UNIFORM EINDEXAMEN MULO 2014
|
|
|
- Loedoer Nawien
- 8 jaren geleden
- Aantal bezoeken:
Transcriptie
1 MINISTERIE VN ONDERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINDEXMEN MULO 007 VK : WISKUNDE- DTUM: MNDG 09 JULI 007 TIJD : UUR DEZE TK ESTT UIT 5 ITEMS. INDIEN NIET NDERS VERMELD, IS ELKE VRIELE EEN ELEMENT VN Gegeven de verzameling: = {x 9 x < }. is gelijk aan {,,0,,} {,0,} C {,,0,} D {, 0,,} I 0 a = a II 6a : a = a Voor bovenstaande beweringen geldt alleen I is waar. alleen II is waar. C I en II zijn beide waar. D I en II zijn beide niet waar. (x y) ( x y ) is gelijk aan 4 fig. I fig. II x y x xy + y C x + y D x + xy y 5 4x + y (x y) is gelijk aan fig. III fig. IV wordt door arcering aangegeven in figuur I II C III D IV x 5x C x + 4y D 5x + 4y 7 is gelijk aan 6 6 C 4 6 D 8
2 7 Voor a = en b = is a b gelijk aan 6 8 C 8 D 6 Van x + 4x = 0 is de discriminant gelijk aan 8 4 C 8 D ls voor de discriminant D van een tweedegraadsvergelijking geldt D 0, dan heeft deze vergelijking geen oplossing precies oplossing C precies twee oplossingen D één of twee oplossingen Eén der wortels van de vergelijking x x 4 = 0 is 5 5 C + 5 D De oplossingsverzameling van x(x 9) = 8 is { 8, 0} { 8, 9} C {, 8} D { 8, } 5 = {,,,4,5,6,}en f is de functie van naar. V = {(,),(,7),(,),(6,4),(5,)}. V is de verzameling van alle geordende paren van deze functie. 0 I f is een afbeelding. x + 0x = (x + 0) (x ) = 0 (x + 0) (x + ) = 0 C (x + ) (x ) = 0 D (x + ) (x + ) = 0 x 6x 6 = 0 (x ) = 0 (x ) 5 = 0 C (x ) = 0 D (x ) + = 0 (x ) = 0 x 9 = 0 x + 9 = 0 C x x + 9 = 0 D x 6x + 9 = 0 II Er zijn elementen van het domein, die ook in het bereik voorkomen. Voor bovenstaande beweringen geldt alleen I is waar. alleen II is waar. C I en II zijn beide waar. D I en II zijn beide niet waar. 6 Gegeven de functie f : x f(6) f() = 4 0 C 0 D 5
3 7 De grafiek van de functie f : x a (x + ) + b is een bergparabool. Noem alle mogelijke waarden van a en b waarvoor dit geldt. a < 0 b > 0 a < 0 b C a > 0 b < 0 D a > 0 b 8 Gegeven de functie f : x x van 9 naar. Welk van de onderstaande elementen behoort tot het domein van f? Gegeven de functie f : x x 5x 6. De grafiek van f snijdt de X-as in de punten (,0) en (,0) (,0) en ( 6,0) C (,0) en (,0) D (,0) en (6,0) Van welke vergelijking is de oplossingsverzameling gelijk aan? x + x = 0 x x = 0 C x + = x + D x = x C D 9 Gegeven de functie f : x x + x +. De uiterste functiewaarde van f is m. x + x < 6 x < 6 x > 6 C x < 6 D x > 6 4 Voor m geldt m is een minimum en m > 0 m is een maximum en m > 0 C m is een minimum en m < 0 D m is een maximum en m < 0 0 Gegeven de functie f : x x + b en g : x ax +. De grafieken van f en g snijden elkaar loodrecht op de Y-as. Voor a en b geldt a = b = a = b = C a = b = D a = b = 4x + x + 9 = x. 5 De oplossingsverzameling van deze vergelijking is gelijk aan { 5} { } C {} D {5} 5 4x ( x + 6) = 4 (x ) + 4(x + ) 6x = 0 x + 6x + = 0 x + 8 C 6x + = x + 4 D 6x = x +
4 Gegeven het stelsel 6 x + 4y = (x ) + (y + ) = 0 8 De oplossingsverzameling is {(p,q)} Voor p en q geldt: p < 0 q < 0 p < 0 q > 0 C p > 0 q < 0 D p > 0 q > O Voor het gearceerde gebied in deze tekening geldt {(x,y) y x y x + x 0} {(x,y) y x y x + x 0} C {(x,y) y x y x + y 0} D {(x,y) y x y x + y 0} Op de lijn l : y = x wordt de translatie toegepast. Het beeld lijn l. De vergelijking van l kan zijn y = x 8 y = x 4 C y = x D y = x + 4
5 9 0 Q ovenstaande driehoek is gelijkzijdig. Q staat loodrecht op de overstaande zijde. Q wordt om gedraaid over 0. Q is het beeldpunt van Q. Gegeven de frequentietabel waarnemingsgetal 4 frequentie 5 De modus is p en het aantal waarnemingsgetallen is q. Voor p en q geldt p = 4 q = p = 4 q = 7 C p = 5 q = D p = 5 q = 7 Q Q Q Q In welke rij van waarnemingsgetallen is 6 de mediaan? figuur I figuur II Q Q Q Q C D figuur III figuur IV Gegeven de frequentietabel met p > 0 In welke figuur is de rotatie goed weergegeven? in figuur I in figuur II C in figuur III D in figuur IV q is de mediaan. Voor q geldt waarnemingsgetal a b frequentie p p q = a q = b C q = D q = a + b p a + b
6 4 Gegeven zijn de punten (5, 4) en (, 4) De lengte van het lijnstuk is gelijk aan C 0 D 06 Gegeven het lijndiagram. Het gemiddelde is gelijk aan 5 C D a + b + c a + b + c a + b + c 6 a + b + c 6 C D Van C zijn gegeven: = 90, D = D = en C = 0. Omtrek C = p en oppervlakte DC is q. Voor p en q geldt p = q = p = q = 4 C p = 4 q = D p = 4 q = 4
UNIFORM EINDEXAMEN MULO 2013
MINISTERIE VN NDERWIJS EN VLKSNTWIKKELING EXMENUREU UNIFRM EINDEXMEN MUL 2013 VK : WISKUNDE DTUM : MNDG 08 JULI 2013 TIJD : 09.30 11.30 UUR ------------------------------------------------------------------------------------------------------------------------
UNIFORM EINDEXAMEN MULO 2011
MINISTERIE VN ONDERWIJS EN VOLKSONTWIKKELING EXMENUREU VK : WISKUNDE - DTUM: VRIJDG 08 JULI 0 TIJD : 09.0.0 UUR DEZE TK ESTT UIT 5 ITEMS. UNIFORM EINDEXMEN MULO 0 INDIEN NIET NDERS VERMELD, IS ELKE VRIELE
UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2009
MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 009 VK : WISKUNE TUM : VRIJG 0 JULI 009 TIJ : 09.45.45 UUR ------------------------------------------------------------------------------------------------------------------------
UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008
MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 008 VK : WISKUNE TUM : ONERG 0 JULI 008 TIJ : 09.45.5 UUR (MULO-III KNITEN) 09.45.45 UUR (MULO-IV
UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2009
MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 009 VK : WISKUNE TUM : VRIJG 0 JULI 009 TIJ : 09.45.45 UUR ------------------------------------------------------------------------------------------------------------------------
UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2007
MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 007 VK : WISKUNE TUM: WOENSG 04 JULI 007 TIJ : 09.45.5 UUR (TOELTING VWO/HVO/NTIN) 09.45.45
UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2013
MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 2013 VK : WISKUNE TUM : WOENSG 03 JULI 2013 TIJ : 09.45 11.25 UUR (MULO III kandidaten) 09.45
UNIFORM EINDEXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2010
MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINEXMEN MULO teens TOELTINGSEXMEN VWO/HVO/NTIN 00 VK : WISKUNE TUM : MNG 05 JULI 00 TIJ : 09.5.5 UUR (MULO-III KNITEN) : 09.5.5 UUR (MULO-IV
DEZE TAAK BESTAAT UIT 36 ITEMS. MULO-III KANDIDATEN MAKEN DE ITEMS 1 T/M 30. MULO-IV KANDIDATEN MAKEN DE ITEMS 1 T/M 36.
DEZE TK ESTT UIT 36 ITEMS. MUL-III KNDIDTEN MKEN DE ITEMS 1 T/M 30. MUL-IV KNDIDTEN MKEN DE ITEMS 1 T/M 36. INDIEN NIET NDERS VERMELD, IS ELKE VRIELE EEN ELEMENT VN. VERZMELINGEN Gegeven de verzamelingen
DEZE TAAK BESTAAT UIT 35 ITEMS. INDIEN NIET ANDERS VERMELD, IS ELKE VARIABELE EEN ELEMENT VAN. Ontbind x 4 1 in zoveel mogelijke factoren.
DEZE TAAK BESTAAT UIT 35 ITEMS. INDIEN NIET ANDERS VERMELD, IS ELKE VARIABELE EEN ELEMENT VAN. De verzameling V, 5] kan worden voorgesteld door A {3, 4, 5} B {, 3, 4, 5} C {x 3 x 5} D {x x 5} Gegeven een
UNIFORM HEREXAMEN MULO tevens 2 E ZITTING STAATSEXAMEN MULO 2007
MINISTERIE VAN ONERWIJS EN VOLKSONTWIKKELING EXAMENUREAU UNIFORM HEREXAMEN MULO tevens E ZITTING STAATSEXAMEN MULO 007 VAK : WISKUNE ATUM : TIJ : ----------------------------------------------------------------------------------------------------------------------------------------------
UNIFORM HEREXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008
MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM HEREXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 008 VK : WISKUNE TUM : TIJ : ------------------------------------------------------------------------------------------------------------------------
Vectoranalyse voor TG
college 4 en raakvlakken collegejaar : 16-17 college : 4 build : 19 september 2016 slides : 30 Vandaag Snowdon Mountain Railway (Wales) 1 De richtingsafgeleide 2 aan een grafiek 3 Differentieerbaarheid
Soorten lijnen. Soorten rechten
Soorten lijnen ik zeg ik teken ik noteer ik weet een punt A A een rechte a a Een rechte heeft geen begin- en eindpunt. een halfrechte [A een halfrechte heeft B] een beginpunt of een eindpunt een lijnstuk
Blok 4 - Vaardigheden
lok - Vaardigheden Extra oefening - asis -a Het hellingsgetal is 60 = = 0,065. -a De hellingshoek is tan (0,065),6. c De hellingshoek van Raymond is tan ( 60 c 960 tan = geeft tan 6 = 600 = 600 tan 6 9
1 Vlaamse Wiskunde Olympiade : eerste ronde
1 Vlaamse Wiskunde Olympiade 008-009: eerste ronde 1 Welke van volgende sommen is gelijk aan 10? () 4,444 + 5,555 (B), + 6,666 (C), + 7,777 (D) 5,555 +, (E) 9,999 + 1,111 Voor hoeveel natuurlijke getallen
Voorbereidende sessie toelatingsexamen
1/7 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Algebra en meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 25 april 2018 1 Presentatie en opgeloste oefeningen zijn digitaal beschikbaar
1 Vlaamse Wiskunde Olympiade : Eerste Ronde.
Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten
1 Vlaamse Wiskunde Olympiade : Eerste ronde.
1 Vlaamse Wiskunde Olympiade 1998-1999: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord
P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).
Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie
1 Junior Wiskunde Olympiade : tweede ronde
1 Junior Wiskunde Olympiade 005-006: tweede ronde Volgende benaderingen kunnen nuttig zijn bij het oplossen van sommige vragen 1,1 1,71 5,61 π,116 1 ls a a 17 a m = a 006, met a R + \{0, 1}, dan is m gelijk
aluminium 2,7 0,9 660 400 2450 0,024 ijzer 7,9 0,45 1540 270 0,012
MINISTERIE VN ONDERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM EINDEXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 011 VK : NTUURKUNDE DTUM : WOENSDG 06 JULI 011 TIJD : 09.45 11.5 UUR (Mulo III kandidaten)
2012 I Onafhankelijk van a
0 I Onafhankelijk van a Voor a>0 is gegeven de functie: f a (x) = ( ax) e ax. Toon aan dat F a (x) = x e ax een primitieve functie is van f a (x). De grafiek van f a snijdt de x-as in (/a, 0) en de y-as
Gecijferdheid periode D Bijeenkomst 2 Hand-out: Meetkundige begrippen en vormen. Instap. Een opgave uit de oefentoets:
Gecijferdheid periode D Bijeenkomst 2 Hand-out: Meetkundige begrippen en vormen Instap Een opgave uit de oefentoets: Van welke verpakkingen is de vorm een prisma? A. Pak spaghetti blikje chocomel doosje
1 Vlaamse Wiskunde Olympiade 1995-1996 : Tweede Ronde.
Vlaamse Wiskunde Olympiade 995-996 : Tweede Ronde De tweede ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten
FAYA LOBI WEDSTRIJD 2014
1. betekent: het aantal elementen van de verzameling Van twee verzamelingen en is gegeven: en. en Voor en geldt: en en en en 2. en. De verzameling heeft elementen. 3. Zie onderstaande beweringen ( is een
Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden
Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:
Voorbereidende sessie toelatingsexamen
1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal
Uitgewerkte oefeningen
Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4
Surinaamse Wiskunde Olympiade
Surinaamse Wiskunde Olympiade SUCCES! Calculator is niet toegestaan Klad papier is wel toegestaan Je hebt 90 minuten de tijd De uitslag wordt eind juni bekend gemaakt Voor 3 e klas Mulo 1. Gegeven het
Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: cirkel en parabool. 16 september dr. Brenda Casteleyn
Voorbereiding toelatingsexamen arts/tandarts Wiskunde: cirkel en parabool 16 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding
Vlaamse Wiskunde Olympiade : eerste ronde
Vlaamse Wiskunde Olympiade 00-0: eerste ronde. e uitdrukking a b 4 is gelijk aan () ab () ab () ab 6 () ab 8 (E) ab 6. e uitdrukking (a b) is gelijk aan () a b () (b a) () a + b ab () a + b + ab (E) (a
Junior Wiskunde Olympiade : eerste ronde
Junior Wiskunde lympiade 200-20: eerste ronde. Waaraan is xyz + xyz + xyz gelijk? () 3xyz () 27xyz () x 3 y 3 z 3 () 3x 3 y 3 z 3 () 27x 3 y 3 z 3 2. Welke van volgende ongelijkheden is waar? () 2 > 0,5
Examen HAVO. wiskunde B. tijdvak 1 woensdag 14 mei uur
Examen HAVO 014 tijdvak 1 woensdag 14 mei 1.0-1.0 uur wiskunde B Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een
1 Vlaamse Wiskunde Olympiade : Tweede ronde.
1 Vlaamse Wiskunde Olympiade 1998-1999: Tweede ronde De tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt
III.2 De ordening op R en ongelijkheden
III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.
1 Vlaamse Wiskunde Olympiade : Tweede Ronde
Vlaamse Wiskunde Olympiade 988-989: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -
3.1 Kwadratische functies[1]
3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt
1 Vlaamse Wiskunde Olympiade : Tweede Ronde.
1 Vlaamse Wiskunde Olympiade 1994-1995 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination
Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een
Antwoordmodel - Kwadraten en wortels
Antwoordmodel - Kwadraten en wortels Schrijf je antwoorden zo volledig mogelijk op. Tenzij anders aangegeven mag je je rekenmachine niet gebruiken. Sommige vragen zijn alleen voor het vwo, dit staat aangegeven.
klas 3 havo Checklist HAVO klas 3.pdf
Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de
Overzicht eigenschappen en formules meetkunde
Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules
Wiskunde Leerjaar 2 - Periode 1 Meetkunde
Wiskunde Leerjaar 2 - Periode 1 Meetkunde Vierhoeken Vierkant Rechthoek Parallellogram Ruit Trapezium Vlieger Vierhoek 1. Vierkant D zijde zijde Een vierkant is een vierhoek met vier rechte hoeken én vier
wiskunde B vwo 2017-II
Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande
Factor = het getal waarmee je de oude hoeveelheid moet vermenigvuldigen om een nieuwe hoeveelheid te krijgen.
Samenvatting door een scholier 1569 woorden 23 juni 2017 5,8 6 keer beoordeeld Vak Methode Wiskunde Moderne wiskunde Wiskunde H1 t/m H5 Hoofdstuk 1 Factor = het getal waarmee je de oude hoeveelheid moet
Leerlijnen REKENEN WISKUNDE (BB)
Leerlijnen REKENEN WISKUNDE (BB) Domein : Bewerkingen Onderwerp: vervolg breuken B11 B11 B11 De leerlingen kunnen ongelijknamige breuken gelijknamig maken, optellen en aftrekken. De leerlingen kunnen bij
1 Vlaamse Wiskunde Olympiade : tweede ronde
Vlaamse Wiskunde Olympiade 2003-2004: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord
Stelling 1.5 Geven isometrieën J 1 en J 2 hetzelfde beeld in drie punten die niet op één lijn liggen, dan zijn ze identiek. Bewijs. De isometrie J 1 2
Lesbrief 8 Isometrieën 1 Inleiding Een één-éénduidige afbeelding van het vlak op zichzelf heet een transformatie van het vlak. Als T 1 en T 2 transformaties zijn, wordt de transformatie T 1 gevolgd door
Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek
Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de
Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur
Eamen HAV 2015 1 tijdvak 1 woensdag 20 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten
(iii) Enkel deze bundel afgeven; geen bladen toevoegen, deze worden toch niet gelezen!
Examen Wiskundige Basistechniek, reeks A 12 oktober 2013, 13:30 uur Naam en Voornaam: Lees eerst dit: (i) Naam en voornaam hierboven invullen. (ii) Nietje niet losmaken. (iii) Enkel deze bundel afgeven;
9.1 Vergelijkingen van lijnen[1]
9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,
Tussendoelen wiskunde onderbouw vo vmbo
Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken
1. rechthoek. 2. vierkant. 3. driehoek.
Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn
Noordhoff Uitgevers bv
Vlak en kegel bladzijde a Als P ( x,, ) de projectie van P op het Ox-vlak is, dan is driehoek OP P een gelijkbenige rechthoekige driehoek met OP P = Dan is OP = x + en is PP = z Met de stelling van Pthagoras
Leerstofplanning. 3 vmbo-k
Leerstofplanning 3 vmbo-k Inhoud 3 vmbo-k deel 1 1 Kijken in ruimtefiguren Bij kaart: schaal, hemelsbreed en werkelijke afstand(vuistregels), hoogtelijnen op kaart, verticale doorsnede bij hoogtekaart,
Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder.
Oefenopgaven oppervlakte en inhoud 1. Bereken de oppervlakte van de driehoeken en parallellogrammen hieronder. 2. Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder. 3. A. Bereken
1 Vlaamse Wiskunde Olympiade : tweede ronde
1 Vlaamse Wiskunde Olympiade 00-005: tweede ronde De tweede ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord
Voorbeeldtentamen Wiskunde B
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Datum: Najaar 2018 Tijd: 3 uur Aantal opgaven: 6 Voorbeeldtentamen Wiskunde B Lees onderstaande aanwijzingen s.v.p. goed door voordat u met het tentamen begint.
De Afgeleide. ) = 2y. 2 = 4y = 4.(2x+1)
De Afgeleide DE AFGELEIDE FUNCTIE VAN EEN GEGEVEN FUNCTIE y = f(x) = u is een andere functie genoteerd met y' die uit f'(x) wordt verkregen door toepassing van enkele basisformules. Zo is (u n ) =n.u n-1.u,
Eindexamen wiskunde B1-2 havo 2004-I
Eindexamen wiskunde - havo 004-I 4 eoordelingsmodel Kogelstoten De score van André is,8 De score van ernard is,55 De conclusie dat voor k = 0, ernard niet de hoogste score heeft de vergelijking die hoort
klas 3 havo Checklist HAVO klas 3.pdf
Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de
Statistiek: Herhaling en aanvulling
Statistiek: Herhaling en aanvulling 11 mei 2009 1 Algemeen Statistiek is de wetenschap die beschrijft hoe we gegevens kunnen verzamelen, verwerken en analyseren om een beter inzicht te krijgen in de aard,
Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van
Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Stelling van Kan alleen bij rechthoekige driehoeken pythagoras a 2 + b 2 =
9.1 Gemiddelde, modus en mediaan [1]
9.1 Gemiddelde, modus en mediaan [1] De onderstaande frequentietabel geeft aan hoeveel auto s er in een bepaald uur in een straat geteld zijn. Aantal auto s per uur 15 16 17 18 19 20 21 frequentie 2 7
Laat men ook transversalen toe buiten de driehoek, dan behoren bij één waarde van v 1 telkens twee transversalen l 1 en l 2. Men kan ze onderscheiden
Lesbrief 6 Meetkunde 1 Hoektransversalen in een driehoek ABC is een driehoek. Een lijn l door een hoekpunt A van de driehoek heet een hoektransversaal van A. We zullen onderzoeken onder welke voorwaarden
1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
1 Vlaamse Wiskunde Olympiade : Eerste Ronde.
Vlmse Wiskunde Olympide 99 993 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord
1 Vlaamse Wiskunde Olympiade: tweede ronde
Vlaamse Wiskunde Olympiade: tweede ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer punten, een blanco antwoord bezorgt
opdrachten bij hoofdstuk 7 Lijnen cirkels als PDF
lijnen en cirkels opdrachten bij hoofdstuk 7 Lijnen cirkels als PDF 0. voorkennis De vergelijking ax+by=c Stelsels lineaire vergelijkingen De algemene vorm van een lineaire vergelijkingen met de variabele
Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier!
Noteer hier eventueel je naam: Aan alle Wallabies, en aan hun leerkrachten, veel succes en, nog belangrijker, veel plezier! Wiskunde leuk? Reken maar! wwwwiskundekangoeroebe c Vlaamse Wiskunde Olympiade
1 Vlaamse Wiskunde Olympiade : Tweede ronde.
1 Vlaamse Wiskunde Olympiade 1997-1998: Tweede ronde De tweede ronde bestaat eveneens uit 30 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt
Domein A: Inzicht en handelen
Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het
Wiskunde. voor. economie. drs. H.J.Ots. Hellevoetsluis
Wiskunde voor economie drs. H.J.Ots Hellevoetsluis 15-2-2004, Wiskunde voor economie, ISBN 90-70619-05-9,drs. H.J. Ots, www.webecon.nl Wiskunde voor economie Drs. H.J. Ots ISBN 90-70619-05-9 Webecon, Hellevoetsluis,
Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde
Vlaamse Wiskunde lmpiade 2007-2008: tweede ronde 1 Jef mit cola met whisk in de verhouding 1 : In whisk zit 40% alcohol Wat is het alcoholpercentage van de mi? () 1, (B) 20 (C) 25 () 0 (E) 5 2 ver jaar
Beoordelingsmodel wiskunde B1 VWO 2006-I. Sauna. Maximumscore e t = 100. het tijdstip 17:02 uur 1. Maximumscore 4
Beoordelingsmodel wiskunde B VWO 006-I Antwoorden Sauna 0,9 00 0 e t = 00 beschrijven hoe deze vergelijking opgelost kan worden de oplossing t,07 het tijdstip 7:0 uur 0,9t S () t = 0 0,9 e S () 39, 06
Voorbeeld paasexamen wiskunde (oefeningen)
Voorbeeld paasexamen wiskunde (oefeningen) Beschouw de 4 termen: x y, x, 6, 9x Voor welke waarden van x en y vormen deze termen een rekenkundige rij? x 9x x, 6, 9 x : RR 6 0x x 0,9 0,9 y ;,9 ; 6 ; 8,,
Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur
Examen HAVO 011 tijdvak woensdag juni 13.30-16.30 uur wiskunde B (pilot) Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten
INHOUDSTABEL. 1. TRANSFORMATIES (fiche 1) SYMMETRIE (fiche 2) MERKWAARDIGE LIJNEN IN EEN DRIEHOEK (fiche 3)...6
INHOUDSTBEL 1. TRNSFORMTIES (fiche 1)...3 2. SYMMETRIE (fiche 2)...4 3. MERKWRDIGE LIJNEN IN EEN DRIEHOEK (fiche 3)...6 4. VLKKE FIGUREN: DRIEHOEKEN (fiche 4)...7 5. VLKKE FIGUREN: BIJZONDERE VIERHOEKEN
Uitwerkingen tentamen Wiskunde B 16 januari 2015
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Uitwerkingen tentamen Wiskunde B 6 januari 5 Vraag a f(x) = (x ) f (x) = (x ) = 6 (x ) Dit geeft f () = 6 = 6. y = ax + b met y =, a = 6 en x = geeft = 6 + b b
3 Hoeken en afstanden
Domein Meetkunde havo B 3 Hoeken en afstanden Inhoud 3.1 Cirkels en hun middelpunt 3.2 Snijden en raken 3.3 Raaklijnen en hoeken 3.4 Afstanden berekenen 3.5 Overzicht In opdracht van: Commissie Toekomst
Lijnen en vlakken in. Klas 6N en 7N Wiskunde 5 perioden Kees Temme Versie 2
Lijnen en vlkken in Kls N en N Wiskunde perioden Kees Temme Versie . Coördinten in R³.... De vergelijking vn een vlk ().... De vectorvoorstelling vn een lijn.... De vectorvoorstelling vn een vlk... 8.
toelatingsexamen-geneeskunde.be Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld.
Wiskunde juli 2009 Laatste aanpassing: 29 juli 2009. Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld. Vraag 1 Wat is de top van deze parabool 2 2. Vraag
klas 3 vwo Checklist VWO klas 3.pdf
Checklist 3 VWO wiskunde klas 3 vwo Checklist VWO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de grafiek
Eindexamen wiskunde B pilot havo II
Mosselen Driehoeksmosselen (zie de foto) kunnen een bijdrage leveren aan de vermindering van de hoeveelheid algen in het water. Zij filteren het water. De hoeveelheid gefilterd water in ml/uur noemen we
Dan mag de afgeleide functie geen (enkelvoudige) nulpunten hebben. Hier is ( ) ( ) = 8+ a. De rico van r is m x
Gegeven is de functie f a a) Voor welke a R heeft f geen etrema? + +, met parameter a R Dan mag de afgeleide functie geen (enkelvoudige) nulpunten hebben Hier is Er zijn dus geen etrema als en slechts
Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer staat
BRUGPAKKET 8: VLAKKE FIGUREN
BRUGPAKKET 8: VLAKKE FIGUREN Brugpakket 8: Vlakke figuren 1 Vlakke figuren 1.1 Vlakke figuren: Veelhoeken en niet-veelhoeken Een veelhoek is enkel begrensd door rechte lijnen. OEFENING Zet een kruisje
1 Vlaamse Wiskunde Olympiade : Eerste Ronde.
1 Vlaamse Wiskunde Olympiade 199 1994 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten
1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
8.0 Voorkennis. Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3
8.0 Voorkennis Voorbeeld 1: Bereken het snijpunt van 3x + 2y = 6 en -2x + y = 3 2x y 3 3 3x 2 y 6 2 Het vermenigvuldigen van de vergelijkingen zorgt ervoor dat in de volgende stap de x-en tegen elkaar
Tentamen Wiskunde B CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 19 december Aantal opgaven: 5
CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Datum: 19 december 2018 Tijd: 13.30 16.30 uur Aantal opgaven: 5 Tentamen Wiskunde B Lees onderstaande aanwijzingen s.v.p. goed door voordat u met het tentamen begint.
9.1 Centrummaten en verdelingen[1]
9.1 Centrummaten en verdelingen[1] De onderstaande frequentietabel geeft aan hoeveel auto s er in een bepaald uur in een straat geteld zijn. Aantal auto s per uur 15 16 17 18 19 20 21 frequentie 2 7 9
Hierbij geven we de antwoorden en bewijzen we meteen ook hoe de constanten kunnen bepaald worden.
WISKUNDE IS (EEN BEETJE) OORLOG Onder dit motto nodigde de VVWL alle wiskundeleraren uit Vlaanderen en Nederland uit om deel te nemen aan een wiskundewedstrijd. De tien vragen van de eerste editie, waarbij
