Exponentiële vergelijkingen en groei
|
|
|
- Quinten Smet
- 9 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Exponentiële vergelijkingen en groei De gelijkheid 10 2 = 100 bevat drie getallen: 10, 2 en 100. Als we van die drie getallen er één niet weten moeten we hem kunnen berekenen. We kunnen dus drie gevallen onderscheiden: 1) We weten de 100 niet, als we op die plaats een x zetten volgt: 10 2 = x de uitkomst x = 100 heet de tweede macht van 10. 2) We weten de 10 niet, als we op die plaats een x zetten volgt: x 2 = 100 de uitkomst x = 10 heet de tweedemachtswortel van ) We weten de 2 niet, als we op die plaats een x zetten volgt: 10 X = 100 de uitkomst x = 2 noemen we de 10-logaritme van 100. We schrijven dat als x = 10 log 100 waarbij 10 hier het grondtal van de logaritme is. Als we bijvoorbeeld de vergelijking 10 X = 23 willen oplossen weten we dat x = 10 log 23. Omdat 10 log 10 = 1 en 10 log 100 = 2 schatten we dat 10 log 23 tussen 1 en 2 moet liggen. Als we 10 log 23 exact willen weten moeten we gebruik maken van onze rekenmachine. Op het toetsenbord zien we de LOG-toets waarmee we de 10-logaritme van een getal kunnen uitrekenen. Op de CASIO fx-82 typen we [LOG][23][=]. Het resultaat is 1,3617. Ter controle berekenen we 10 1,3617 = 22,9985. (waarom niet exact 23? ) Voorbeeld 1: 10 3 X = x = 10 log x = 2,5441 x = 2, = 0,8480. We typen in: [LOG][350][=][ ][3][=] 1 Los de volgende vergelijkingen op en geef de antwoorden in drijvende komma notatie a) 10 X = 35 b) 10 X = 200 c) 10 X = 3000 d) 10 3 X = 550 e) 10 5 X = 1200 f) 10 2 X = 4500 Voorbeeld 2: X = X = X = 20 4 x = 10 log 20 4 x = 1,3010 x = 1, x = 0,3253 We typen: [100][ ][5][=][LOG][ANS][=][ ][4][=] 2 Los de volgende vergelijkingen op en geef de antwoorden in drijvende komma notatie a) 5 10 X = 35 b) 4 10 X = 200 c) X = 3000 d) X = 55 e) X = 120 f) X = 450 Blz 1 van 7
2 Logaritmen met grondtal 10 gebruiken we het meest. Daarom vermelden we bij logaritmen met grondtal 10 meestal niet meer het grondtal, dus log 5 betekent 10 log 5. Er staat echter nog een logaritme-toets op de rekenmachine: de LN-toets. Hiermee kunnen we logaritmen uitrekenen met grondtal e. Het getal e is net zoals π een natuurkonstante. ( e = 2,71828 ) Een logaritme met grondtal e noemen we een natuurlijke logaritme en duiden we aan met ln. ln x is dus eigenlijk een andere schrijfwijze voor e log x. Als we de vergelijking e X = 23 willen oplossen weten we dat x = e log 23 = ln 23. Op de CASIO fx-82 typen we [LN][23][=]. Het resultaat is 3,1355. Ter controle berekenen we e 3,1355 = 23,0001. Voorbeeld 3: e 3 R = 24 3 R = ln 24 3 R = 3,1781 R = 3, R = 1,0594. We typen: [LN][24][=][ ][3][=] 3 Los de volgende vergelijkingen op en geef de antwoorden in drijvende komma notatie a) e X = 35 b) e X = 200 c) e X = 3000 d) e 3 X = 550 e) e 5 X = 1200 f) e 2 X = 4500 Een macht met grondtal e zoals e 5 X noemen we een e-macht. Voorbeeld 4: 3 e 2 X = 12 e 2 X = 12 3 e 2 X = 4 2 x = ln 4 2 x = 1,3863 x = 1, x = 0,6931. We typen: [12][ ][3][=][LN][ANS][=][ ][2][=] Voorbeeld 5: 6 3 e 2 X = 4-3 e 2 X = e 2 X = e 2 X = -2 e 2 X = -2-3 e 2 X = 0, x = ln 0, x = -0,4055 x = -0, x = -0, Los de volgende vergelijkingen op en geef de antwoorden in drijvende komma notatie a) 5 e -3 T = 4 b) 3 e -4 T = 5 c) 6-6 e -3 T = 2 d) 4-5 e -3 T = 2 e) 8-5 e 3 T = 4 f) 7-2 e 4 T = 3 Blz 2 van 7
3 Als we de vergelijking 5 X = 30 willen oplossen weten we al dat x = 5 log 30. Het probleem is natuurlijk dat de logaritme met grondtal 5 niet op onze rekenmachine zit. We hebben wat meer kennis nodig over de eigenschappen van logaritmen. We gaan gebruik maken van de volgende formule: C log b a log b = C log a met c = 10 volgt: 10 log b a log b = 10 log a We zien dat we eenvoudig over kunnen gaan op het grondtal 10. Dat betekent dat we 5 log 30 uit kunnen rekenen met log 30 log 5 = 2,1133. We controleren weer 5 2,1133 = 30,0008. ( weten we nog hoe we machten uitrekenen? ) 10 X = 35 x = log 35 x = 1,5441 e X = 45 x = ln 45 x = 3,8067 Goed onthouden 8 X = 60 x = log 60 log 8 x = 1, Los de volgende vergelijkingen op en geef de antwoorden in drijvende komma notatie a) 3 X = 35 b) 4 X = 200 c) 5 X = 3000 d) 8 3 X = 550 e) 12 5 X = 1200 f) 34 2 X = 4500 Voorbeeld 6: we willen de vergelijking 6 3 Y 4 = 45 oplossen. Er volgt volgens de definitie van logaritme: 3 Y 4 = 6 log 45 3 Y 4 = log 45 log 6 3 Y 4 = 2, Y = 2, Y = 6,1245 Y = 6, Y = 2,0415. Controle: 6 3 2, = 6 2,1245 = 44, Los de volgende vergelijkingen op en geef de antwoorden in drijvende komma notatie a) 5 2 W + 4 = 63 b) 6-2 X 3 = 52 c) 14 3 Z + 4 = 148 d) 7 2 W + 4 = 155 e) 16-2 X 3 = 466 f) Z + 5 = 96 Blz 3 van 7
4 We hebben nu gezien dat we logaritmen nodig hebben voor het oplossen van vergelijkingen waar de onbekende in de exponent staat. We noemen dergelijke vergelijkingen daarom exponentiële vergelijkingen 7 Los de volgende exponentiële vergelijkingen op en geef de antwoorden in wetenschappelijke notatie a) 4-7 e -3 T = 2 b) 8-5 e 3 T = 7 c) 9-2 e 4 T = 3 d) 8 3 X = 660 e) 12 5 X = 930 f) 48 2 X = 4500 g) 5 2 W + 8 = 155 h) 26-2 X 5 = 430 i) Z + 5 = 96 Behalve bij exponentiële vergelijkingen komen we logaritmen veelvuldig tegen in de techniek. We komen daar later op terug in het moduul toepassingen logaritmen. Voorgaande e-machten spelen een grote rol in formules voor het laden en ontladen van condensatoren via weerstanden. We bekijken het volgende voorbeeld waarbij we exponentiële vergelijkingen moeten oplossen. We laden een condensator C via een weerstand R: U in R C U uit Voor de uitgangsspanning U uit geldt de formule U uit = U in ( 1 e -t/τ ). t is daarbij de tijd in sekonden en τ de tijdconstante van de schakeling in sekonden. De tijdconstante τ (Griekse t, spreek uit als touw ) berekenen we door de waarden van de weerstand en de condensator met elkaar te vermenigvuldigen dus τ = R C. Voorbeeld: als R = 100 kω en C = 33 μf geldt τ = = 3,3 s. De grafiek van U uit ziet er voor bijvoorbeeld U in = 10 V als volgt uit: U uit a b c 0 t Blz 4 van 7
5 Voor grafiek a geldt τ = 1 s, voor grafiek b geldt τ = 2 s en voor grafiek c geldt τ = 4 s. We zien dus dat hoe groter de tijdconstante τ is, hoe langzamer de spanning over de condensator oploopt. We gaan berekenen wanneer de uitgangsspanning 5 V is bij een tijdconstante τ van 1 s: Voor de uitgangsspanning geldt U uit = e -t. Als U uit = 5 V moeten we de exponentiële vergelijking e -t = 5 oplossen. Er volgt: -10 e -t = e -t = -5 e -t = -5 / -10 e -t = 0,5 -t = ln 0,5 -t = -0,6931 t = 0,6931 s. Vervolgens gaan we berekenen wanneer de uitgangsspanning 5 V is bij een tijdconstante τ van 4 s: Voor de uitgangsspanning geldt U uit = e -t/4. Als U uit = 5 V moeten we de exponentiële vergelijking e -t/4 = 5 oplossen. Er volgt: -10 e -t/4 = e -t/4 = -5 e -t/4 = -5 / -10 e -t/4 = 0,5 -t/4 = ln 0,5 -t/4 = -0,6931 t = 4 0,6931 t = 2,7724 s. We zien duidelijk dat het bij een grotere tijdconstante langer duurt voordat de uitgangsspanning een bepaalde waarde bereikt. We krijgen een grotere tijdconstante door de R of de C een grotere waarde te geven. In bovenstaande berichten is sprake van de begrippen lineaire groei en exponentiële groei. Bij een lineair groeiverband is sprake van een groei met een vast bedrag. Dit is het soort groei waarbij er bijvoorbeeld elke dag precies evenveel bijkomt (of afgaat). Voorbeeld 7: Een werknemer verdient 2400,- en krijgt er elk jaar 75,- bij. Voor zijn salaris S geldt de formule: S = t Na 5 jaar is zijn salaris = 2775,- Bij exponentiële groei is sprake van groei met een vast percentage. Per tijdseenheid wordt de aanwezige hoeveelheid steeds met hetzelfde getal vermenigvuldigd. Dat getal noemen we de groeifactor. Is de groeifactor groter dan 1, dan neemt de hoeveelheid toe. Is de groeifactor kleiner dan 1, dan neemt de hoeveelheid af. Is de groeifactor gelijk aan 1, dan verandert er niets. Voorbeeld 8: De formule K=1000 1,06 t beschrijft de grootte van ons banksaldo als we 1000,- tegen 6 % rente op de bank zetten. De groeifactor is hier 1,06. Na 5 jaar is ons saldo ,06 5 = 1338,23. Blz 5 van 7
6 Voorbeeld 9: Een werknemer verdient 2400,- en krijgt er elk jaar 3 % bij. Voor zijn salaris S geldt de formule: S = ,03 t. De groeifactor is 1,03. Exponentiële vergelijkingen en groei Voorbeeld 10: Annelies verdient 2400,- en krijgt er elk jaar 3,5 % bij. Zij wil weten na hoeveel jaar zij meer dan 2700,- gaat verdienen. Er volgt: ,035 t = ,035 t = ,035 t = 1,125 t = log 1,125 log 1,035 t = 3,42 jaar. Dus na 4 jaar (!) verdient zij meer dan 2700,- namelijk 2754,06. 8 In het jaar 2000 verdienen Marianne en Edo beiden 2450,-. Marianne krijgt er elk jaar op 1 januari 85,- bij terwijl Edo elk jaar op 1 januari 3 % loonsverhoging krijgt. a) Bereken de beide salarissen in het jaar b) Vanaf welk jaar verdient Edo meer dan Marianne? 9 Op 1 januari 2003 zet Kees 2000,- op de bank tegen 4 % rente. Arnold zet op hetzelfde moment 1900,- tegen 4,5 % rente op de bank. a) Bereken hun saldo op 1 januari b) In welk jaar krijgt Arnold een hoger saldo dan Kees? 10 Willem verdient in ,- en krijgt elk jaar op 1 januari 3,2 % loonsverhoging. Vanaf welk jaar gaat hij meer dan 3000,- verdienen? Blz 6 van 7
7 Antwoorden exponentiële vergelijkingen en groei Exponentiële vergelijkingen en groei 1 a) 1,5441 b) 2,3010 c) 3,4771 d) 0,9135 e) 0,6158 f) 1, a) 0,8451 b) 1,6990 c) 2,0000 d) 0,2330 e) 0,2602 f) 0, a) 3,5553 b) 5,2983 c) 8,0064 d) 2,1033 e) 1,4180 f) 4, a) 0,0744 b) -0,1277 c) 0,1352 d) 0,3054 e) 0,0744 f) 0, a) 3,2362 b) 3,8219 c) 4,9746 d) 1,0115 e) 0,5707 f) 1, a) 0,7129 b) 2,6026 c) 0,7021 d) 0,7041 e) 2,6080 f) 1, a) 4, b) 5, c) 2, d) 1,0407 e) 5, f) 1,0865 g) 2,4332 h) 3,4306 i) 1, a) Marianne: 2875,- en Edo: 2840,22 b) In het jaar 2011 verdient Marianne 3385,- en Edo 3391,37. 9 a) Kees: 2163,20 en Arnold: 2074,85 b) In het jaar 2014 zijn de saldo s respectievelijk 3078,91 en 3083,42 10 In het jaar 2006 verdient Willem 3077,49. Blz 7 van 7
4. Exponentiële vergelijkingen
4. Exponentiële vergelijkingen De gelijkheid 10 3 = 1000 bevat drie getallen: 10, 3 en 1000. Als we van die drie getallen er één niet weten moeten we hem kunnen berekenen. We kunnen dus drie gevallen onderscheiden:
4. Exponentiële vergelijkingen
4. Exponentiële vergelijkingen Exponentiële vergelijkingen De gelijkheid 10 3 = 1000 bevat drie getallen: 10, 3 en 1000. Als we van die drie getallen er één niet weten moeten we hem kunnen berekenen. We
Logaritmen. Het tijdstip t waarop S(t) = is op de t-as aangegeven. Dat tijdstip komt niet mooi uit. Dat tijdstip noemen 5,3
5 Logaritmen 1 We bekijken de Shigella-bacterie uit opgave 1 van de vorige paragraaf. Hieronder staat een stukje van de grat fiek van de functie S(t) = 5,. Het tijdstip t waarop S(t) = 100.000 is op de
Paragraaf 12.1 : Exponentiële groei
Hoofdstuk 12 Exponenten en logaritmen (V5 Wis A) Pagina 1 van 12 Paragraaf 12.1 : Exponentiële groei Les 1 Exponentiële functies Definitie Exponentiële functies Algemene formule : N = b g t waarbij b =
exponentiële standaardfunctie
9.0 Voorkennis In de grafiek is de eponentiële standaardfunctie f() = getekend; D f = R, B f = (0, ) met de -as als asymptoot (Dit volgt uit: lim 0 ); Elke functie g met g > heeft deze vorm; Voor g > is
12.0 Voorkennis. Voorbeeld 1: l:y = ax + b gaat door de punten A(5, 3) en B(8, 12). Stel de functie van l op.
12.0 Voorkennis Voorbeeld 1: l:y = ax + b gaat door de punten A(5, 3) en B(8, 12). Stel de functie van l op. Stap 1: Bepaal de richtingscoëfficiënt van l:y = ax + b : y yb ya 123 9 a 3 x x x 8 5 3 Hieruit
De Wetenschappelijke notatie
De Wetenschappelijke notatie Grote getallen zijn vaak lastig te lezen. Hoeveel is bijvoorbeeld 23000000000000? Eén manier om het lezen te vergemakkelijken is het zetten van puntjes of spaties: 23.000.000.000.000
1. Orthogonale Hyperbolen
. Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies
Hoofdstuk 1: Basisvaardigheden
Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen
Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn
Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),
exponentiële en logaritmische functies
CAMPUS BRUSSEL Opfriscursus Wiskunde exponentiële en logaritmische functies Exponentiële en logaritmische functies Machten van getallen 000 euro wordt belegd aan een samengestelde interest van % per jaar
Logaritmische functie
Logaritmische functie WISNET-HBO update aug 2013 1 Inleiding De bedoeling van deze les is het repeteren met pen en papier van logaritmen. Voorkennis van de rekenregels van machten is voor deze les beslist
logaritmen WISNET-HBO update jan Zorg dat je het lijstje met rekenregels hebt klaarliggen als je met deze training begint.
Training Vergelijkingen met logaritmen WISNET-HBO update jan. 0 Inleiding Voor deze training heb je nodig: de rekenregels van machten de rekenregels van de logaritmen Zorg dat je het lijstje met rekenregels
Analyse. Samenvatting: logaritmen. Frank Derks Gerard Heijmeriks www.demathe.nl
Analyse Samenvatting: logaritmen Frank Derks Gerard Heijmeriks www.demathe.nl 1. Inhoudsopgave 1. Inhoudsopgave... 2 2. Exponentiële functies... 3 2.1. Inleiding... 3 2.2. Groeifactoren en groeipercentages...
Paragraaf 9.1 : Twee soorten groei
Hoofdstuk 9 Exponentiële Verbanden (H5 Wis A) Pagina 1 van 9 Paragraaf 9.1 : Twee soorten groei Les 1 Lineaire en exponentiele groei Definitie Lijn = LINEAIRE GROEI Algemene formule van een lijn : y =
Werken met machten en logaritmen
1 Werken met machten en logaritmen Je mag ook werken met de formules RATE en NPER (of je gebruikt de Solver). Je moet het gevonden resultaat steeds kunnen bespreken. Basisformule samengestelde intrest
Paragraaf 5.1 : Machten en wortels
Hoofdstuk 5 Machten, exponenten en logaritmen (H Wis B) Pagina 1 van 1 Paragraaf 5.1 : Machten en wortels Machtsregels SPECIAAL GEVAL MACHTREGEL 1 : MACHTREGEL 2 : MACHTREGEL : a p a q = a p+q a p aq =
Inleiding goniometrie
Inleiding goniometrie We bekijken de volgende twee hellingen: 1 2 Duidelijk is dat de tweede helling steiler is dan de eerste helling. Ook zien we dat hellingshoek 2 groter is dan hellingshoek 1. Er bestaat
mei 16 19:37 Iedere keer is de groeifactor gelijk. (een factor is een getal in een vermenigvuldiging)
Wiskunde 3VWO Hoofdstuk 8 par 8.1 par 8.2 Procenten en groeifactoren Niet par 8.3 Periodieke verbanden par 8.4 Machtsfuncties par 8.5 Grafieken veranderen par 8.6 Extreme waarden mei 16 19:37 Maandag zitten
8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde
8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige
Wiskunde 20 maart 2014 versie 1-1 -
Wiskunde 0 maart 04 versie - -. a 3 a =. a.. 6.,AppB./ a 4 3. a 3. Rekenregels voor machten: als je twee machten op elkaar deelt, trek je de exponenten van elkaar af. De exponent van a wordt dan =. 3 6
exponentiële verbanden
exponentiële verbanden . voorkennis Procenten en vermenigvuldigingsfactoren Procentuele toename met p%: g = + p 00 p = ( g ) 00 Procentuele afname met p%: g = p 00 p = ( g) 00 De constante factor In 859
Wiskunde voor bachelor en master Deel 1 Basiskennis en basisvaardigheden. c 2015, Syntax Media, Utrecht Uitwerkingen hoofdstuk 11
Wiskunde voor bachelor en master Deel Basiskennis en basisvaardigheden c 05, Syntax Media, Utrecht www.syntaxmedia.nl Uitwerkingen hoofdstuk.. a. In de onderstaande figuur zijn de grafieken van y = ( )x,
Werken met de rekenmachine
Werken met de rekenmachine De uitleg in dit moduul is gebaseerd op een CASIO rekenmachine van de nieuwe generatie met een twee-regelig display zoals de fx-82tl of de afgebeelde fx-82ms. Onze rekenmachine
Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e 1/3/2017. dr. Brenda Casteleyn
Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 1/3/2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding
Exact periode = 1. h = 0, Js. h= 6, Js 12 * 12 = 1,4.10 2
Exact periode 1.1 0 = 1 h = 0,000000000000000000000000000000000662607Js h= 6,62607. -34 Js 12 * 12 = 1,4. 2 1 Instructie gebruik CASIO fx-82ms 1. Instellingen resetten tot begininstellingen
EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden.
EXACT- Periode 1 Hoofdstuk 1 1.1 Grootheden. Een grootheid is in de natuurkunde en in de chemie en in de biologie: iets wat je kunt meten. Voorbeelden van grootheden (met bijbehorende symbolen): 1.2 Eenheden.
Cijfer = totaal punten/10 met minimum 1
VOORBLAD SCHRIFTELIJKE TOETSEN OPLEIDING TOETSCODE GROEP Me MeWIS1-T1 MeP1 TOETSDATUM 7 november 011 TIJD 13.00 14.30 uur AANTAL PAGINA S (incl. dit voorblad) 6 DEZE TOETS BESTAAT UIT (aantal) GEBRUIK
Deel 3 havo. Docentenhandleiding havo deel 3 CB
Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte
3. Lineaire vergelijkingen
3. Lineaire vergelijkingen Lineaire vergelijkingen De vergelijking 2x = 3 noemen we een eerstegraads- of lineaire vergelijking. De onbekende x komt er namelijk tot de eerste macht in voor. Een eerstegraads
Transformaties van grafieken HAVO wiskunde B deel 1
Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen
Paragraaf 9.1 : Logaritmen
Hoofdstuk 9 Eonentiële en Logaritmische functies (V5 Wis B) Pagina van 5 Paragraaf 9. : Logaritmen Les Logaritmen Definitie Logaritmen Hoofdregel : g t = b t = g log b met domein b>0 Om logaritmen uit
11.0 Voorkennis. Optellen alleen bij gelijknamige termen: 3a 3 + 4a 3 = 7a 3. Bij macht van een macht exponenten vermenigvuldigen: (a 5 ) 4 = a 20
.0 Voorkennis Herhaling rekenregels voor machten: Vermenigvuldigen is exponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige termen: 3a 3 + a 3 = 7a 3 Bij macht van een macht exponenten vermenigvuldigen:
Examencursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven VWO kan niet korter
Voorbereidende opgaven VWO Examencursus wiskunde A Tips: Maak de voorbereidende opgaven voorin in een van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk hem dan
Stoomcursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven VWO ( ) = = ( ) ( ) ( ) = ( ) ( ) = ( ) = = ( )
Voorbereidende opgaven VWO Stoomcursus wiskunde A Tips: Maak de voorbereidende opgaven voorin in een van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk hem dan
Trillingen en geluid wiskundig
Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Radialen 3 Uitwijking van een harmonische trilling 4 Macht en logaritme 5 Geluidsniveau en amplitude 1 De sinus van een hoek Sinus van een hoek
1 Rekenen met gehele getallen
1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9
6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden
6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p
Die moeilijke decibels.
Die moeilijke decibels. Hoe werkt het en hoe moet ik er mee rekenen? PA FWN Met potlood en papier Er wordt zoveel mogelijk een rekenmethode toegepast, welke door zijn eenvoud met een simpele rekenmachine
8 Oefeningen bij dehoofdstukken 5, 6 en 7 van deel Logaritmen met andere grondtallen dan Overzicht en oefening bij logaritmen 10
deel 2 Inhoudsopgave 8 Oefeningen bij dehoofdstukken 5, 6 en 7 van deel 1 3 9 Logaritmen met andere grondtallen dan 10 6 10 Overzicht en oefening bij logaritmen 10 Dit is een vervolg op Verbanden, Exponenten
3.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x.
3.0 Voorkennis y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. y = -4x + 8 kan herschreven worden als y + 4x = 8 Dit is een lineaire vergelijking met twee variabelen. Als je
14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie.
14.0 Voorkennis De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. Evenwichtsstand = (min + max)/2 = (-100 + 300)/2 = 100 Amplitude = max evenw.
Kerstvakantiecursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven VWO kan niet korter
Voorbereidende opgaven VWO Kerstvakantiecursus wiskunde A Tips: Maak de voorbereidende opgaven voorin in een van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk
3.1 Haakjes wegwerken [1]
3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben
8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde
8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige
Rekenkunde, eenheden en formules voor HAREC. 10 april 2015 presentator : ON5PDV, Paul
Rekenkunde, eenheden en formules voor HAREC 10 april 2015 presentator : ON5PDV, Paul Vooraf : expectation management 1. Verwachtingen van deze presentatie (inhoud, diepgang) U = R= R. I = 8 Ω. 0,5 A =
Paragraaf 13.0 : Limieten en absolute waarde
Hoofdstuk 13 Limieten en Asymptoten (V6 Wis B) Pagina 1 van 13 Paragraaf 13.0 : Limieten en absolute waarde Definitie absoluuttekens pp = { p absoluut of de absolute waarde van p } pp = { altijd positief
Hoofdstuk 9 - exponentiele verbanden. [KC] exponentiële verbanden
Hoofdstuk 9 - exponentiele verbanden [KC] exponentiële verbanden 0. voorkennis Procenten en vermenigvuldigingsfactoren Procentuele toename met p%: g = 1 + p 100 p = ( g 1) 100 Procentuele afname met p%:
H9 Exponentiële verbanden
H9 Exponentiële verbanden Havo 5 wiskunde A Getal & Ruimte deel 3 PTA 1 Oefenmateriaal examens 2 Voorkennis Rekenen met procenten Formule van procentuele verandering Vermenigvuldigingsfactor Procent op
1.1 Lineaire vergelijkingen [1]
1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg
Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude
Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude 1 De sinus van een hoek Eenheidscirkel In de figuur hiernaast
Paragraaf 8.1 : Recursieve en directe formule
Hoofdstuk 8 Rijen en veranderingen (V5 Wis A) Pagina 1 van 11 Paragraaf 8.1 : Recursieve en directe formule Les 1 Rijen en recursievergelijking Definities : Wat is een rij Gegeven is de rij u = { 5,10,20,40
Inhoud college 5 Basiswiskunde Taylorpolynomen
Inhoud college 5 Basiswiskunde 4.10 Taylorpolynomen 2 Basiswiskunde_College_5.nb 4.10 Inleiding Gegeven is een functie f met punt a in domein D f. Gezocht een eenvoudige functie, die rond punt a op f lijkt
Toepassingen van logaritmen
Toepassingen van logaritmen In de techniek krijgen we vaak met logaritmen te maken. We gebruiken in diagrammen een logaritmische schaal wanneer een grootheid kan variëren van heel klein tot heel groot
10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:
10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld
14.1 Vergelijkingen en herleidingen [1]
4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )
Noorderpoortcollege school voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 periode 3. M. van der Pijl. Transfer Database
Noorderpoortcollege school voor MBO Stadskanaal Reader Wiskunde MBO Niveau 4 periode 3 M. van der Pijl Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen Voortgezet
9.1 Logaritmische en exponentiële vergelijkingen [1]
9.1 Logaritmische en eonentiële vergelijkingen [1] Voor logaritmen gelden de volgende rekenregels: (1) log( ab) log( a) log( b) g g g () g g g (4) (3) g n g (5) g log() = y volgt = g y Voorbeeld: a log
De grafiek van een lineair verband is altijd een rechte lijn.
2. Verbanden Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband
Voorbereidende opgaven Kerstvakantiecursus. Rekenregels voor vereenvoudigen ( ) = = ( ) ( ) ( ) = ( ) ( ) = ( ) = = ( )
Voorbereidende opgaven Kerstvakantiecursus Tips: Maak de voorbereidende opgaven voorin in één van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk hem dan uit tot
Antwoorden Verbanden hfd 1 t/m 7 vwo4a
Antwoorden Verbanden hfd t/m 7 vwoa Hoofdstuk : Vouwen en rekenen met machten van Opgave a) Verdubbel telkens de vorige waarde. Bijv. na keer vouwen is het aantal lagen papier een verdubbeling van de lagen
Elementaire rekenvaardigheden
Hoofdstuk 1 Elementaire rekenvaardigheden De dingen die je niet durft te vragen, maar toch echt moet weten Je moet kunnen optellen en aftrekken om de gegevens van de patiënt nauwkeurig bij te kunnen houden.
Factor = het getal waarmee je de oude hoeveelheid moet vermenigvuldigen om een nieuwe hoeveelheid te krijgen.
Samenvatting door een scholier 1569 woorden 23 juni 2017 5,8 6 keer beoordeeld Vak Methode Wiskunde Moderne wiskunde Wiskunde H1 t/m H5 Hoofdstuk 1 Factor = het getal waarmee je de oude hoeveelheid moet
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER
7,7. Samenvatting door Manon 1834 woorden 3 mei keer beoordeeld. Wiskunde C theorie CE.
Samenvatting door Manon 1834 woorden 3 mei 2016 7,7 13 keer beoordeeld Vak Wiskunde Wiskunde C theorie CE. Permutaties: -Het aantal permutaties van drie dingen die je kiest uit acht dingen is: 8*7*6= 336.
Meergraadsvergelijkingen
Meergraadsvergelijkingen Meergraads vergelijkingen In dit hoofdstuk gaan we ons bezig houden met tweede- en hogeregraads vergelijkingen. In een tweedegraads vergelijking komt de onbekende x tot de tweede
opdracht 1 opdracht 2. opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen uitwerkingen 1 Versie DD 2014 x y toename
Algebra Anders Parabolen uitwerkingen 1 Versie DD 014 1 Parabolen herkennen opdracht 1. x - -1 0 1 3 y 4 1 0 1 4 9-3 -1 + 1 + 3 +5 toename tt + + + + a) + b) De toename is steeds een nieuwe rand. De randen
(g 0 en n een heel getal) Voor het rekenen met machten geldt ook - (p q) a = p a q a
Samenvatting wiskunde h4 hoofdstuk 3 en 6, h5 hoofdstuk 4 en 6 Hoofdstuk 3 Voorkennis Bij het rekenen met machten gelden de volgende rekenregels: - Bij een vermenigvuldiging van twee machten met hetzelfde
1.1 Rekenen met letters [1]
1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren
Samenvatting Wiskunde Aantal onderwerpen
Samenvatting Wiskunde Aantal onderwerpen Samenvatting door een scholier 2378 woorden 4 juni 2005 5,1 222 keer beoordeeld Vak Wiskunde Gelijkvormigheid Bij vergroten of verkleinen van een figuur worden
5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.
5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige
Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen.
Meetkunde Inleiding We beginnen met het doorlezen van alle theorie uit hoofdstuk 3 van het boek. Daar staan een aantal algemene regels goed uitgelegd. Waar je nog wat extra uitleg over nodig hebt, is de
Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek
Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek I Tjing Opgave 1. Het aantal hoofdstukken in de I Tjing correspondeert met het totale aantal
rekenregels voor machten en logaritmen wortels waar of niet waar
Hoofdstuk 5 - machten, eponenten en logaritmen rekenregels voor machten en logaritmen wortels waar of niet waar 0. voorkennis HERLEIDEN VAN MACHTEN - rekenregels voor machten Bij het vermenigvuldigen van
De uitleg in dit moduul is gebaseerd op een CASIO rekenmachine fx-82ms. Voor de verschillen met de TI-30X II zie de bijlage achterin.
Rekenmachine 1. Rekenmachine De uitleg in dit moduul is gebaseerd op een CASIO rekenmachine fx-82ms. Voor de verschillen met de TI-30X II zie de bijlage achterin. Onze rekenmachine geeft het resultaat
Kerstvakantiecursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven HAVO kan niet korter
Voorbereidende opgaven HAVO Kerstvakantiecursus wiskunde A Tips: Maak de voorbereidende opgaven voorin in een van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk
D A G 1 : T W E E D O M E I N E N
REKENEN 3F DAG 1 :TWEE DOMEINEN DAG 2 : TWEE DOMEINEN DAG 3: EXAMENTRAINING DAG 4:EXAMENTRAINING EN A FRONDING Programma: Voorstellen 13.30 uur 16.15 uur Pauze: 15 minuten Theorie dag 1: Domein Getallen
Exponentiële formules
Exponentiële formules Groeifactor Bij exponentiële formules is het heel belangrijk dat je een groeifactor kan uitrekenen. De groeifactor is een getal dat aangeeft hoeveel keer zo groot iets wordt. Je berekent
2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.
Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt
fx-82es (PLUS) Werken met de CASIO fx-82es (PLUS) instellingen
Werken met de CASIO fx-82es (PLUS) Deze 'gewone' rekenmachine heeft een natural display. Het intypen en aflezen van bijv breuken, machten, wortels en logaritmen gaat (eindelijk!) op een manier die logisch
7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte
1 Tekenen in roosters Kern 1 Tegelvloeren Kern 2 Oppervlakte Kern 3 Het assenstelsel Kern 4 Rechthoeken 2 Rekenen Kern 1 De rekenmachine Kern 2 Voorrangsregels Kern 3 Afronden Kern 4 Afronden 3 Grafieken
Samenvatting Wiskunde B
Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen
2.1 Lineaire functies [1]
2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte
1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.
1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;
Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte
Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal
Technische Universiteit
SBD 9756a 98-0-28, niv 5 A/B REKENTECHNIEKEN Technische Universiteit Eindhoven Centrum Stralingsbescherming en Dosimetrie Stralingsbeschermingsdienst Inleiding Voor het uitvoeren van berekeningen in het
Schooljaar: Leerkracht: M. Smet Leervak: Wiskunde Leerplan: D/2002/0279/048
Blz: 1/5 04 09 09 1.1 STELLING VAN PYTHAGORAS ouwregel tot Pythagoras: formulering. 07 09 09 11 09 09 14 09 09 18 09 09 21 09 09 22 09 09 25 09 09 29 09 09 01 10 09 02 10 09 06 10 09 08 10 09 09 10 09
1.1 Tweedegraadsvergelijkingen [1]
1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2
Hoofdstuk A9 Hellinggrafieken - alternatief
Hoofdstuk A9 Hellinggrafieken - alternatief Hellinggrafieken a. Maak instap opgaven I-a en I-b (zonder de formules van instap opgave I- te gebruiken). snelheid (m/s) tijd (seconden) b. Hoe kun je met de
Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag
Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken
Examen HAVO. wiskunde B1,2
wiskunde 1, Examen HVO Hoger lgemeen Voortgezet Onderwijs ijdvak 1 Vrijdag 19 mei 1.0 16.0 uur 0 06 Voor dit examen zijn maximaal 87 punten te behalen; het examen bestaat uit vragen. Voor elk vraagnummer
REKENTECHNIEKEN - OPLOSSINGEN
REKENTECHNIEKEN - OPLOSSINGEN 1] 3,52 m + 13,6 cm =? 3,52 m 3,52 m - 2 13,6 cm 0,136 m - 3 3,656 m eindresultaat 3,66 m 2 cijfers na komma en afronden naar boven 3,52 m 352 cm - 0 13,6 cm 13,6 cm - 1 365,6
Rekenen. Grote en kleine getallen
Rekenen Grote en kleine getallen In de elektrotechniek wordt vaak gewerkt met heel grote en heel kleine getallen. Het is dan niet te doen om die helemaal uit te schrijven. Er wordt dan een aanduiding bijgezet.
SAMENVATTING BASIS & KADER
SAMENVATTING BASIS & KADER Afronden Hoe je moet afronden hangt af van de situatie. Geldbedragen rond je meestal af op twee decimalen, 15,375 wordt 15,38. Grote getallen rondje meestal af op duizendtallen,
6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.
6.0 Differentiëren Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. f(x) = x x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) 60 x 30 30 y x 1 Algemeen: Het differentiequotiënt
(ont)wikkelen. Aantal keer gevouwen Aantal lagen papier
(ont)wikkelen versie 0.5 [4--008] pagina (ont)wikkelen vouwen Wist je dat je een blad papier niet meer dan zeven (misschien acht) keer kunt dubbelvouwen? Om dit te controleren kun je met een stuk papier
Transformaties van grafieken HAVO wiskunde B deel 2. Willem van Ravenstein Haags Montessori Lyceum (c) 2016
Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 50075005 Haags Montessori Lyceum (c) 0 Inleiding In deze leerroute gaan we kijken naar goniometrische functies: De eenheidscirkel
