Paragraaf 4.1 : Kwadratische formules
|
|
|
- Robert de Groot
- 8 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Hoofdstuk 4 Werken met formules H4 Wis B) Pagina 1 van 10 Paragraaf 41 : Kwadratische formules Les 1 : Verschillende vormen Er zijn verschillende vormen van kwadratische vergelijkingen die vaak terugkomen : 1) De vorm y = a d) e) Snijdt de -as in de punten d,0) en e,0) De top ligt precies tussen de snijpunten met de -as top = d+e ) De toppenformule y = a p) + q y = a p) + q heeft als top p,q) Een parabool heeft top,10) en gaat door het punt A1,4) a Stel de formule op b Ligt het punt B-1,-1) op de parabool? Een andere parabool gaat door de punten A-,0), B,0) en C,4) c Stel de formule op d Bereken de coördinaten van de top e Schrijf de formule in de vorm y = a + b + c a Je weet de top, dus gebruik de toppenformule met p = en q = 10 y = a ) + 10 Vul het punt 1,4) in om de a te berekenen 4 = a1 ) = a = a 4 a = 1 1 Dus de formule is y = 1 1 ) + 10
2 Hoofdstuk 4 Werken met formules H4 Wis B) Pagina van 10 b y = ) + 10 = Dus punt B ligt niet op de parabool c Je weet de snijpunten met de -as, dus gebruik formule 1) met d = - en e = : y = a + ) ) Vul het punt, 4) in om de a te berekenen 4 = a + ) ) 4 = a -9 a = Dus y = ) ) 9 d top = + Dus Top, ) = en ytop = ) ) = e y = ) ) = ) =
3 Hoofdstuk 4 Werken met formules H4 Wis B) Pagina van 10 Les : Top van de parabool Definitie De top van y = a + b + c kun je eenvoudig berekenen met de formules : 1) top = b a ) ytop = ftop) De parabool y = + b + 1 gaat door het punt A,) Bereken de coördinaten van de top 1) Eerst b bereken door punt A =, ) in te vullen: = ) + b + 1 = 9 + b = b b = ) y = top = 1 = = 1, ytop = f1,) = 1,) + 1, + 1 =, Top=1 1, 1 4 )
4 Hoofdstuk 4 Werken met formules H4 Wis B) Pagina 4 van 10 Paragraaf 4 : Hogeregraadsvergelijkingen Les 1 : Machtsvergelijkingen oplossen Herhalen 1) n is even Er zijn twee snijpunten oplossingen) met de positieve y-as Er zijn geen snijpunten oplossingen) met de negatieve y-as ) n is oneven Er is één snijpunt oplossing) met de positieve y-as Er is één snijpunt oplossing) met de negatieve y-as Los algebraïsch op Geef de antwoorden in decimalen nauwkeurig a = b 4 10 = 0 a = = 1 = 1 b 4 10 = 0 4 = 0 4 = 18 4 = 18 = 1,4 en NIET -1,4!!!) =,9 v =,9 Nu wel, waarom???)
5 Hoofdstuk 4 Werken met formules H4 Wis B) Pagina van 10 Les : Hogeremachtsvergelijkingen oplossen Bereken eact : a 4 1 = 0 b = -4 c ) = 4 a 4 1 = 0 4 1) = 0 = 0 of 4 1 = 0 = 0 of - ) + ) = 0 = 0 of = of = - b = = 0 Stel = p dan is p = p p = = ) p -p + 4 = 0 p - 4)p - 1) = 0 p = 4 of p = 1 nu weer terug vervangen p = ) = 4 of = 1 = 4 of = 1 = 1 c ) = 4 Stel p = ) p = 4 p = 4 = 4 = + 4 v v v p = 4 = 4 = 4
6 Hoofdstuk 4 Werken met formules H4 Wis B) Pagina van 10 Paragraaf 4 : Grafisch Numeriek Oplossen Definities Bereken algebraïsch = { Oplossen ZONDER de GR Je mag soms) afronden } Bereken eact = { Oplossen ZONDER de GR Je mag NOOIT afronden } Bereken = { Je mag de GR Intersect / Zero) gebruiken } Ongelijkheden Een ongelijkheid heeft als teken > ; ; < ; Een ongelijkheid heeft miljoenen oplossingen bijv > 4) Daarom is er ALTIJD een schets nodig om een ongelijkheid oplossen Er is één uitzondering voor de schets en dat is bij een lineaire ongelijkheid bijv 4 > - + 8) Stappenplan Ongelijkheid oplossen : 1) Herleid op 0 ) Los de vergelijking op algebraïsch of met intersect) ) Maak een schets van de situatie 4) Lees de oplossing af uit de schets van de grafiek met de GR)
7 Hoofdstuk 4 Werken met formules H4 Wis B) Pagina van 10 Los algebraïsch op + > 10 1) + > > 0 ) + 10 = 0 ) + ) = 0 = v = - of met intersect Y1 = + 10 en Y = 0) ) Schets Y1 = ) > 0 als < - of > Opmerking Als er alleen los op staat, mag je stap ) oplossen met intersect
8 Hoofdstuk 4 Werken met formules H4 Wis B) Pagina 8 van 10 Paragraaf 44 : Gebroken formules Les 1 : Oplossen van gebroken vergelijkingen Breuk) 1) Zorg dat er links en rechts een breuk staat ) Doe kruiselings vermenigvuldigen en los verder op als het een uitzondering is, gebruik dan onderstaande regels) ) Controleer of de noemer voor de oplossing niet nul is Er zijn twee uitzondering voor stap ) 1 Als de vorm Als de vorm A = A B C B = C A A is, dan is de oplossing A = 0 v B = C is, dan is de oplossing B = C a + = b + = + c 1 + = 1 a + = 1 + ) = 1 ) + = 8 = 0 4) + ) = 0 = 4 v = b = + + = = 9 { Uitzondering B A = C A } = v = VN) { Bij =- is de noemer nul, dus is er maar één oplossing } Dus = c 1 + = 1 1 = 0 v + = = 1 v = 10 { Uitzondering 1 A B = A C } = 1 v = 1 v = 10 { De noemer is niet nul voor deze oplossingen }
9 Hoofdstuk 4 Werken met formules H4 Wis B) Pagina 9 van 10 Les : Herleiden van breuken Herleid d c b a ) ) ) ) ) ) ) ) 1 ) ) 8 4 ) ) 9 ) ) ) 4 ) ) ) d c b a Voorbeeld Deel uit: +1 Oplossing + 1 = + 1
10 Hoofdstuk 4 Werken met formules H4 Wis B) Pagina 10 van 10 Les Gebroken formules omwerken Formules omwerken: kruiselings vermenigvuldigen of = a Gegeven is y = b Gegeven is A = 1 T T+ Druk uit in y Schrijf T als functie van A a 1 = y = y + 1 = y + 1 b AT + ) = T AT + A = T AT T = A TA 1) = A T = A A 1
Paragraaf 6.1 : Kwadratische formules
Hoofdstuk 6 Machtsverbanden (V Wis A) Pagina 1 van 10 Paragraaf 6.1 : Kwadratische formules Gegeven is de formule W(x) = x 2 + 8x met W de winst in euro s per uur en x het aantal producten dat per uur
Paragraaf 1.1 : Lineaire functies en Modulus
Hoofdstuk 1 Functies en Grafieken (V4 Wis B) Pagina 1 van 9 Paragraaf 1.1 : Lineaire functies en Modulus Les 1 : Lineaire Formules Definities Algemene formule van een lijn : y = ax + b a = hellingsgetal
Paragraaf 11.0 : Voorkennis
Hoofdstuk 11 Verbanden en functies (H5 Wis B) Pagina 1 van 15 Paragraaf 11.0 : Voorkennis Les 1 : Stelsels, formules en afgeleide Los op. 3x + 5y = 7 a. { 2x + y = 0 2x + 5y = 38 b. { x = y + 5 a. 3x +
3.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x.
3.0 Voorkennis y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. y = -4x + 8 kan herschreven worden als y + 4x = 8 Dit is een lineaire vergelijking met twee variabelen. Als je
1.1 Tweedegraadsvergelijkingen [1]
1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2
Paragraaf 1.1 : Lineaire verbanden
Hoofdstuk 1 Formules, grafieken en vergelijkingen (H4 Wis B) Pagina 1 van 11 Paragraaf 1.1 : Lineaire verbanden Les 1 Lineaire verbanden Definitie lijn Algemene formule van een lijn : y = ax + b a = richtingscoëfficiënt
Paragraaf 5.1 : Wortelvormen en Breuken
Hoofdstuk 5 Machten en Eponenten (V Wis B) Pagina 1 van 11 Paragraaf 5.1 : Wortelvormen en Breuken Les 1 : Wortelformules, Domein en Bereik Definities Domein = { alle -en die je mag invullen in de formule
6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden
6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p
1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
Paragraaf 14.0 : Eenheidscirkel
Hoofdstuk 14 Allerlei formules (V6 Wis A) Pagina 1 van 12 Paragraaf 14.0 : Eenheidscirkel De eenheidscirkel met graden Definities Eenheidscirkel = { Cirkel met middelpunt O en straal 1 } cos(θ) = x coordinaat
Paragraaf 5.1 : Machten en wortels
Hoofdstuk 5 Machten, exponenten en logaritmen (H Wis B) Pagina 1 van 1 Paragraaf 5.1 : Machten en wortels Machtsregels SPECIAAL GEVAL MACHTREGEL 1 : MACHTREGEL 2 : MACHTREGEL : a p a q = a p+q a p aq =
Paragraaf 11.1 : Grafieken en Gebieden
Hoofdstuk 11 Formules en Variabelen (H5 Wis A) Pagina 1 van 9 Paragraaf 11.1 : Grafieken en Gebieden Definitie Halfvlak Halfvlak = { Gebied onder / boven / links / rechts van een lijn } Om een halfvlak
Paragraaf 13.1 : Berekeningen met de afgeleide
Hoofdstuk 13 Toepassingen vd differentiaalrekening (V5 Wis A) Pagina 1 van 7 Paragraaf 13.1 : Berekeningen met de afgeleide Differentiëren van e-machten en logaritmen f() = e f () = e f() = ln() f () =
extra oefeningen HOOFDSTUK 4 VMBO 4
extra oefeningen HOOFDSTUK 4 VMBO 4 1. a. Teken in één assenstelsel de grafieken bij de formules y = 4x - 3 en y = 7 - x b. Bereken de coördinaten van het snijpunt c. Teken in hetzelfde assenstelsel de
3.1 Kwadratische functies[1]
3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt
2.1 Lineaire functies [1]
2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte
Paragraaf 7.1 : Lijnen en Hoeken
Hoofdstuk 7 Lijnen en cirkels (V5 Wis B) Pagina 1 van 11 Paragraaf 7.1 : Lijnen en Hoeken Les 1 Lijnen Definities Je kunt een lijn op verschillende manieren bepalen / opschrijven : (1) RC - manier y =
Paragraaf 2.1 : Snelheden (en helling)
Hoofdstuk De afgeleide functie (V4 Wis B) Pagina 1 van 11 Paragraaf.1 : Snelheden (en helling) Les 1 Benadering van de helling tussen twee punten Definities Differentiequotiënt = { Gemiddelde helling }
14.1 Vergelijkingen en herleidingen [1]
4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )
1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
x 3x x 7x x 2x x 5x x 4x G&R havo B deel 1 3 Vergelijkingen en ongelijkheden C. von Schwartzenberg 1/12 TOETS VOORKENNIS
G&R havo B deel Vergelijkingen en ongelijkheden C. von Schwartzenberg / a x = x =. b x = x x =. c d x (x ) 0 x = 0 =. 9. e f x 0 x ( x ) 0. x x = x x ( x )( x + ). TOETS VOORKENNIS a ( x + ) = x c x e
2.1 Lineaire formules [1]
2.1 Lineaire formules [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte
10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:
10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld
7.1 Ongelijkheden [1]
7.1 Ongelijkheden [1] In het plaatje hierboven zijn vier intervallen getekend. Een open bolletje betekent dat dit getal niet bij het interval hoort. Een gesloten bolletje betekent dat dit getal wel bij
Checklist Wiskunde B HAVO HML
Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER
Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...
Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een
5.7. Boekverslag door P woorden 11 januari keer beoordeeld. Wiskunde B
Boekverslag door P. 1778 woorden 11 januari 2012 5.7 103 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Wiskunde Hoofdstuk 1 Formules en Grafieken 1.1 Lineaire verbanden Van de lijn y=ax+b is de
rekenregels voor machten en logaritmen wortels waar of niet waar
Hoofdstuk 5 - machten, eponenten en logaritmen rekenregels voor machten en logaritmen wortels waar of niet waar 0. voorkennis HERLEIDEN VAN MACHTEN - rekenregels voor machten Bij het vermenigvuldigen van
5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.
5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige
Paragraaf 2.1 Toenamediagram
Hoofdstuk 2 Veranderingen (H4 Wis B) Pagina 1 van 11 Paragraaf 2.1 Toenamediagram Les 1 Interval / Getallenlijn / x-notatie Interval Getallenlijn x-notatie -------------
Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4
Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 1. Lineair verband. 1a. na 1 min 36 cm, na min. 3 cm, daling 4 cm per minuut. b. h = 40 4t h in cm en t per minuut b. k: rc = -3 m: rc = 0.5 p: rc
Praktische opdracht Wiskunde A Formules
Praktische opdracht Wiskunde A Formules Praktische-opdracht door een scholier 2482 woorden 15 juni 2006 5,5 40 keer beoordeeld Vak Wiskunde A Inleiding Formules komen veel voor in de economie, wiskunde,
Paragraaf 9.1 : Logaritmen
Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina van 5 Paragraaf 9. : Logaritmen Les Logaritmen Definitie Logaritmen Hoofdregel : g t = b t = g log b met domein b>0 Om logaritmen uit
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER
3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo
Bijlage 7 Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Deze vragen kunnen gebruikt worden om aan het eind van klas 3 havo/vwo na te gaan in hoeverre leerlingen in staat zijn te
exponentiële standaardfunctie
9.0 Voorkennis In de grafiek is de eponentiële standaardfunctie f() = getekend; D f = R, B f = (0, ) met de -as als asymptoot (Dit volgt uit: lim 0 ); Elke functie g met g > heeft deze vorm; Voor g > is
1.1 Rekenen met letters [1]
1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren
Antwoordmodel oefentoets - Formules en grafieken
Antwoordmodel oefentoets - Formules en grafieken Vraag 1 Teken in een figuur de lijnen. l : y = 1 2 x + 4 m : y = 3 2 x 5 n : y = 2x + 2 Voer in y 1 = 1 2 x + 4, y 2 = 3 2 x 5 en y 3 = 2x + 2. Gebruik
13.0 Voorkennis. Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen.
13.0 Voorkennis Links is de grafiek van de functie f(x) = 5x 4 + 2x 3 6x 2 5 getekend op het interval [-2, 2]; Deze grafiek heeft drie toppen. Op het interval [-2; -0,94) is de grafiek dalend; Bij x =
Paragraaf 2.1 : Snelheden (en helling)
Hoofdstuk De afgeleide functie (V4 Wis B) Pagina 1 van 11 Paragraaf.1 : Sneleden (en elling) Les 1 Benadering van de elling tussen twee punten Definities Differentiequotiënt = { Gemiddelde elling } Differentiequotiënt
1.1 Lineaire vergelijkingen [1]
1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg
Samenvatting Wiskunde B
Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen
6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.
6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. f(x) = x x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) 60 x 30 30 y x 1 Algemeen: Het differentiequotiënt
opdracht 1 opdracht 2 opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen 1 Versie DD 2014
Algebra Anders Parabolen 1 Versie DD 014 1 Parabolen herkennen opdracht 1 We beginnen heel eenvoudig met y = x Een tabel en een grafiek is snel gemaakt. top x - -1 0 1 3 y 0 1 4 + 1 + 3 toename tt + a)
3.4. Antwoorden door N woorden 24 januari keer beoordeeld. Wiskunde B. wi vwo B1 H1 Vergelijkingen en ongelijkheden 1.
Antwoorden door N. 8825 woorden 24 januari 2013 3.4 17 keer beoordeeld Vak Methode Wiskunde B Getal en ruimte Uitwerkingen wi vwo B1 H1 Vergelijkingen en ongelijkheden 1. I, II, IV, V 2. a. x 2 + 6 = 5x
5.1 Lineaire formules [1]
5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire
Hoofdstuk 1 : De Tabel
Hoofdstuk 1 : De Tabel 1.1 Een tabel maken De GR heeft 3 belangrijke knoppen om een tabel te maken : (1) Y= knop : Daar tik je de formule in (2) Tblset (2nd Window) : Daar stel je de tabel in. Er geldt
Hoofdstuk 6 - de afgeleide functie
Hoofdstuk 6 - de afgeleide functie 0. voorkennis Het differentiequotiënt Het differentiequotiënt van y op de gemiddelde verandering van y op [ ] is: A B de richtingscoëfficiënt (ook wel helling) van de
11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20
.0 Voorkennis Herhaling rekenregels voor machten: Vermenigvuldigen is exponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige termen: 3a 3 + a 3 = 7a 3 Bij macht van een macht exponenten vermenigvuldigen:
Factor = het getal waarmee je de oude hoeveelheid moet vermenigvuldigen om een nieuwe hoeveelheid te krijgen.
Samenvatting door een scholier 1569 woorden 23 juni 2017 5,8 6 keer beoordeeld Vak Methode Wiskunde Moderne wiskunde Wiskunde H1 t/m H5 Hoofdstuk 1 Factor = het getal waarmee je de oude hoeveelheid moet
Paragraaf 8.1 : Lijnen en Hoeken
Hoofdstuk 8 Meetkunde met coördinaten (V5 Wis B) Pagina 1 van 11 Paragraaf 8.1 : Lijnen en Hoeken Les 1 Lijnen Definities Je kunt een lijn op verschillende manieren bepalen / opschrijven : (1) RC - manier
Paragraaf 9.1 : Twee soorten groei
Hoofdstuk 9 Exponentiële Verbanden (H5 Wis A) Pagina 1 van 9 Paragraaf 9.1 : Twee soorten groei Les 1 Lineaire en exponentiele groei Definitie Lijn = LINEAIRE GROEI Algemene formule van een lijn : y =
1. Orthogonale Hyperbolen
. Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies
Samenvatting Wiskunde Hoofdstuk 1 & 2 wisb
Samenvatting Wiskunde Hoofdstuk 1 & 2 wisb Samenvatting door J. 803 woorden 7 maart 2015 4,6 6 keer beoordeeld Vak Methode Wiskunde Getal en Ruimte Wiskunde Hoofdstuk 1 1 Lineaire verbanden Lineaire formule.
RECHTEN. 1. Vul in met of. co(a) = (-2,3) a y = -2x + 1 A a want 3-2.(-2)+3 co(a) = (4,1) a 3x -5y -2 = 0 A a want
ANALYTISCHE MEETKUNDE: HERHALING DERDE JAAR OEFENINGEN Lees eerst de formules op het andere blad, en los vervolgens de oefeningen van het bijbehorende deel op. Wanneer je alles hebt opgelost, maak je de
Paragraaf 8.1 : Recursieve en directe formule
Hoofdstuk 8 Rijen en veranderingen (V5 Wis A) Pagina 1 van 11 Paragraaf 8.1 : Recursieve en directe formule Les 1 Rijen en recursievergelijking Definities : Wat is een rij Gegeven is de rij u = { 5,10,20,40
7.1 De afgeleide van gebroken functies [1]
7.1 De afgeleide van gebroken functies [1] Regels voor het differentiëren: f() = a geeft f () = a f() = a geeft f () = a f() = a geeft f () = 0 Algemeen geldt: f() = a n geeft f () = na n-1 Voorbeeld 1:
Exacte waarden bij sinus en cosinus
acte waarden bij sinus en cosinus n enkele gevallen kun je vergelijkingen met sinus en cosinus eact oplossen. Welke gevallen zijn dat? 0, π 0, π f() = sin π π 8 9 0, g() = cos π π π 8 9 π 0, ierboven zie
Paragraaf 10.1 : Vectoren en lijnen
Hoofdstuk 10 Meetkunde met Vectoren (V5 Wis B) Pagina 1 van 13 Paragraaf 10.1 : Vectoren en lijnen Les 1 : Vectoren tekenen Definities Vector x = ( a ) wil zeggen a naar rechts en b omhoog. b Je kunt vectoren
wiskunde B pilot havo 2016-I
De rechte van Euler Gegeven is cirkel c met middelpunt ( 1, 1 ) 3p 1 Stel een vergelijking op van c. De punten B( 3, 0) en ( 4, 0) M die door het punt A( 0, 4) 2 2 C liggen op c. Punt Q is het midden van
Hoofdstuk 11 - formules en vergelijkingen. HAVO wiskunde A hoofdstuk 11
Hoofdstuk - formules en vergelijkingen HAVO wiskunde A hoofdstuk 0 voorkennis Soorten van stijgen en dalen Je ziet hier de verschillende soorten van stijgen en dalen Voorbeeld Gegegeven is de de formule:
Hoofdstuk 7 - veranderingen. getal & ruimte HAVO wiskunde A deel 2
Hoofdstuk 7 - veranderingen getal & ruimte HAVO wiskunde A deel 2 0. voorkennis Plotten, schetsen en tekenen Een grafiek plotten Een grafiek schetsen Een grafiek tekenen Na het invoeren van de formule
Kerstvakantiecursus. wiskunde B. Voorbereidende opgaven VWO. Haakjes. Machten
Voorbereidende opgaven VWO Kerstvakantiecursus wiskunde B Tips: Maak de voorbereidende opgaven voorin in een van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk
Hoofdstuk 9: Allerlei functies. 9.1 Machtsfuncties en wortelfuncties. Opgave 1: a. Opgave 2: a. de grafiek van y2. ontstaat uit die van y 1.
Hoofdstuk 9: Allerlei functies 9. Machtsfuncties en wortelfuncties Opgave : a. 0,0, c. y en y d. y en y Opgave : a. de grafiek van y ontstaat uit die van y door T 0, T 0,6 y y 6 Opgave : a. T 6,0 T,0 c.
wiskunde B havo 2017-I
Cirkel en lijn De cirkel c en de lijn l worden gegeven door l: 5. Zie figuur. 4 3 2 2 c: 9 en figuur l c 4p Toon aan dat l raakt aan c. Cirkel c snijdt de negatieve -as in het punt A. Lijn l snijdt de
Hoofdstuk 2: Grafieken en formules
Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde
Antwoordmodel - Kwadraten en wortels
Antwoordmodel - Kwadraten en wortels Schrijf je antwoorden zo volledig mogelijk op. Tenzij anders aangegeven mag je je rekenmachine niet gebruiken. Sommige vragen zijn alleen voor het vwo, dit staat aangegeven.
Verbanden en functies
Verbanden en functies 0. voorkennis Stelsels vergelijkingen Je kunt een stelsel van twee lineaire vergelijkingen met twee variabelen oplossen. De oplossing van het stelsel is het snijpunt van twee lijnen.
Uitwerking voorbeeld 2
Uitwerking voorbeeld 2 Toppen, nulpunten en snijpunten Met de grafische rekenmachine kan je de coördinaten van toppen, nulpunten en snijpunten berekenen. Bij een experiment heeft men een model opgesteld
Voorkennis : Breuken en letters
Hoofdstuk 1 Getallen en Variabelen (V4 Wis A) Pagina 1 van 13 Voorkennis : Breuken en letters Les 1 : Breuken Bereken : a. 4 2 3 b. x 5 = c. 12 3 x a. 4 2 3 = 8 3 = 2 2 3 b. x 5 = 1 5 x c. 12 3 x = 12
Examen HAVO. wiskunde B (pilot) tijdvak 1 maandag 23 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen HAV 2016 tijdvak 1 maandag 23 mei 13:30-16:30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor
Transformaties van grafieken HAVO wiskunde B deel 1
Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen
4.1 Negatieve getallen vermenigvuldigen [1]
4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats
20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen
Onderwerp Lineaire verbanden H1 20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen 26 De leerling leert te
Paragraaf 12.1 : Exponentiële groei
Hoofdstuk 12 Exponenten en logaritmen (V5 Wis A) Pagina 1 van 12 Paragraaf 12.1 : Exponentiële groei Les 1 Exponentiële functies Definitie Exponentiële functies Algemene formule : N = b g t waarbij b =
Examen HAVO. wiskunde B. tijdvak 1 vrijdag 19 mei uur. Bij dit examen hoort een uitwerkbijlage.
Eamen HAV 207 tijdvak vrijdag 9 mei 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 79 punten te behalen. Voor elk vraagnummer
GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007
Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Havo A deel 1 begint met het niet-examenonderwerp Statistiek (was hoofdstuk 4). Al snel wordt de grafische rekenmachine ingezet en ook bij de andere
VIDEO 4 4. MODULUSVERGELIJKINGEN
VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4 4. MODULUSVERGELIJKINGEN De modulus (ook wel absolute waarde) is de afstand van een punt op de getallenlijn tot nul. De modulus van zowel -5 als 5 is dus 5, omdat -5 ook
Kerstvakantiecursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven VWO kan niet korter
Voorbereidende opgaven VWO Kerstvakantiecursus wiskunde A Tips: Maak de voorbereidende opgaven voorin in een van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk
4.1 Rekenen met wortels [1]
4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:
7,7. Samenvatting door Manon 1834 woorden 3 mei keer beoordeeld. Wiskunde C theorie CE.
Samenvatting door Manon 1834 woorden 3 mei 2016 7,7 13 keer beoordeeld Vak Wiskunde Wiskunde C theorie CE. Permutaties: -Het aantal permutaties van drie dingen die je kiest uit acht dingen is: 8*7*6= 336.
Paragraaf 13.0 : Limieten en absolute waarde
Hoofdstuk 13 Limieten en Asymptoten (V6 Wis B) Pagina 1 van 13 Paragraaf 13.0 : Limieten en absolute waarde Definitie absoluuttekens pp = { p absoluut of de absolute waarde van p } pp = { altijd positief
Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden
Hoofdstuk : Formules en grafieken.. Lineaire verbanden Opgave : in 0 minuten daalt het water 40 cm, dus 4 cm per minuut dus na minuut geldt: h 40 4 6 cm en na minuten geldt: h 40 4 cm b. formule II Opgave
Hogeschool Rotterdam. Voorbeeldexamen Wiskunde A
. Bereken zonder rekenmachine: + d. + 0 + 6 6 6 Hogeschool Rotterdam Voorbeeldeamen Wiskunde A 6 6 Oplossingen. Bereken zonder rekenmachine: + 6 b. + 6 0 + 9. Bereken zonder rekenmachine: 9 9 d.. Een supermarkt
Stoomcursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven VWO ( ) = = ( ) ( ) ( ) = ( ) ( ) = ( ) = = ( )
Voorbereidende opgaven VWO Stoomcursus wiskunde A Tips: Maak de voorbereidende opgaven voorin in een van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk hem dan
Voorbereidende opgaven Kerstvakantiecursus. Rekenregels voor vereenvoudigen ( ) = = ( ) ( ) ( ) = ( ) ( ) = ( ) = = ( )
Voorbereidende opgaven Kerstvakantiecursus Tips: Maak de voorbereidende opgaven voorin in één van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk hem dan uit tot
Lineaire verbanden. 4 HAVO wiskunde A getal en ruimte deel 1
Lineaire verbanden 4 HAVO wiskunde A getal en ruimte deel 0. voorkennis Letterrekenen Regels: a(b + c ) = a b + ac (a + b )c = a c + bc (a + b )(c + d ) = a c + a d + b c + bd Vergelijkingen oplossen Je
14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie.
14.0 Voorkennis De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. Evenwichtsstand = (min + max)/2 = (-100 + 300)/2 = 100 Amplitude = max evenw.
Les 1 Kwadraat afsplitsen en Verzamelingen
Vwo 5 / Havo 4 Wis D Hoofdstuk 8 : Complexe getallen Pagina van Les Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen N = Natuurlijke getallen =,2,,.. Z
wiskunde B pilot havo 2015-I
Hangar Door constructies in de vorm van een bergparabool te gebruiken, kunnen grote gebouwen zonder inwendige steunpilaren gebouwd worden. Deze manier van bouwen werd begin vorige eeuw veel gebruikt voor
Voorbereiding PTA1-V5 wiskunde A
Voorbereiding PTA1-V5 wiskunde A ma. 1 mrt. Les 1 Allerlei vergelijkingen oplossen (1) wo. 3 mrt. Les Valt uit: ga zelf iets oefenen! vr. 5 mrt. Les 3 Normale verdeling ma. 8 mrt. Les 4 Allerlei vergelijkingen
Samenvatting wiskunde B
Samenvatting wiskunde B Dit is een samenvatting van het tweede deel van Getal en Ruimte VWO wiskunde B. In deze samenvatting worden hoofdstuk 5, 6 en 7 behandeld. Ik hoop dat deze samenvatting je zal helpen!
Machten, exponenten en logaritmen
Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde
Lineaire formules.
www.betales.nl In de wiskunde horen bij grafieken bepaalde formules waarmee deze grafiek getekend kan worden. Lineaire formules zijn formules die in een grafiek een reeks van punten oplevert die op een
