hotel, Leiden Naam: Studentnummer Universiteit Leiden: Dit is de enige originele versie van jouw tentamen. Het bevat

Nadere informatie

IPT hertentamen - 03-07-2015, 9:00-12:00

IPT hertentamen - 03-07-2015, 9:00-12:00 IPT hertentamen - 03-07-2015, 9:00-12:00 Cursus: 4051IPTECY Inleiding ProcesTechnologie Docenten: F. Kapteijn & V. van Steijn Lees elke vraag volledig door voordat je aan (a) begint. Schrijf op elk blad

Nadere informatie

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 15 augustus 2011, 9.00-12.00 uur

Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65. 15 augustus 2011, 9.00-12.00 uur Technische Universiteit Eindhoven Tentamen Thermische Fysica II 3NB65 15 augustus 2011, 9.00-12.00 uur Het tentamen bestaat uit drie, de hele stof omvattende opgaven, onderverdeeld in 15 deelopgaven die

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT WERKTUIGBOUWKUNDE DIVISIE COMPUTATIONAL AND EXPERIMENTAL MECHANICS

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT WERKTUIGBOUWKUNDE DIVISIE COMPUTATIONAL AND EXPERIMENTAL MECHANICS TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT WERKTUIGBOUWKUNDE DIVISIE COMPUTATIONAL AND EXPERIMENTAL MECHANICS Tentamen Polymeerverwerking (4K550) vrijdag 2 juli 2004, 14:00-17:00. Bij het tentamen mag

Nadere informatie

Het aantal kmol is evenredig met het volume dat dat gas inneemt, bij een bepaalde druk en temperatuur

Het aantal kmol is evenredig met het volume dat dat gas inneemt, bij een bepaalde druk en temperatuur Hoofdstuk 1: OPDRACHTEN blz 32/33 OPDRACHT 1 En Het aantal kmol is evenredig met het volume dat dat gas inneemt, bij een bepaalde druk en temperatuur OPDRACHT 2 1,867 m 3 CO 3,512 m 3 N 2 28 kg/kmol 28

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT WERKTUIGBOUWKUNDE DIVISIE COMPUTATIONAL AND EXPERIMENTAL MECHANICS

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT WERKTUIGBOUWKUNDE DIVISIE COMPUTATIONAL AND EXPERIMENTAL MECHANICS TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT WERKTUIGBOUWKUNDE DIVISIE COMPUTATIONAL AND EXPERIMENTAL MECHANICS Tentamen Polymeerverwerking (4K550) dinsdag 4 juli 2006, 14:00-17:00. Bij het tentamen mag

Nadere informatie

10 Materie en warmte. Onderwerpen. 3.2 Temperatuur en warmte.

10 Materie en warmte. Onderwerpen. 3.2 Temperatuur en warmte. 1 Materie en warmte Onderwerpen - Temperatuur en warmte. - Verschillende temperatuurschalen - Berekening hoeveelheid warmte t.o.v. bepaalde temperatuur. - Thermische geleidbaarheid van een stof. - Warmteweerstand

Nadere informatie

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 31 maart 2016 13.30-16.30 uur Docenten: L. de Smet, B. Dam

TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 31 maart 2016 13.30-16.30 uur Docenten: L. de Smet, B. Dam TOETS CTD voor 1 ste jaars MST (4051CHTHEY) 31 maart 2016 13.30-16.30 uur Docenten: L. de Smet, B. Dam Naam:. Studentnummer Leiden:... Aantal ingeleverde vellen:.. Dit tentamen bestaat uit 5 open vragen

Nadere informatie

THERMODYNAMICA 2 (WB1224)

THERMODYNAMICA 2 (WB1224) THERMODYNAMICA 2 (WB1224) 24 januari 2012 14.00-17.00 u. AANWIJZINGEN Het tentamen bestaat uit drie open vragen op 10 bladzijden. Het tentamen is een GESLOTEN BOEK tentamen. Dit betekent dat tijdens het

Nadere informatie

1 Algemene begrippen. THERMOCHEMIE p. 1

1 Algemene begrippen. THERMOCHEMIE p. 1 TERMOCEMIE p. 1 1 Algemene begrippen De chemische thermodynamica bestudeert de energieveranderingen en energieuitwisselingen bij chemische processen. Ook het voorspellen van het al of niet spontaan verloop

Nadere informatie

Het Ts diagram van water en stoom

Het Ts diagram van water en stoom PvB-7 Si Pagina 1 Het Ts diagram van water en stoom woensdag 1 februari 2017 12:51 Rendement uit verhouding van oppervlakten Het oppervlak binnen de kringloop (1-2-3-4)= nuttig gebruikte warmte Oppervlak

Nadere informatie