Paragraaf 9.1 : Logaritmen
|
|
|
- Nele Smeets
- 9 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina van 5 Paragraaf 9. : Logaritmen Les Logaritmen Definitie Logaritmen Hoofdregel : g t = b t = g log b met domein b>0 Om logaritmen uit je hoofd uit te rekenen kun je de volgende regel gebruiken : g log g t = t Voorbeeld Bereken uit je hoofd a. 3 log 9 = b. 3 log 7 = c. log ½ = d. 3 log 5 = Olossing a. 3 log 9 = 3 log 3 = b. 3 log 7 = 3 log 7 ½ = 3 log (3 3 ) ½ = 3 log 3 ½ = ½ c. log ½ = log - = - d. Dit kan niet dus : = 3 log 5. { = (log 5) / (log 3) =, of met de kno Logbase } Voorbeeld Bereken eact : 5 3 log () + = Olossing 5 3 log () + = 5 3 log () = 0 3 log () = ( Gebruik nu de hoofdregel g t = b t = g log b ) = 3 = 9/ = ½
2 Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina van 5 Les : Grafieken en ongelijkheden Definitie Staenlan logaritmische ongelijkheden (0) Beaal het domein () Los de vergelijking o () Maak een schets van de twee grafieken. Let o het domein!!!! (3) Lees de olossing af uit de schets. Voorbeeld Gegeven f() = log (+) en g() = log (5-). a. Beaal de domeinen van f en g. b. Los o : f() < g() Olossing a. Domein f : + > 0 > - Domein g : 5 > 0 < 5 b. () log (+) = log (5-). Y =log (+) / log() Y = log (5-) / log() calc intersect = 3, () Schets mbv Y en Y geeft (3) - < < 3, 3. Domeinen : -5 en - dus log (+5) + log (+) 5 als - < 3
3 Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina 3 van 5 Les 3 : Eonentiële vergelijkingen olossen en omschrijven Voorbeeld Los eact o a. 3 + = 0 b. 5 3 = 00 Olossing a. 3 + = 0 ( Gebruik nu de hoofdregel g t = b t = g log b ) + = 3 3 log (0) = log(0) b. 5 3 = 00 3 = 0 3 = log (0) 3 = log(0) + = log(0) Voorbeeld Maak vrij bij de formule y = { Schrijf als = } Olossing y = y + 0 = = log (y + 0) 3 = log(y + 0)
4 Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina van 5 Paragraaf 9. : Rekenregels bij Logaritmen Les : Logaritmische vergelijkingen Definitie : Rekenregels Logaritmen () g log a + g log b = g log ab () g log a g log b = g log (a/b) (3) g log a k = k g log a () g log a = (log a) / (log g) (5) g log () = 0 () g log g t = t (7) log a = 0 log a Voorbeeld Bereken eact met de rekenregels a. 3 log + 3 log = { b. log 8 = { = log 8 = log 3 = 3 = } c. 3 log 3-3 log = { = 3 log 3 : = 3 log 3 = } Olossing a. 3 log + 3 log = 3 log ( ) = 3 log 7 b. log 8 = log 8 = log 3 = 3 = c. 3 log 3-3 log = 3 log 3 : = 3 log 3 =
5 Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina 5 van 5 Voorbeeld Los algebraïsch o a. + log () = log (-3) b. log (+5) - ½ log (+) = c. log () - log () = Olossing a. Let o het domein : (i) > 0 en 3 > 0 > 0 en < 0 < < log( log( ) 9 9 ) log( ) 3 log( 3 ) log( ) log( 3 ) log( 3 ) b. Let o het domein : (i) +5 > 0 en + > 0 > -5 en > - > - Er geldt ook dat : ½ log (+) = - log (+) dus log (+5) + log (+) = log( 5)( ) log( log( 7 0 ) log( ( )( ) 0 v ( V. N.) ) ) c. Let o het domein : (i) > 0 ( log( )) 0 ( 3)( ) 0 3 log( ) 3 3 v 8 log( ) v v log( ) { Stel log( ) }
6 Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina van 5 Les Eonentiele vergelijkingen olossen Voorbeeld Los eact o a. 3 + = 8 b. 5 5 = c. + - = Olossing : } { 0. log() ) 3 ( ) ( ) ( 0 } 5 { 0 5 ) (5.. 5 formule abc Stel c KN v v Stel b a
7 Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina 7 van 5 Paragraaf 9.3 : Eonentiële en Logaritmische formules Les verdubbelings- en halveringstijd Voorbeeld Sjors heeft 800 vlooien. Iedere dag daalt de oulatie met %. a. Beaal de formule. b. Bereken aan het begin van welke dag het aantal vlooien voor het eerst (meer dan) gehalveerd is. Olossing a. N = 800 0,9 t. b. 00 = 800 0,9 t () Y = 800 0,9 t en Y = 00 () Intersect (3) =, = e dag Of () Y = 0,9 t en Y = 0,5 () Intersect
8 Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina 8 van 5 Definities Logaritmisch aier O logaritmisch aier is : de macht lineair (iedere keer + ) wordt in een staje alles 0 keer zo groot de formule y = b g t (eonentiële) een rechte lijn!!!! Voorbeeld Aflezen A,B,C,D,E en F o blz. 3 log aier. Voorbeeld Gegeven is de volgende lijn. Beaal de formule van de lijn Olossing Je kunt gebruik maken van het staenlan uit aragraaf 0.. Lees twee unten af, bijvoorbeeld (-, ½ ) en (,) () Rechte lijn dus y = b g t () g 3 = / ½ = 8 g 3 = 8 g = (3) y = b t en (,) invullen = b b= () Dus y = t Omerking : Bij dubbellogaier zijn beide assen logaritmisch.
9 Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina 9 van 5 Les 3 : Verschuiven en vermenigvuldigen Definities Transformaties (=Verschuiving of Vermenigvuldiging) () Translatie a naar rechts en b omhoog ( T(a,b) ) F() Translatie (a,b) F(-a) + b () Vermenigvuldiging t.o.v. de -as met factor a ( = V-as,a ) F() V-as,a a F() (3) Vermenigvuldiging t.o.v. de y-as met factor a ( = Vy-as,a ) F() Vy-as,a F( /a ) Voorbeeld Gegeven is de formule f() = + 8 Geef de formule na de translatie: a. (3,) { + 8 T(3,) g() = = -3 + } b. (-,) { + 8 T(-,) g() = = + + } Geef de formule na vermenigvuldiging met factor - c. TOV de -as d. TOV de y-as Olossing a. + 8 T(3,) g() = = -3 + b. + 8 T(-,) g() = = + + c. g() = - ( + 8) = - - = + d. g() = -/ + 8 =(½) ½ + 8
10 Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina 0 van 5 Paragraaf 9. : Het getal e Les : Het getal e We kijken naar een aar afgeleiden Voorbeelden. f() =,5 f () = 0,9,5. f() = 3 f () =, f() =,78.. = e f () = e = e Dus er geldt f() = e f () = e Omerking Omdat e een getal is (en wel =,78 ) is e = 7,389.. ook een getal en dus alle machten zijn getallen Voorbeeld Herleid a. e + e = b. 3e + 3e = c. e 3 / e = d. (e + e ) = Olossing a. e b. e c. e d. e + e e + e e + (e ) = e + e e + (e ) = e + e + + e
11 Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina van 5 Voorbeeld Los algebraïsch o a. e = e b. e - e 3+ = 0 Olossing a. e - e =0 (-)e = 0 = v e = 0 (kn) b. e - e 3+ = 0 e = e 3+ = 3 + = - ½
12 Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina van 5 Les : Differentiëren van e-machten Definitie Differentiëren van e-machten Hoofdregel voor e-machten f() = e f () = e Omerking Ook bij e-machten kun je roductregel, quotiëntregel of kettingregel nodig hebben!!! Voorbeeld Differentieer a. f() = 5e b. f() = e c. f() = 5e 0- d. f() = 3e e. f() = (3-5) / e Voorbeeld Differentieer a. f () = 5e b. f() = e + e { PRODUCTREGEL } c. f() = 5e 0- - { KETTINGREGEL } d. f() = 0 { e = 7,389 IS EEN GETAL } e. f () = e (3 5) 3e e
13 Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina 3 van 5 Paragraaf 9.5 : De Natuurlijke Logaritme { ln() } Les Rekenen met ln() Voorbeeld Los de volgende vergelijkingen eact o. Denk aan de regel : g t = b g log(b) = t. a. e = 0 b. e +5 = 8 Olossing a. e = 0 = e log(0) b. e +5 = 8 +5 = e log(8) = e log(8) 5 = ½ e log(8) ½ Definities Omdat e log() heel vaak voorkomt is er een etra naam bedacht voor deze formule en dat is ln() Dus : e log() = ln() Omdat geldt dat g log(g ) = geldt ook dat : e log(e ) = ln(e ) = Er geldt dus ook : ln(e 3 ) = 3 en ln(e) = ln(e ) = Omdat ln() een logaritme is gelden alle logaritme regels!!! Voorbeeld Herleid tot één geheel a. ln(e ) = b. ln(3) + ln(3) = c. ln (e) + = d. ln(3) + = Olossing a. ln(e ) = e log (e ) = b. ln(3) + ln(3) = ln(3 3) = ln(39) c. ln (e) + = ( ln(e) ) + = + = 3 d. ln(3) + = ln(3) + ln(e ) = ln(3e )
14 Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina van 5 Voorbeeld 3 Los de vergelijkingen eact o a. ln () = 3 b. ln() = ln() c. ln() - ln(3+) = Olossing 3 Denk aan de regel : g t = b g log(b) = t a. e log () = 3 = e 3 = ½ e 3 b. ln() = ln() ln() ln() = 0 ln() [ ] = 0 ln() = 0 v = 0 = e 0 = v = ½ c. ln (+) ln() = ln ( (+) / ) = (+) / = e + = e e = - (e ) = - = -/(e )
15 Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina 5 van 5 Les : Differentiëren van de Natuurlijke Logaritme ln() Definitie differentiëren van log-functies Hoofdregel : f() = ln() f () = g Hulregel : f() = log ( ) f () = ln(g) Definitie differentiëren van eonentiële functies Hoofdregel : f() = e f () = e Hulregel : f() = a f () = ln(a) a Voorbeeld Differentieer a. f() = 3ln() b. f() = ln ( + 5) c. f() = ln 3 () 3 d. f() = log ( + 7) e. f() = 3 f. f() = 5 Olossing Differentieer a. f () = 3 ln() + 3 = 3ln() + 3 b. f () = (+5) ( + 5) = c. f () = 3 ln () d. f () = (+7)ln(3) e. f() = 3 ln() f. f() = ln (5) 5 ( ) { KETTINGREGEL MET u = ln() }
Paragraaf 12.1 : Exponentiële groei
Hoofdstuk 12 Exponenten en logaritmen (V5 Wis A) Pagina 1 van 12 Paragraaf 12.1 : Exponentiële groei Les 1 Exponentiële functies Definitie Exponentiële functies Algemene formule : N = b g t waarbij b =
9.1 Logaritmische en exponentiële vergelijkingen [1]
9.1 Logaritmische en eonentiële vergelijkingen [1] Voor logaritmen gelden de volgende rekenregels: (1) log( ab) log( a) log( b) g g g () g g g (4) (3) g n g (5) g log() = y volgt = g y Voorbeeld: a log
exponentiële standaardfunctie
9.0 Voorkennis In de grafiek is de eponentiële standaardfunctie f() = getekend; D f = R, B f = (0, ) met de -as als asymptoot (Dit volgt uit: lim 0 ); Elke functie g met g > heeft deze vorm; Voor g > is
Paragraaf 13.1 : Berekeningen met de afgeleide
Hoofdstuk 13 Toepassingen vd differentiaalrekening (V5 Wis A) Pagina 1 van 7 Paragraaf 13.1 : Berekeningen met de afgeleide Differentiëren van e-machten en logaritmen f() = e f () = e f() = ln() f () =
Paragraaf 5.1 : Machten en wortels
Hoofdstuk 5 Machten, exponenten en logaritmen (H Wis B) Pagina 1 van 1 Paragraaf 5.1 : Machten en wortels Machtsregels SPECIAAL GEVAL MACHTREGEL 1 : MACHTREGEL 2 : MACHTREGEL : a p a q = a p+q a p aq =
1. Orthogonale Hyperbolen
. Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies
Paragraaf 11.0 : Voorkennis
Hoofdstuk 11 Verbanden en functies (H5 Wis B) Pagina 1 van 15 Paragraaf 11.0 : Voorkennis Les 1 : Stelsels, formules en afgeleide Los op. 3x + 5y = 7 a. { 2x + y = 0 2x + 5y = 38 b. { x = y + 5 a. 3x +
Samenvatting Wiskunde B
Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen
12.0 Voorkennis. Voorbeeld 1: l:y = ax + b gaat door de punten A(5, 3) en B(8, 12). Stel de functie van l op.
12.0 Voorkennis Voorbeeld 1: l:y = ax + b gaat door de punten A(5, 3) en B(8, 12). Stel de functie van l op. Stap 1: Bepaal de richtingscoëfficiënt van l:y = ax + b : y yb ya 123 9 a 3 x x x 8 5 3 Hieruit
Paragraaf 9.1 : Twee soorten groei
Hoofdstuk 9 Exponentiële Verbanden (H5 Wis A) Pagina 1 van 9 Paragraaf 9.1 : Twee soorten groei Les 1 Lineaire en exponentiele groei Definitie Lijn = LINEAIRE GROEI Algemene formule van een lijn : y =
rekenregels voor machten en logaritmen wortels waar of niet waar
Hoofdstuk 5 - machten, eponenten en logaritmen rekenregels voor machten en logaritmen wortels waar of niet waar 0. voorkennis HERLEIDEN VAN MACHTEN - rekenregels voor machten Bij het vermenigvuldigen van
Paragraaf 6.1 : Kwadratische formules
Hoofdstuk 6 Machtsverbanden (V Wis A) Pagina 1 van 10 Paragraaf 6.1 : Kwadratische formules Gegeven is de formule W(x) = x 2 + 8x met W de winst in euro s per uur en x het aantal producten dat per uur
14.1 Vergelijkingen en herleidingen [1]
4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )
Basisvormen (algebraische denkeenheden) van algebraische expressies/functies
Basisvormen (algeraische denkeenheden) van algeraische epressies/functies,,,..,,, g g, log( ), sin(), cos() polynoomfuncties gerokenfuncties, vermenigvuldigingsfunctie Soort functies Standaardvormen met
Paragraaf 4.1 : Kwadratische formules
Hoofdstuk 4 Werken met formules H4 Wis B) Pagina 1 van 10 Paragraaf 41 : Kwadratische formules Les 1 : Verschillende vormen Er zijn verschillende vormen van kwadratische vergelijkingen die vaak terugkomen
HOOFDSTUK 3 : LOGARITMISCHE FUNCTIES
HOOFDSTUK : LOGARITMISCHE FUNCTIES Kern : Logaritmen a) D t 5 t (D in grammen ; t in dagen) D 5 9 gram b) 5 t t 6 t log 6 log 6 log a) log9 9 b) 5 log5 5 5 5 c) log 5 5 d) 5 e loge 7 e e 7 7 e) log 5 5
Paragraaf 14.0 : Eenheidscirkel
Hoofdstuk 14 Allerlei formules (V6 Wis A) Pagina 1 van 12 Paragraaf 14.0 : Eenheidscirkel De eenheidscirkel met graden Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ) = x coordinaat
7.1 De afgeleide van gebroken functies [1]
7.1 De afgeleide van gebroken functies [1] Regels voor het differentiëren: f() = a geeft f () = a f() = a geeft f () = a f() = a geeft f () = 0 Algemeen geldt: f() = a n geeft f () = na n-1 Voorbeeld 1:
Paragraaf 5.1 : Wortelvormen en Breuken
Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 1 van 11 Paragraaf 5.1 : Wortelvormen en Breuken Les 1 : Wortelformules, Domein en Bereik Definities Domein = { alle -en die je mag invullen in de formule
Paragraaf 2.1 : Snelheden (en helling)
Hoofdstuk De afgeleide functie (V4 Wis B) Pagina 1 van 11 Paragraaf.1 : Snelheden (en helling) Les 1 Benadering van de helling tussen twee punten Definities Differentiequotiënt = { Gemiddelde helling }
Paragraaf 7.1 : Eenheidscirkel en radiaal
Hoofdstuk 7 Goniometrische functies (V5 Wis B) Pagina 1 van 15 Paragraaf 7.1 : Eenheidscirkel en radiaal Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ)
5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.
5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige
K.0 Voorkennis. Herhaling rekenregels voor differentiëren:
K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( )
K.1 De substitutiemethode [1]
K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met
Paragraaf 11.1 : Grafieken en Gebieden
Hoofdstuk 11 Formules en Variabelen (H5 Wis A) Pagina 1 van 9 Paragraaf 11.1 : Grafieken en Gebieden Definitie Halfvlak Halfvlak = { Gebied onder / boven / links / rechts van een lijn } Om een halfvlak
Standaardafgeleiden. Wisnet-HBO. update maart 2011
Standaardafgeleiden Wisnet-HBO update maart 2011 1 Inleiding Als je nog niets over differentiëren weet, kun je beter eerst naar de les Wat is Differentiëren gaan in Wisnet Verder zijn er Maplets om de
Machten, exponenten en logaritmen
Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde
Paragraaf 1.1 : Lineaire verbanden
Hoofdstuk 1 Formules, grafieken en vergelijkingen (H4 Wis B) Pagina 1 van 11 Paragraaf 1.1 : Lineaire verbanden Les 1 Lineaire verbanden Definitie lijn Algemene formule van een lijn : y = ax + b a = richtingscoëfficiënt
Paragraaf K.1 : Substitutiemethode
Hoofdstuk K Voortgezette Integraalrekening (V5 Wis B) Pagina van 8 Paragraaf K. : Substitutiemethode Stappenplan voor de substitutiemethode : () Neem y = formule (bij kettingregel noem je deze formule
16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.
16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. Voorbeeld: f() = Differentiequotiënt van f() op [0, 3] = y f (3) f (0) 6 0 30 30 y 1 16.1
11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20
.0 Voorkennis Herhaling rekenregels voor machten: Vermenigvuldigen is exponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige termen: 3a 3 + a 3 = 7a 3 Bij macht van een macht exponenten vermenigvuldigen:
15.0 Voorkennis. Herhaling rekenregels voor differentiëren: (somregel) (productregel) (quotiëntregel) n( x) ( n( x))
5.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( x) a f '( x) 0 n f ( x) ax f '( x) nax n f ( x) c g( x) f '( x) c g'( x) f ( x) g( x) h( x) f '( x) g'( x) h'( x) p( x) f ( x) g( x) p'( x)
META-kaart vwo5 wiskunde A - domein Afgeleide functies
META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke
Errata Moderne wiskunde 9e editie VWO B deel 2 hoofdboek
Onderstaande verbeteringen zijn gebaseerd op de eerste druk van deze titel. In bijdrukken worden fouten hersteld. Het is dus goed mogelijk, dat hier verbeteringen staan, die bij een nieuwe druk al zijn
13.0 Voorkennis. Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen.
13.0 Voorkennis Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen. Op het interval [-2; -0,94) is de grafiek dalend; Bij x =
16.0 Voorkennis. Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i
16.0 Voorkennis Voorbeeld 1: Los op in 2x + 3i = 5x + 6i -3x = 3i x = -i Voorbeeld 2: Los op in 4x 2 + 12x + 15 = 0 4x 2 + 12x + 9 + 6 = 0 (2x + 3) 2 + 6 = 0 (2x + 3) 2 = -6 (2x + 3) 2 = 6i 2 2x + 3 =
Hoofdstuk 6 - de afgeleide functie
Hoofdstuk 6 - de afgeleide functie 0. voorkennis Het differentiequotiënt Het differentiequotiënt van y op de gemiddelde verandering van y op [ ] is: A B de richtingscoëfficiënt (ook wel helling) van de
10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:
10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld
Analyse. Samenvatting: logaritmen. Frank Derks Gerard Heijmeriks www.demathe.nl
Analyse Samenvatting: logaritmen Frank Derks Gerard Heijmeriks www.demathe.nl 1. Inhoudsopgave 1. Inhoudsopgave... 2 2. Exponentiële functies... 3 2.1. Inleiding... 3 2.2. Groeifactoren en groeipercentages...
exponentiële verbanden
exponentiële verbanden . voorkennis Procenten en vermenigvuldigingsfactoren Procentuele toename met p%: g = + p 00 p = ( g ) 00 Procentuele afname met p%: g = p 00 p = ( g) 00 De constante factor In 859
Paragraaf 1.1 : Lineaire functies en Modulus
Hoofdstuk 1 Functies en Grafieken (V4 Wis B) Pagina 1 van 9 Paragraaf 1.1 : Lineaire functies en Modulus Les 1 : Lineaire Formules Definities Algemene formule van een lijn : y = ax + b a = hellingsgetal
Paragraaf 2.1 : Snelheden (en helling)
Hoofdstuk De afgeleide functie (V4 Wis B) Pagina 1 van 11 Paragraaf.1 : Sneleden (en elling) Les 1 Benadering van de elling tussen twee punten Definities Differentiequotiënt = { Gemiddelde elling } Differentiequotiënt
Samenvatting wiskunde B
Samenvatting wiskunde B Dit is een samenvatting van het tweede deel van Getal en Ruimte VWO wiskunde B. In deze samenvatting worden hoofdstuk 5, 6 en 7 behandeld. Ik hoop dat deze samenvatting je zal helpen!
(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a
Samenvatting wiskunde h4 hoofdstuk 3 en 6, h5 hoofdstuk 4 en 6 Hoofdstuk 3 Voorkennis Bij het rekenen met machten gelden de volgende rekenregels: - Bij een vermenigvuldiging van twee machten met hetzelfde
wiskunde B vwo 2019-I
Lijnen door de oorsrong en een cirkel maimumscore 5 Een vergelijking van c is ( ) ( y ) Voor de snijunten geldt + 7 = 5 ( t ) + (t 7) = 5 Herleiden tot 5t 30t+ 5 = 0 Een eacte berekening waaruit volgt
V6 Programma tijdens de laatste weken
V6 Programma tijdens de laatste weken Datum ma. 18-4-11 di. 19-4-11 ma. 5-4-11 di. 6-4-11 ma. -5-11 di. 3-5-11 ma. 9-5-11 di. 10-5-11 Activiteit 1. Differentiëren. Vergelijkingen oplossen e Paasdag 3.
6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.
6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. f(x) = x x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) 60 x 30 30 y x 1 Algemeen: Het differentiequotiënt
4. Exponentiële vergelijkingen
4. Exponentiële vergelijkingen Exponentiële vergelijkingen De gelijkheid 10 3 = 1000 bevat drie getallen: 10, 3 en 1000. Als we van die drie getallen er één niet weten moeten we hem kunnen berekenen. We
2.1 Lineaire functies [1]
2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte
logaritmen WISNET-HBO update jan Zorg dat je het lijstje met rekenregels hebt klaarliggen als je met deze training begint.
Training Vergelijkingen met logaritmen WISNET-HBO update jan. 0 Inleiding Voor deze training heb je nodig: de rekenregels van machten de rekenregels van de logaritmen Zorg dat je het lijstje met rekenregels
Differentiaalrekening. Elementaire techniek van het differentieren.
Differentiaalrekening Elementaire techniek van het differentieren. Saxion Hogescholen Oktober 2008 Differentiaalrekening Een van de belangrijkste technieken in de wiskunde is differentiaalrekening. Deze
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER
3.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x.
3.0 Voorkennis y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. y = -4x + 8 kan herschreven worden als y + 4x = 8 Dit is een lineaire vergelijking met twee variabelen. Als je
vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening
vwo A deel 4 13 Mathematische statistiek 13.1 Kansberekeningen 13.2 Kansmodellen 13.3 De normale verdeling 13.4 De n -wet 13.5 Discrete en continue verdelingen 13.6 Diagnostische toets 14 Algebraïsche
Paragraaf 2.1 Toenamediagram
Hoofdstuk 2 Veranderingen (H4 Wis B) Pagina 1 van 11 Paragraaf 2.1 Toenamediagram Les 1 Interval / Getallenlijn / x-notatie Interval Getallenlijn x-notatie -------------
14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie.
14.0 Voorkennis De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. Evenwichtsstand = (min + max)/2 = (-100 + 300)/2 = 100 Amplitude = max evenw.
Paragraaf 8.1 : Eenheidscirkel
Hoofdstuk 8 Goniometrische functies (H4 Wis B) Pagina 1 van 10 Paragraaf 8.1 : Eenheidscirkel Les 1 : De eenheidscirkel Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ) = x coordinaat
7,7. Samenvatting door Manon 1834 woorden 3 mei keer beoordeeld. Wiskunde C theorie CE.
Samenvatting door Manon 1834 woorden 3 mei 2016 7,7 13 keer beoordeeld Vak Wiskunde Wiskunde C theorie CE. Permutaties: -Het aantal permutaties van drie dingen die je kiest uit acht dingen is: 8*7*6= 336.
Wiskunde 2 september 2008 versie 1-1 - Dit is een greep (combinatie) van 3 uit 32. De volgorde is niet van belang omdat de drie
Wiskunde 2 september 2008 versie 1-1 - Op hoeveel verschillende manieren kun je drie zwarte pionnen verdelen over de 32 zwarte velden van een schaakbord? (Neem aan dat op elk veld hooguit één pion staat.)
) translatie over naar rechts
Hoofdstuk opmerkingen/adviezen Leer deze grafieken precies! Zorg dat je de volgende formules ziet in de grafieken: Periode sinus, cosinus en tangens: resp,, sin( ) sin( ) cos( ) cos( ) cos( ) c a k a k
Logaritmische functie
Logaritmische functie WISNET-HBO update aug 2013 1 Inleiding De bedoeling van deze les is het repeteren met pen en papier van logaritmen. Voorkennis van de rekenregels van machten is voor deze les beslist
Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...
Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een
Studiehandleiding Basiswiskunde cursus
Studiehandleiding Basiswiskunde cursus 2008 2009 Materiaal Bij dit college heb je nodig: Het boek Basisboek wiskunde van Jan van de Craats en Rob Bosch Isbn: 90 430 1156 8 De syllabus Aanvulling basiscursus
exponentiële en logaritmische functies
CAMPUS BRUSSEL Opfriscursus Wiskunde exponentiële en logaritmische functies Exponentiële en logaritmische functies Machten van getallen 000 euro wordt belegd aan een samengestelde interest van % per jaar
Wiskunde 20 maart 2014 versie 1-1 -
Wiskunde 0 maart 04 versie - -. a 3 a =. a.. 6.,AppB./ a 4 3. a 3. Rekenregels voor machten: als je twee machten op elkaar deelt, trek je de exponenten van elkaar af. De exponent van a wordt dan =. 3 6
Paragraaf 13.0 : Limieten en absolute waarde
Hoofdstuk 13 Limieten en Asymptoten (V6 Wis B) Pagina 1 van 13 Paragraaf 13.0 : Limieten en absolute waarde Definitie absoluuttekens pp = { p absoluut of de absolute waarde van p } pp = { altijd positief
Exponentiële vergelijkingen en groei
Exponentiële vergelijkingen en groei De gelijkheid 10 2 = 100 bevat drie getallen: 10, 2 en 100. Als we van die drie getallen er één niet weten moeten we hem kunnen berekenen. We kunnen dus drie gevallen
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER
ONLY FOR PERSONAL USE. This digital version of the DictaatRekenvaardigheden - Algebraic Skills is for personal use because of copyright.
ONLY FOR PERSONAL USE This digital version of the DictaatRekenvaardigheden - Algebraic Skills is for personal use because of copyright. c Dictaat Rekenvaardigheden Faculteit Wiskunde en Informatica 0 mei
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Analyse A, deeltentamen Uitwerkingen maandag 1 november 2010, 9 11 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan
stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen benaderd worden genoteerd (wel doorrekenen met exacte antwoorden).
Samenvatting door Sterre 1437 woorden 5 mei 2018 7.8 3 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Vocabulair Algebraïsch stap voor stap; zonder GR-functies; tussen- en eindantwoorden mogen
Hoofdstuk 9: Allerlei functies. 9.1 Machtsfuncties en wortelfuncties. Opgave 1: a. Opgave 2: a. de grafiek van y2. ontstaat uit die van y 1.
Hoofdstuk 9: Allerlei functies 9. Machtsfuncties en wortelfuncties Opgave : a. 0,0, c. y en y d. y en y Opgave : a. de grafiek van y ontstaat uit die van y door T 0, T 0,6 y y 6 Opgave : a. T 6,0 T,0 c.
Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e 1/3/2017. dr. Brenda Casteleyn
Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 1/3/2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding
6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden
6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p
Paragraaf 7.1 : Lijnen en Hoeken
Hoofdstuk 7 Lijnen en cirkels (V5 Wis B) Pagina 1 van 11 Paragraaf 7.1 : Lijnen en Hoeken Les 1 Lijnen Definities Je kunt een lijn op verschillende manieren bepalen / opschrijven : (1) RC - manier y =
Eindexamen wiskunde B pilot havo I
Overlevingstijd Als iemand in koud water terecht komt, daalt zijn lichaamstemperatuur. Als de lichaamstemperatuur is gedaald tot 30 ºC ontstaat een levensbedreigende situatie. De tijd die verstrijkt tussen
Examen HAVO. wiskunde B (pilot) tijdvak 1 donderdag 19 mei uur
Eamen HAVO 011 tijdvak 1 donderdag 19 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 19 vragen. Voor dit eamen zijn maimaal 81 punten te behalen. Voor elk vraagnummer staat hoeveel punten
1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
1.1 Rekenen met letters [1]
1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren
13.0 Voorkennis. Deze functie bestaat niet bij een x van 2. Invullen van x = 2 geeft een deling door 0.
Gegeven is de functie.0 Voorkennis Deze functie bestaat niet bij een van. Invullen van = geeft een deling door 0. De functie g() = heeft als domein R en is een ononderbroken kromme. Deze functie is continu
Samenvatting Wiskunde A
Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een examen in dit geval voor
Inhoud college 5 Basiswiskunde Taylorpolynomen
Inhoud college 5 Basiswiskunde 4.10 Taylorpolynomen 2 Basiswiskunde_College_5.nb 4.10 Inleiding Gegeven is een functie f met punt a in domein D f. Gezocht een eenvoudige functie, die rond punt a op f lijkt
wiskunde A vwo 2019-I
OVERZICHT FORMULES Differentiëren naam van de regel functie afgeleide somregel s( x) f( x) g( x) s' ( x) f'x ( ) g'x ( ) verschilregel s( x) f( x) g( x) s' ( x) f'x ( ) g'x ( ) productregel px ( ) f( x)
wiskunde B pilot havo 2016-I
De rechte van Euler Gegeven is cirkel c met middelpunt ( 1, 1 ) 3p 1 Stel een vergelijking op van c. De punten B( 3, 0) en ( 4, 0) M die door het punt A( 0, 4) 2 2 C liggen op c. Punt Q is het midden van
5.1 Lineaire formules [1]
5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire
Transformaties van grafieken HAVO wiskunde B deel 1
Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen
Cijfer = totaal punten/10 met minimum 1
VOORBLAD SCHRIFTELIJKE TOETSEN OPLEIDING TOETSCODE GROEP Me MeWIS1-T1 MeP1 TOETSDATUM 7 november 011 TIJD 13.00 14.30 uur AANTAL PAGINA S (incl. dit voorblad) 6 DEZE TOETS BESTAAT UIT (aantal) GEBRUIK
Vergelijkingen oplossen met categorieën
Vergelijkingen oplossen met categorieën De bewerkingen die tot de oplossing van een vergelijking leiden zijn niet willekeurig, maar vallen in zes categorieën. Het stappenplan voor het oplossen maakt gebruik
7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden
7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek 30 45 60 sinus cosinus 2 tangens 3 3 3 2
1.1 Lineaire vergelijkingen [1]
1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg
1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
Wiskunde voor relativiteitstheorie
Wiskunde voor relativiteitstheorie Utrecht Les 2: en differentiaalrekening Dr Harm van der Lek vdlek@vdleknl Natuurkunde hobbyist Programma 211 1 Goniometrische functies 2 Som formules 3 Cosinus regel
10e editie Inhoudsopgave leerjaar 6
10e editie Inhoudsopgave leerjaar 6 Inhoudsopgave Deel 6 vwo A Hoofdstuk 1: Samengestelde functies Voorkennis: Differentiëren 1-1 Machtsfuncties 1-2 Machtsfuncties differentiëren 1-3 Wortelfuncties en
Examen VWO. wiskunde A. tijdvak 1 maandag 20 mei uur. Bij dit examen hoort een uitwerkbijlage.
Examen VWO 2019 tijdvak 1 maandag 20 mei 13.30-16.30 uur wiskunde A Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 20 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk
