Het Bazel probleem: n=1. n 2 = π2
|
|
|
- Adam Pauwels
- 9 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Het Bazel probleem: n 2 = π2 6 André Ran
2 Het probleem Bepaal In moderne notatie n 2. Het probleem staat bekend onder de naam: Het Bazel probleem. De titel van de lezing geeft het antwoord, maar als wiskundigen zijn we daarmee niet tevreden. We bekijken de geschiedenis van het probleem, we schetsen een bewijs (van Euler), en vertellen er nog wat omheen.
3 Pietro Mengoli probleem beschrijving In 644 geeft Pietro Mengoli het probleem: wat komt er uit ? Even in een kader plaatsen. Mengoli is professor in de arithmetica in Bologna, hij zal in 647 zijn leermeester Cavalieri daar opvolgen als professor in de wiskunde.
4 Het tijdsgewricht om maar eens een modernisme te gebruiken Eerste helft zeventiende eeuw: In Italië In Frankrijk In Duitse landen In Engeland In Holland Galilei, Cavalieri, Toricelli. Descartes, Fermat, Pascal. onder andere Kepler. onder andere Wallis. Hudde, Sluse, van Schoten (later ook Huygens). Calculus is in ontwikkeling: er worden raaklijn constructies gedaan, oppervlakten en inhouden berekend. Algebra (Viète, tweede helft zestiende eeuw) is redelijk ontwikkeld. In 637 publiceert Descartes zijn Geometrie. Analytische meetkunde begint, en onze moderne manier om wiskunde te doen is in deze periode in ontwikkeling.
5 Reeksen Er is aandacht voor reeksen en oneindige producten (onder andere Wallis). Daar doet Mengoli aan. Hij bewijst onder meer de volgende zaken: De harmonische reeks is divergent: De alternerende harmonische reeks heeft een interessante som = ln 2. Hij geeft een bewijs voor de formule van Wallis: 2n 2n 2n 2n + = π 2.
6 Reeksen En nog veel meer. Maar hij kan niet berekenen wat de uitkomst is van en hij noemt het probleem in zijn geschriften. Het Bazel prob- Hoe komt het probleem dan aan de naam: leem? Waarom niet: Het probleem van Mengoli?
7 Bernoullis We maken een sprong in de tijd: tweede helft van de zeventiende eeuw. Newton en Leibniz (student van onze Christiaan Huygens!!) hebben de calculus ontwikkeld. Vooral de Bernoulli broers Jakob (links) en Johann (rechts) hebben de calculus van Leibniz omarmd. Het levert de oplossing van heel veel problemen.
8 Het Bazel probleem Jakob werkt in Bazel, Johann in Groningen, later ook in Bazel. Jakob populariseert het probleem van Mengoli. Hij schrijft er in 689 over. Maar geen van beide broers kan het oplossen. Leibniz ook niet. Vanwege Jakob s geschrift: Het Bazel probleem. Het wordt een bekend probleem!
9 De oplossing: Euler We maken weer een sprong in de tijd. De eerste helft van de achttiende eeuw. Centraal figuur in de wiskunde is Leonhard Euler, die studeerde bij Johann Bernoulli (Jakob is dan al dood). Omdat Euler zo belangrijk is krijgt hij ook een groter plaatje dan de rest.
10 De oplossing In 735 schrijft Euler een artikel: De summis serierum reciprocarum, Comm. Acad. Sci. Petrop. 7, 740, p Daarin geeft hij maar liefst drie bewijzen voor de oplossing van het Bazel probleem. Het probleem laat hem ook niet los, en in 74 schrijft hij nog een artikel met een vierde oplossing: Démonstration de la somme de cette suite etc. Journ. lit. d Allemange, de Suisse en du Nord, 2:, 743, p
11 Euler s derde bewijs Euler kent vanuit de algebra de volgende stelling: Stelling Laat P (x) een polynoom van graad n zijn met P (0) =, en P (x) = a n x n + a n x n + a x +. Laat x,..., x n de nulpunten zijn van P. Dan geldt: P (x) = ( x x )( x x 2 ) ( x x n ), en dus (vergelijk de term met x) a = x + x x n. Bijvoorbeeld het polynoom 6x 2 + 5x + = (2x + )(3x + ), en inderdaad 5 = /2 + /3.
12 Euler s derde bewijs, vervolg Euler past dat nu zonder scrupules toe op de functie: sin x x = ( x π )( + x π )( x 2π )( + x 2π )( x 3π )( + x 3π ) = ( x2 x2 x2 π2)( 4π2)( 9π 2)( x2 6π 2) Dat leidt hem tot de formule sin x x = j= ( x2 n 2 π 2). Hij ziet dat als een polynoom in x 2
13 Intermezzo: modern gezeur Wij maken natuurlijk meteen bezwaar! Waarom convergeert dit oneindige product? Waarom is de uitkomst de functie sin x x en niet bijvoorbeeld ex sin x x? Die functie heeft toch dezelfde nulpunten? Euler heeft het vast voor een paar waarden van x echt uitgerekend (althans, een flink aantal termen met elkaar vermenigvuldigd). Rekenmachines bestonden nog niet, maar Euler kon heel goed rekenen als we de bronnen mogen geloven. Hoe dan ook, Euler geeft bij meerdere gelegenheden er blijk van dat hij zich wel zorgen maakt over convergentie, al kent hij de term en het begrip nog niet. Dat soort problematiek komt pas in de negentiende eeuw.
14 Terug naar Euler s bureau om over zijn schouder mee te kijken sin x x = j= ( x2 n 2 π 2). Verder kent Euler zijn machtreeksen voortreffelijk: sin x x = 3! x2 + 5! x4 7! x6 +. Nu vergelijkt hij in deze formules de termen met x 2, en dan komt het konijn uit de hoge hoed: 3! = ( π ) 6 + en dat is het antwoord op het Bazel probleem! Mooi, te gek, hot stuff, gaaf, vet cool, al naar gelang van welke generatie u bent.
15 Connectie met de zeta functie Dit vereist ook een wat langere inleiding, en het is ook weer allemaal van Euler. Euler voert in de getallen ζ(j) = n j. Het bewijs hierboven geeft aan dat ζ(2) = π2 6. De getallen spelen een belangrijke rol in allerlei delen van de wiskunde. In het volgende laten we zien hoe Euler komt tot formules voor de getallen ζ(j) voor even j.
16 De cotangens In zijn Introductio in Analysin Infinitorum komt Euler met de volgende fantastische formule: cot x = x + x nπ + x + nπ. In moderne termen: de polen van de cotangens zijn de getallen ±nπ, en de residuen zijn. Voor een mooi bewijs afkomstig van Herglotz, zie bijvoorbeeld Proofs from the Book. Herschrijf die formule als volgt: cot x = x + x nπ + x + nπ = x 2 x n 2 π 2 x 2.
17 Voort met die cotangens Dus x cot x = 2 x 2 n 2 π 2 x 2 x 2 = 2 n 2 π 2 ( x2 n 2 π 2). Gebruik nu de formule voor een meetkundige reeks: x cot x = 2 = 2 = 2 k= k= k= π 2k ( x 2 n 2 π 2 ) k π 2kζ(2k)x2k. n 2k x 2k
18 Complexe Euler Voor ons min of meer gewoon, in Euler s tijd compleet nieuw (ook de notatie!) x cot x = x cos x sin x = + e ix ixe2ix ixeix e ix e ix = + e 2ix = ix + 2ix e 2ix = ix + n=0 (2ix) n B n, n! voor een of andere getallen B n (dat blijken later de Bernoulli getallen te zijn van Jakob Bernoulli). Merk op: x cot x is een even functie. Dus de term met ix voor het somteken moet wegvallen tegen de term met B, en verder zijn alle B j = 0 als j oneven is. Dat geeft x cot x = k=0 ( ) k 2 2k B 2k x 2k. (2k)!
19 En dan... Euler heeft het weer voor elkaar: twee niet-triviale formules voor dezelfde functie! x cot x = k=0 ( ) k 2 2k B 2k x 2k = 2 (2k)! k= π 2kζ(2k)x2k. Vergelijk de coefficienten, en herinner de definitie van ζ(j): n 2k = ζ(2k) = ( )k 2 2k B 2k π 2k. (2k)! Euler rekent er nu eerst een aantal echt uit, en realiseert zich pas na wat rekenwerk dat die getallen B 2k hem wel erg bekend voorkomen: het zijn de Bernoulli getallen, en daarvoor is een recursieve betrekking om ze uit te rekenen. Bijvoorbeeld: n 4 = 90 π4, n 6 = 945 π6.
20 Nog wat meer Maar hoe zit het nu met n 3, n 5, n 7? Daarover is bedroevend weinig bekend. Wat weten we dan wel? In ieder geval meer dan toen ik student was. ζ(3) is irrationaal. Dat is in 978 bewezen door Roger Apéry, en ζ(3) heet nu dan ook Apéry s constante. A.J. van der Poorten: A proof that Euler missed. Math. Intelligencer (979),
21 En verder Er zijn oneindig veel n waarvoor ζ(2n + ) irrationaal is, dat is bewezen door Tanguy Rivoal in Een van de getallen ζ(5), ζ(7), ζ(9), ζ() is irrationaal, en dat is bewezen door Wadim Zudilin in 200.
22 Tenslotte Dank voor uw aandacht, ik hoop u aangenaam verpoosd te hebben... Referenties: Evaluating ζ(2). Robin Chapman, Dept. of Math. Univ. of Exeter. Meerdere bewijzen. How Euler did it. Ed Sandifer. MAA Online. Zie ook Ed Sandifer s webpagina voor een uitgebreide versie hiervan.
Priemgetallen en het Riemannvermoeden
Priemgetallen en het Riemannvermoeden Frits Beukers Studium Generale Wageningen, 14 november 2007 Priemgetallen en het Riemannvermoeden Studium Generale 1 / 28 Priemgetallen 2, 3, 5, 7, 11, 13, 17, 19,
De Riemann-hypothese
De Riemann-hypothese Een miljoenenprobleem Jan van de Craats (UvA) NWD, 6 februari 200 De Riemann-hypothese De Riemann-hypothese Alle niettriviale nulpunten van de zètafunctie liggen op de kritieke lijn.
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.1, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 21 april, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 32 Outline 1 K. P. Hart TW2040: Complexe Functietheorie
Ontwikkeling van het functiebegrip in: Wiskunde als Wetenschap
Ontwikkeling van het functiebegrip in: Wiskunde als Wetenschap Tom Koornwinder [email protected] Korteweg-de Vries Instituut, UvA Ontwikkeling van het functiebegrip p.1/13 Moderne definitie van een functie
Overzicht Fourier-theorie
B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.10, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 23 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 46 Outline 1 2 3 K. P. Hart TW2040: Complexe Functietheorie
De Riemann-hypothese
De Riemann-hypothese Lars van den Berg 3 september 202 Laat ik je gelijk enthousiast maken om dit stukje te lezen: wie de Riemannhypothese oplost wint een miljoen. Wel zijn er waarschijnlijk eenvoudigere
Nulpunten op een lijn?
Nulpunten op een lijn? Jan van de Craats leadtekst Het belangrijkste open probleem in de wiskunde is het vermoeden van Riemann. Het is één van de millennium problems waarmee je een miljoen dollar kunt
Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1
Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking
Steunpunt TU/e-Fontys
Steunpunt TU/e-Fontys Activiteiten en ervaringen 5 Hans Sterk ([email protected]) Where innovation starts Inhoud 2/17 Steunpunt Wiskunde D Cursussen voor docenten Complexe getallen (Analytische) Meetkunde
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.6, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 2 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 38 Outline 1 Rekenregels 2 K. P. Hart TW2040: Complexe
De Riemann-hypothese
De Riemann-hypothese Een miljoenenprobleem Jan van de Craats (UvA) Leve de Wiskunde, UvA, april 04 De Riemann-hypothese De Riemann-hypothese Alle niettriviale nulpunten van de zètafunctie liggen op de
Uitwerkingen van de opgaven uit Pi
Uitwerkingen van de opgaven uit Pi Frits Beukers January 3, 2006 Opgave 2.3. Bedoeling van deze opgave is dat we alleen een schatting geven op grond van de gevonden tabel. Er worden geen bewijzen of precieze
Combinatoriek groep 2
Combinatoriek groep 2 Recursie Trainingsdag 3, 2 april 2009 Homogene lineaire recurrente betrekkingen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.6, maandag K. P. Hart Faculteit EWI TU Delft Delft, 30 mei, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 33 Outline 1 2 Algemeenheden Gedrag op de rand Machtreeksen
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.9, maandag K. P. Hart Faculteit EWI TU Delft Delft, 13 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 41 Outline III.6 The Residue Theorem 1 III.6 The
De ontwikkeling van het functiebegrip in de 2 de graad
De ontwikkeling van het functiebegrip in de 2 de graad Geschiedenis van het functiebegrip Oudheid: vooral meetkundige problemen 14de, 15de en 16de eeuw: verbanden tussen grootheden eerste idee grafiek
Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde
Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde 3 voor B. Functies van twee variabelen.. Een functie fx, y) van twee variabelen kan analoog aan een functie van één variabele in Maple
De partitieformule van Euler
De partitieformule van Euler Een kennismaking met zuivere wiskunde J.H. Aalberts-Bakker 29 augustus 2008 Doctoraalscriptie wiskunde, variant Communicatie en Educatie Afstudeerdocent: Dr. H. Finkelnberg
Analyse met infinitesimalen
Analyse met infinitesimalen Hans Vernaeve Universiteit Gent (Hans Vernaeve) 1 / 15 Infinitesimalen in de 17de en 18de eeuw Infinitesimalen = oneindig kleine getallen. Fysisch hulpmiddel om eigenschappen
Leibniz en de Hoofdstelling van de Analyse
Leibniz en de Hoofdstelling van de Analyse Steven Wepster Departement Wiskunde Universiteit Utrecht 10 maart 2016 Hoofdstelling vd Analyse Hoofdstelling vd Analyse Zij f continu in een omgeving I van a,
Wat is wiskunde? college door Jan Hogendijk, 12 september 2016
Wat is wiskunde? college door Jan Hogendijk, 12 september 2016 Wiskunde is een wetenschap waarin precies geredeneerd wordt over getallen, figuren in de ruimte, of formele structuren in het algemeen. In
== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u
== en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de
Reeksontwikkeling Koen Van de moortel, 20070925-20071008 www.astrovdm.com
Reeksontwikkeling Koen Van de moortel, 20070925-20071008 www.astrovdm.com Vereiste voorkennis: limieten, reeksen, afgeleiden, goniometrische en exponentiële funkties, komplexe getallen Probleemstelling
Aanvulling aansluitingscursus wiskunde. A.C.M. Ran
Aanvulling aansluitingscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de Aansluitingscursus staan. Die onderwerpen zijn: complexe getallen en volledige
(x x 1 ) + y 1. x x k+1 x k x k+1
Les Talor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen
Afdeling Wiskunde. Onderwijs. Onderzoek
Wiskunde nu Afdeling Wiskunde Onderwijs Onderzoek Afdeling Wiskunde In recente jaren aanzienlijk uitgebreid en verjongd Nu ± 25 vaste medewerkers en postdocs, ook aanzienlijk aantal deeltijd hoogleraren
(x x 1 ) + y 1. x x 1 x k x x x k 1
Les Taylor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen
1 Limiet van een rij Het begrip rij Bepaling van een rij Expliciet voorschrift Recursief voorschrift 3
HOOFDSTUK 6: RIJEN 1 Limiet van een rij 2 1.1 Het begrip rij 2 1.2 Bepaling van een rij 2 1.2.1 Expliciet voorschrift 2 1.2.2 Recursief voorschrift 3 1.2.3 Andere gevallen 3 1.2.4 Rijen met de grafische
Signalen en Transformaties
Signalen en Transformaties 201100109 Docent : Anton Stoorvogel E-mail: [email protected] 1/29 Elektrotechniek, Wiskunde en Informatica EWI Complexe getallen z D a C bi We definiëren de complex
Bestaat er dan toch een wortel uit 1?
Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn
Opgaven Sommaties Datastructuren, 8 mei 2019, Werkgroep.
Opgaven Sommaties Datastructuren, 8 mei 019, Werkgroep. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal zes tot acht opgaven.
Diophantische vergelijkingen
Diophantische vergelijkingen 1 Wat zijn Diophantische vergelijkingen? Een Diophantische vergelijking is een veeltermvergelijking waarbij zowel de coëfficiënten als de oplossingen gehele getallen moeten
8. Differentiaal- en integraalrekening
Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,
Aanvulling bij de cursus Calculus 1. Complexe getallen
Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk
Inhoud college 5 Basiswiskunde Taylorpolynomen
Inhoud college 5 Basiswiskunde 4.10 Taylorpolynomen 2 Basiswiskunde_College_5.nb 4.10 Inleiding Gegeven is een functie f met punt a in domein D f. Gezocht een eenvoudige functie, die rond punt a op f lijkt
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.1, maandag K. P. Hart Faculteit EWI TU Delft Delft, 18 april, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 31 Outline 1 Section I.1 Complex numbers K. P. Hart
Combinatoriek groep 1
Combinatoriek groep 1 Recursie Trainingsdag 3, 2 april 2009 Getallenrijen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een directe formule geeft a n in
Steeds betere benadering voor het getal π
Wiskunde & Onderwijs 38ste jaargang (2012 Steeds betere benadering voor het getal π Koen De Naeghel Samenvatting. We bespreken een oplossing voor de (veralgemeende opgave Noot 4 uit Wiskunde & Onderwijs
168 HOOFDSTUK 5. REEKSONTWIKKELINGEN
168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 5.7 Vraagstukken Vraagstuk 5.7.1 Beschouw de differentiaalvergelijking d2 y d 2 = 2 y. (i) Schrijf y = a k k. Geef een recurrente betrekking voor de coëfficienten a
Antwoorden Differentievergelijkingen 1
Opgave 1. a) 0,4 10 + 6 = 10. Dus u 0 = u 1 + u = = 10 b) 0,4 u + 6 = 10 kan alleen als u = 10. Dus voor u 0 = 6 komt 10 niet in de reeks voor. c) u 0 = 11; u 1 = 10,4; u = 10,16; u 3 = 10,064. De reeks
Calculus I, 19/10/2015
Calculus I, 9/0/05. a Toon aan dat de rationale functie f = 3 + 3 + voor alle 0 bekomen wordt via volgende procedure: Start met een gelijkbenige rechthoekige driehoek OAB, met B het punt, 0 op de -as,
6 Complexe getallen. 6.1 Definitie WIS6 1
WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We
TW2040: Complexe Functietheorie
TW2040: Complexe Functietheorie week 4.9, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 16 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 46 Outline III.7 Applications of the Residue Theorem
Het getal e. Kees Kramer, Albert-Jan Yzelman en Robin Zeeman 6 september 2004
Het getal e Kees Kramer, Albert-Jan Yzelman en Robin Zeeman 6 september 2004 Geschiedenis van e In dit onderdeel gaan we kijken naar de geschiedenis van het getal van Euler, e. Vreemd genoeg is het zo,
Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.
Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag
Tentamen Analyse 4. Maandag 16 juni 2008, uur
Tentamen Analyse 4 Maandag 16 juni 2008, 14-17 uur Vermeld uw naam (met voornaam en voorletters) en uw studentnummer. Er zijn geen hulpmiddelen toegestaan. Dit tentamen bestaat uit zes opgaven. Vergeet
n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1
Radboud Universiteit Nijmegen Tentamen Calculus 2 NWI-NP004B 6 april 205, 8.00 2.00 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten
Numerieke aspecten van de vergelijking van Cantor. Opgedragen aan Th. J. Dekker. H. W. Lenstra, Jr.
Numerieke aspecten van de vergelijking van Cantor Opgedragen aan Th. J. Dekker H. W. Lenstra, Jr. Uit de lineaire algebra is bekend dat het aantal oplossingen van een systeem lineaire vergelijkingen gelijk
== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u
== Hertentamen Analyse == Dinsdag 5 maart 8, 4-7u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille, O van Gaans) en je studierichting Geef niet alleen antwoorden, leg elke
Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2
Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van
Combinatoriek groep 1 & 2: Recursie
Combinatoriek groep 1 & : Recursie Trainingsweek juni 008 Inleiding Bij een recursieve definitie van een rij wordt elke volgende term berekend uit de vorige. Een voorbeeld van zo n recursieve definitie
16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i
16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =
1E HUISWERKOPDRACHT CONTINUE WISKUNDE
E HUISWERKOPDRACHT CONTINUE WISKUNDE Uiterste inleverdatum dinsdag oktober, voor het begin van het college N.B. Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je moet het huiswerk
Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie
Inhoud college 4 Basiswiskunde 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie 2 Basiswiskunde_College_4.nb 2.6 Hogere afgeleiden De afgeleide f beschrijft
1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1.
Tentamen-wiskunde?. De basiswiskunde. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + ) =. Oplossing : ln(x + 2) = + ln(x + ) x + 2 = ln + x + 3 = ln dus x =
ANALYSEQUIZ Ga naar new.shakeq.com en log in met de code uvaanalyse2a
ANALYSEQUIZ 2016 Ga naar new.shakeq.com en log in met de code uvaanalyse2a WAAR OF ONWAAR: EEN SOM CONVERGEERT ALS DE TERMEN NAAR NUL GAAN. A. Waar B. Onwaar De vraag gaat open zodra u een sessie en diavoorstelling
Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni uur
Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde B (pilot) Dit eamen bestaat uit 6 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed
Wat kan er (niet) zonder ε-δ?
Oneindig klein. Wat kan er (niet) zonder ε-δ? Michel Roelens University Colleges Leuven Limburg Maria-Boodschaplyceum Brussel Hilde Eggermont Sint-Pieterscollege Leuven Redactie Uitwiskeling Afgeleide
2.0 Voorkennis. Rekenregels machten: 5) a 0 = 1. p p q p q a p q q. p q pq p p p. Willem-Jan van der Zanden
2.0 Voorkennis Voorbeeld: (a + b) 2 = a 2 + 2ab + b 2 (a + b) 3 = (a +b)(a2 + 2ab + b2) = a 3 + 2a 2 b + ab 2 + a 2 b +2ab 2 + b 3 = a 3 + 3a 2 b + 3ab 2 + b 3 Rekenregels machten: p p q pq a pq 1) a a
Opgaven bij het vormen van ruimte: van Poincaré tot Perelman
Opgaven bij het vormen van ruimte: van Poincaré tot Perelman Roland van der Veen Inleiding Deze reeks opgaven is bedoeld voor de werkcolleges van de vakantiecursus Wiskunde in Wording, Augustus 2013. 1
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking van het tentamen Functietheorie (2Y480) op ,
1 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking van het tentamen Functietheorie (2Y480) op 25-11-1998, 9.00-12.00 uur Opgave 1 1. Formuleer de Cauchy-Riemann-vergelijkingen.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij
TW2040: Complexe Functietheorie
week 4.8, maandag Faculteit EWI TU Delft Delft, 6 juni, 2016 1 / 33 Outline 1 Maximum-modulusprincipe Lemma van Schwarz 2 2 / 33 Maximum-modulusprincipe Lemma van Schwarz Maximum-modulusprincipe Stelling
Complexe e-macht en complexe polynomen
Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten
Differentiequotiënten en Getallenrijen
Lesbrief 4 Binomiaalcoëfficiënten, Differentiequotiënten en Getallenrijen Binomiaalcoëfficiënten Het is beend dat (a + b 2 = a 2 + 2ab + b 2 en dat (a + b 3 = a 3 + 3a 2 b + 3ab 2 + b 3. In het algemeen
2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling
TU/e technische universiteit eindhoven Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk
Analyse 1 Handout limieten en continuïteit
Analyse Handout ieten en continuïteit Rogier Bos Inhoudsopgave Limieten 2. Intuïtief ieten bepalen........................ 2.2 Rekenen aan ieten........................... 4.3 Limieten als spel.............................
6 - Geschiedenis van het getal Pi
6 - Geschiedenis van het getal Pi De opdracht omschrijving voor dit hoofdstuk bestond uit het volgende: F1 - Lees de hoofdstukken 1 t/m 4 en 9 uit het Zebra-boekje Pi. Maak uit de hoofdstukken 2 t/m 4
Studiehandleiding Basiswiskunde cursus
Studiehandleiding Basiswiskunde cursus 2008 2009 Materiaal Bij dit college heb je nodig: Het boek Basisboek wiskunde van Jan van de Craats en Rob Bosch Isbn: 90 430 1156 8 De syllabus Aanvulling basiscursus
Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Achter dit examen is een erratum opgenomen.
Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde B (pilot) Achter dit eamen is een erratum opgenomen. Dit eamen bestaat uit 6 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer
Werken met de CAS van GeoGebra in de derde graad
Werken met de CAS van GeoGebra in de derde graad R. Van Nieuwenhuyze Oud-hoofdlector wiskunde aan Odisee, Brussel Auteur Van Basis tot Limiet en van Nando. [email protected] Van Nieuwenhuyze
OVER IRRATIONALE GETALLEN EN MACHTEN VAN π
OVER IRRATIONALE GETALLEN EN MACHTEN VAN π KOEN DE NAEGHEL Samenvatting. In deze nota buigen we ons over de vraag of een macht van π een irrationaal getal is. De aangereikte opbouw en bewijsmethoden zijn
Snelle glijbanen. Masterclass VWO-leerlingen juni Emiel van Elderen en Joost de Groot NWD Faculteit EWI, Toegepaste Wiskunde
Masterclass VWO-leerlingen juni 2008 Snelle glijbanen Emiel van Elderen en Joost de Groot NWD 2009 1 Technische Universiteit Delft Probleemstelling Gegeven: een punt A(0,a) en een punt B(b, 0) met a 0.
Lineaire algebra I (wiskundigen)
Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie
Drie Bernoullilezingen 2014 in licht van RUG 400
Drie Bernoullilezingen 2014 in licht van RUG 400 Henk Broer Johann Bernoulli Stichting voor de Wiskunde Samenvatting 1 Aankondiging In het jubeljaar 2014, waarin de Groningse Universiteit zijn vierhonderdjarig
Examen havo wiskunde B 2016-I (oefenexamen)
Examen havo wiskunde B 06-I (oefenexamen) De rechte van Euler Gegeven is cirkel c met middelpunt (, ) p Stel een vergelijking op van c. De punten B(, 0) en ( 4, 0) M die door het punt A( 0, 4) C liggen
Oplossingen van vergelijkingen in rationale getallen
Hoofdstuk VIII Oplossingen van vergelijkingen in rationale getallen Don Zagier Het gebied van de diophantische vergelijkingen, genoemd naar de grote Griekse wiskundige Diophantus, is een van de oudste
Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013
Wiskundige Technieken Uitwerkingen Tentamen 4 november 0 Normering voor 4 pt vragen andere vragen naar rato): 4pt pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes
dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π
Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)
Complexe functies. 2.1 Benadering door veeltermen
Wiskunde voor kunstmatige intelligentie, Les Complexe functies Nadat we de complexe getallen hebben leren kennen, is het een voor de hand liggende vraag of hiervoor net als voor de reële getallen ook functies
De beeldpunten P en P van gelijke hoeken vallen samen. y 1 P=P' cos α
65 5 VERWANTE HOEKEN - Afstandsleren Opdracht: Surf naar het wiskundewebje dat je vindt op http://home.scarlet.be/~greetvrh en kies voor het vijfde jaar en voor Goniometrie. Gebruik de applets, 2, 3, 4,
1. Toon aan dat de rij (e n := (1 + 1 n )n ) monotoon stijgend en naar boven begrensd is. Conclusie i.v.m. convergentie? 13. Toon aan dat er voor elk
Rijen en reeksen Oefeningen Wiskundige Analyse I 1. Toon aan dat de limiet van een convergente rij uniek is.. Toon aan dat elke deelrij van een convergente rij, convergeert naar dezelfde limiet als de
9.1 Recursieve en directe formules [1]
9.1 Recursieve en directe formules [1] Voorbeeld: 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is
Voorkennis wiskunde voor Biologie, Chemie, Geografie
Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt
== Modeluitwerking tentamen Analyse 1 == Maandag 14 januari 2008, u
== Modeluitwerking tentmen Anlyse == Mndg 4 jnuri 8, 4.-7.u. Formuleer de Tussenwrdestelling. Als f :, b] R continu is en s R ligt tussen f en fb, dn bestt er een c, b] met fc = s. b Toon n, dt de vergelijking
4.1 Rijen. Inhoud. Convergentie van een reeks. Reeksen. a k. a k = lim. a k = s. s n = a 1 + a 2 + + a n = k=1
Reesen en Machtreesen Reesen en Machtreesen 4-0 Reesen en Machtreesen Inhoud. Rijen 2. Reesen Definities en enmeren Reesen met niet-negatieve termen Reesen met positieve en negatieve termen 3. Machtreesen
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Analyse A, deeltentamen Uitwerkingen maandag 1 november 2010, 9 11 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan
ax + 2 dx con- vergent? n ln(n) ln(ln(n)), n=3 (d) y(x) = e 1 2 x2 e 1 2 t2 +t dt + 2
Radboud Universiteit Nijmegen Tentamen Calculus NWI-NPB 8 januari 3, 8.3.3 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden. Maak uw redenering
Les 1 Kwadraat afsplitsen en Verzamelingen
Vwo 5 / Havo 4 Wis D Hoofdstuk 8 : Complexe getallen Pagina van Les Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen N = Natuurlijke getallen =,2,,.. Z
