Projectieve Vlakken en Codes

Maat: px
Weergave met pagina beginnen:

Download "Projectieve Vlakken en Codes"

Transcriptie

1

2 Projectieve Vlakken en Codes 1. De Fanocode Foutdetecterende en foutverbeterende codes. Anna en Bart doen mee aan een spelprogramma voor koppels. De ene helft van de deelnemers krijgt elk een kaart waarop een schat aangegeven is die hun partner moet vinden. De bedoeling is dat deze deelnemers het traject dat hun partner moet afleggen met een zaklamp doorseinen. Anna en Bart willen de richtingen Noord, Oost, Zuid en West kunnen doorseinen. Ze hebben dus 4 verschillende combinaties van korte en lange flitsen nodig, en spreken het volgende af: Noord =00, Oost =01, Zuid =10, West =11. Waarbij 0 voor een korte flits staat, en 1 voor een lange flits (deze symbolen noemen we voortaan bits, en elke combinatie van bits noemen we een woord). Bij elke doorgeseinde boodschap zal Bart honderd meter in die richting stappen. Zelfs als Anna geen enkele fout maakt in het doorseinen van de juiste richting, zal het voor Bart moeilijk zijn om de juiste weg te vinden. Als hij immers één keer verkeerd inschat of deflits lang of kort was, gaat hij de verkeerde kant op. Cindy en David besluiten per richting 3 lichtflitsen te gebruiken. Ze zeggen: Noord =000, Oost =011, Zuid =101, West =110. 1

3 Ga na dat als David één lichtflits verkeerd inschat, hij kan merken dat hij de boodschap fout interpreteerde. De vier woorden 000, 011, 101, 110 noemen we de codewoorden van onze code. Omdat David één fout kan ontdekken, noemen we deze code 1-fout detecterend. Het zou natuurlijk nog handiger zijn wanneer David niet alleen zou merken dateriets fout doorgestuurd is, maar die fout ook kon verbeteren. Hij zou kunnen kijken welk van de codewoorden het meest op het ontvangen codewoord lijkt dit wil zeggen, er in de meeste posities mee overeenstemt en aannemen dat Cindy dat codewoord geflitst had. Zo een code zullen we 1-fout verbeterend noemen. Stel dat David drie lange lichtflitsen ziet, dan weet hij dat er iets fout is, en dat Cindy waarschijnlijk Oost, Zuid of West doorgeseind heeft. Maar die drie mogelijkheden zijn even waarschijnlijk. Cindy zal dus nog meer flitsen moeten gebruiken als er bij het optreden van één fout slechts één codewoord mag zijn dat Cindy het meest waarschijnlijk gestuurd had. Ze hebben dus langere codewoorden nodig. Een eenvoudig trucje is gewoon elk codewoord verdubbelen. Op die manier krijgen we de codewoorden , , , Ga zelf eens na dat deze code inderdaad 1-fout verbeterend is, en zelfs 3-fout detecterend! Maar nu zijn de codewoorden wel erg lang. Misschien kunnen we met ongeveer even lange codewoorden ook 1 fout verbeteren, en bovendien meer richtingen doorsturen? Inderdaad, de aanwijzingen zijn niet erg precies, Cindy zou graag ook tussenwindrichtingen kunnen doorsturen, b.v. Noord-Noordwest. Een code die aan deze eisen (16 codewoorden, 1-fout verbeterend en niet veel langer dan 6 bits) zal voldoen is de volgende De codewoorden bestaan alle uit zeven bits, die de waarde 0 of 1 kunnen aannemen. Het aantal bits van een woord noemen we zijn lengte. 2

4 We analyseren nu eens de bovenstaande code, die we voortaan de Fanocode zullen noemen. Analyse van de Fanocode. Buiten het codewoord bestaande uit 7 nullen (dus ), en het codewoord bestaande uit zeven keer één (dus ), komen de overige codewoorden duidelijk in twee verschillende groepen voor. Er zijn zeven codewoorden met drie enen en zeven codewoorden met vier enen. Het aantal bits verschillend van nul in een codewoord noemen we het gewicht van dat codewoord. In ons geval is het gewicht natuurlijk ook gewoon gelijk aan het aantal enen. Laat ons eens de eerste groep bekijken, met andere woorden, de codewoorden van gewicht drie. Het codewoord verkrijgt men door elke bit van het codewoord één positie naar rechts op te schuiven, waarbij we afspreken dat de laatste bit naar de eerste plaats verhuist: We kunnen deze operatie ook op een willekeurig ander codewoord toepassen: φ := x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 7 x 1 x 2 x 3 x 4 x 5 x 6. φ We noemen φ een cyclische permutatie van het woord x 1 x 2 x 3 x 4 x 5 x 6 x 7. Kan je nagaan dat we elk codewoord d van gewicht drie kunnen vinden door enkele achtereenvolgende cyclische permutaties te doen van ? Hetzelfde geldt voor de codewoorden van gewicht vier: elk dergelijk codewoord kan verkregen worden uit elk ander dergelijk codewoord door cyclische permutaties. Ga dit ook na! Een code met de eigenschap dat de cyclische permutatie van elk codewoord opnieuw een codewoord is, noemen we een cyclische code. Het is niet moeilijk om alle codewoorden van een cyclische code te onthouden: Je hoeft er slechts enkele te onthouden, en dan achtereenvolgende cyclische permutaties toe te passen om de andere te vinden. Hoeveel codewoorden dien je zo te onthouden voor de bovenstaande code? 3

5 2. Grafische voorstelling van de Fanocode Andere voorstellingen van de Fanocode. We keren terug naar onze codewoorden van gewicht drie in de Fanocode. We gaan eens een codewoord op een andere manier schrijven, want in wezen was de notatie x 1 x 2 x 3 x 4 x 5 x 6 x 7 toch maar louter een afspraak. Een andere manier is bijvoorbeeld door de rangnummers van de enen in elk codewoord op te schrijven. Zo schrijven we {1, 2, 4} in plaats van Op die manier krijgen we de volgende zeven verzamelingen die overeenkomen met de zeven codewoorden van gewicht drie. {1, 2, 4} {2, 3, 5} {3, 4, 6} {4, 5, 7} {1, 5, 6} {2, 6, 7} {1, 3, 7} De interpretatie van de permutatie φ in deze notatie is eenvoudig: tel bij elk getal één op met de afspraak dat elk veelvoud van 7 gelijk is aan nul. Dus na 7 komt 1 terug, net zoals na zondag de zevende dag weerom maandag komt de eerste dag van de week. We zeggen in dit geval dat we rekenen modulo 7. Bijvoorbeeld, als we bij elk getal in {1, 3, 7} één optellen, dan vinden we {2, 4, 8}. Maar 8 modulo 7 is gelijk aan 1. Bijgevolg verkrijgen we {2, 4, 1}, onze eerste verzameling hierboven. Modulorekenen is een belangrijk begrip bij discrete (of eindige) wiskunde. We gaan daar straks wat dieperer opin. We hebben dus met elk codewoord van gewicht drie een deelverzameling van {1, 2, 3, 4, 5, 6, 7} geassocieerd met drie elementen. We kunnen dat nu proberen grafisch voor te stellen. In onze gedachten nemen we bijvoorbeeld zeven bomen, genummerd van 1 tot 7, en we proberen elk drietal bomen waarvoor de nummers overeenkomen met een codewoord op één rechte lijn te plaatsen. Probeer dit even zelf te tekenen. Na enkele vergeefse pogingen vermoeden we dat het niet zal lukken. Kunnen we dat ook bewijzen? Daarvoor kiezen we boom 1 in de oorsprong o, boom 3 in het punt e 1 (1, 0), boom 4 in het punt e 2 (0, 1) en boom 5 in het punt e(a, b), met a 0,b 0ena + b 1. Bereken nu zelf achtereenvolgens de coördinaten van de bomen 2 (als snijpunt van de rechten oe 2 en e 1 e), 6 (snijpunt van oe met e 1 e 2 ) en 7 (snijpunt van oe 1 en e 2 e). Bewijs nu dat deze punten niet op een gemeenschappelijke rechte liggen. 4

6 Bijgevolg kunnen we geen grafische voorstelling vinden van onze code waarin elk punt een bepaalde bit voorstelt, en bits die de enen vormen van een codewoord op één lijn liggen. We kunnen dit wel bijna bereiken, door de punten behorende bij één codewoord op een andere kromme te leggen op onderstaand figuur hebben we wegens esthetische redenen een cirkel genomen. Op die figuur hebben we ook de deelverzamelingen die corresponderen met onze codewoorden van gewicht drie met L 1,L 2,...,L 7 aangeduid. Deze meetkundige structuur noemen we voortaan het Fanovlak. Figuur 1: Het Fanovlak Kan je dezelfde oefening proberen oplossen voor een verzameling van acht bomen, genummerd van 1 tot 8, en waarvoor de acht drietallen {1, 2, 4}, {2, 3, 5},...,{8, 1, 3} (reken modulo 8) rijtjes moeten vormen? Is dit mogelijk? En het gelijkaardige geval voor negen bomen? Kan je de volgende negen bomen op 9 rechte lijnen van telkens 3 bomen plaatsen? 5

7 Modulorekenen en bankrekeningnummers. We komen nu terug op het modulorekenen. Eén van de plaatsen waar dit voorkomt is in bankrekeningnummers. In feite is een bankrekeningnummer ook een code. Zo een nummer bestaat uit 12 cijfers, maar niet alle cijfercombinaties zijn mogelijk. Inderdaad, de laatste twee cijfers vormen de rest bij deling door 97 van het getal gevormd door de eerste 10 cijfers. Anders gezegd: het getal gevormd door de eerste tien cijfers, modulo 97 genomen, is gelijk aan het getal gevormd door de twee laatste cijfers. Dat kan je eenvoudig nagaan bij bankrekeningnummers met veel nullen, zoals dit van Artsen Zonder Grenzen: Deze code is 1-fout detecterend (kan je dat inzien en aantonen?), maar niet 2-fout detecterend (bijvoorbeeld en zijn beide correcte bankrekeningnummers). Ze is ook niet 1-fout verbeterend, hoewel we in vele gevallen wel 1 foutje kunnen verbeteren, als we geluk hebben. Voorbeeld: Stel dat we het rekeningnummer krijgen. Er is duidelijk iets fout. Indien we aannemen dat er slechts één cijfer fout is doorgegeven, dan kunnen we zeker niets veranderen in de laatste vier cijfers (van 59 mogen we geen 60 maken en omgekeerd, want dan zouden we twee fouten verbeteren). We moeten dus een 0 veranderen in een ander cijfer op zodanige manier dat dit 1 modulo 97 toevoegt aan het getal bestaande uit de eerste tien cijfers. Als we bijvoorbeeld 0 veranderen in 1 in de achtste positie, dan voegen we 100 modulo 97 toe, en dat is dus 3. Dit is niet goed, want dan zou er 59+3=62 moeten staan in de laatste twee posities. Zo kunnen we de achtste 0 ook niet veranderen in gelijk welk ander cijfer. Ook de zevende 0 vervangen lukt niet, want schrijven we i in plaats van 0 in de zevende positie, dan moet 60 gelijk zijn aan 1000i + 59 modulo 97. Maar voor i =1, 2, 3, 4, 5, 6, 7, 8, 9 is dit respectievelijk gelijk aan 89, 22, 52, 82, 15, 45, 75, 8 en 38. Zo voortgaande (doe dit!) kan je zien dat we alleen de tweede 0 door een 6 kunnen vervangen. Het juiste rekeningnummer is dus In het rekeningnummer is één fout geslopen. Kan je het juiste nummer terugvinden? 6

8 3. Axioma s en eigenschappen van projectieve vlakken Axioma s en orde van een projectief vlak. We bekijken opnieuw de voorstelling van het Fanovlak: De verzamelingen L 1,,L 7 zullen we rechten noemen (deze hebben niets te maken met de rechten van het Euclidisch vlak!). Op deze figuur tellen we 7 punten en 7 rechten. Bovendien voldoet de structuur aan de volgende axioma s: (A1) door elke twee verschillende punten gaat juist één rechte; (A2) elke twee verschillende rechten hebben juist één punt gemeen; (A3) er bestaan vier punten waarvan er geen drie op een rechte liggen (er bestaat een vierhoek). Een structuur van punten en rechten, waarbij rechten zekere deelverzamelingen van punten zijn, die aan deze eigenschappen voldoet noemt men een projectief vlak. Codes hoeven maar eindig veel codewoorden te hebben, dus beschouwen wij verder enkel eindige projectieve vlakken, d.i. met een eindig aantal punten en een eindig aantal rechten. Beschouw een willekeurig projectief vlak. Neem een rechte L en een punt p buiten die rechte. Kan je aantonen dat er op L evenveel punten liggen als er rechten gaan door p? Stel dit aantal gelijk aan n + 1. Kan je nu bewijzen dat er op elke rechte juist n +1 punten liggen, en door elk punt juist n + 1 rechten gaan? Het getal n noemt men de orde van het projectief vlak. Bovenstaande figuur is dus een voorstelling van een projectief vlak van de orde 2. Er liggen drie punten op elke rechte en elk punt ligt op drie rechten. 7

9 In een projectief vlak van orde n zijn er evenveel rechten als punten, nl. n 2 + n +1. Kan je dit aantonen? Probeer eens een projectief vlak van orde 3 te tekenen met de volgende =13 punten. Bestaan van projectieve vlakken van zekere orde. We proberen nu na te gaan of er voor elke n>1 een projectief vlak van de orde n bestaat. Veronderstel dat we een projectief vlak van de orde n hebben, en we nemen als voorbeeld n = 3. We veronderstellen ook dat n strikt groter is dan 2. We kiezen twee punten in dat vlak, en noemen die x en y. De rechte xy die x en y bevat noteren we door L. We kunnen nu de punten van ons vlak die niet tot L behoren voorstellen in een n n vierkantige formatie, waarbij de (horizontale) rijen gevormd worden door de rechten die x bevatten (uitgezonderd L) en de (verticale) kolommen door de rechten die y bevatten (uitgezonderd L). Voor n = 3 verkrijgen we dus de volgende formatie: 8

10 Neem nu een willekeurig punt z van de rechte L, maar zorg ervoor dat x z y. Er zijn precies n rechten door z die verschillend zijn van L. We geven elke dergelijke rechte een naam, bijvoorbeeld een Latijnse letter. Voorn = 3 nemen we A, B, C. Als we bij elk punt van onze 3 3 formatie schrijven welk van de drie rechten A, B, C er door gaat, dan verkrijgen we een vierkant waarbij op elke rij elke letter A, B, C juist eenmaal voorkomt, en hetzelfde voor elke kolom. Dergelijk vierkant noemen we een Latijns vierkant. We doen nu hetzelfde voor een vierde punt z op de rechte L, enwezorgenervoordatz verschillend is van x, y, z. Deze keer benoemen we de n rechten door z verschillend van L met Griekse letters. Voor n = 3 nemen we bijvoorbeeld α, β, γ. We verkrijgen opnieuw een vierkant waarbij op elke rij elke letter α, β, γ juist eenmaal voorkomt, en hetzelfde voor elke kolom. We schuiven nu die twee vierkanten over elkaar. Op elke plaats schrijven we de bijhorende Griekse en Latijnse letters als een koppel. Bijvoorbeeld, als een punt de Griekse letter β heeft en de Latijnse letter C, dan schrijven we (β,c). Zo verkrijgen we een n n formatie met de volgende eigenschappen. (i) Aan elk punt van de formatie is een koppel gehecht bestaande uit een Griekse letter en een Latijnse letter. (ii) In elke rij en elke kolom komt elke Griekse en elke Latijnse letter juist eenmaal voor. (iii) Elk koppel bestaande uit een Griekse en een Latijnse letter komt juist eenmaal voor! Inderdaad, dit laatste volgt uit Axioma (A2), dat zegt dat twee rechten juist één snijpunt hebben! Dergelijke vierkantige formatie noemen we een Grieks-Latijns vierkant. Voor n = 3 vinden we bijvoorbeeld: 9

Lights Out. 1 Inleiding

Lights Out. 1 Inleiding Lights Out 1 Inleiding Het spel Lights Out is een elektronisch spel dat gelanceerd werd in 1995 door Tiger Electronics. Het originele spel heeft een bord met 25 lampjes in een rooster van 5 rijen en 5

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

(iii) Enkel deze bundel afgeven; geen bladen toevoegen, deze worden toch niet gelezen!

(iii) Enkel deze bundel afgeven; geen bladen toevoegen, deze worden toch niet gelezen! Examen Wiskundige Basistechniek, reeks A 12 oktober 2013, 13:30 uur Naam en Voornaam: Lees eerst dit: (i) Naam en voornaam hierboven invullen. (ii) Nietje niet losmaken. (iii) Enkel deze bundel afgeven;

Nadere informatie

Workshop DisWis, De Start 13/06/2007 Bladzijde 1 van 7. Sudoku. Sudoku

Workshop DisWis, De Start 13/06/2007 Bladzijde 1 van 7. Sudoku. Sudoku DisWis DisWis is een lessenserie discrete wiskunde die De Praktijk vorig jaar in samenwerking met prof.dr. Alexander Schrijver heeft opgezet. Gedurende vier weken komt een wiskundestudent twee blokuren

Nadere informatie

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1 Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking

Nadere informatie

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde Junior Wiskunde Olympiade 200-2002: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

WISKUNDE-ESTAFETTE 2011 Uitwerkingen

WISKUNDE-ESTAFETTE 2011 Uitwerkingen WISKUNDE-ESTAFETTE 2011 Uitwerkingen 1 C D O A O B Omdat driehoek ACD gelijkbenig is, is CAD = ACD en daarmee zien we dat 2 CAD+ ADC = 180. Maar we weten ook dat 180 = ADC + ADB. Dus ADB = 2 CAD. Driehoek

Nadere informatie

Hoofdstuk 1. Getallen tellen. 1.1 Gehele getallen. 1.2 Recursieve definities. 1.3 Het induktieprincipe

Hoofdstuk 1. Getallen tellen. 1.1 Gehele getallen. 1.2 Recursieve definities. 1.3 Het induktieprincipe Hoofdstuk 1 Getallen tellen 1.1 Gehele getallen 1.1.1 Inleiding 1.1.2 De optelling en de vermeningvuldiging 1.1.3 De ordening van de gehele getallen 1.1.4 Het axioma van de goede ordening 1.2 Recursieve

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

1 Rekenen in eindige precisie

1 Rekenen in eindige precisie Rekenen in eindige precisie Een computer rekent per definitie met een eindige deelverzameling van getallen. In dit hoofdstuk bekijken we hoe dit binnen een computer is ingericht, en wat daarvan de gevolgen

Nadere informatie

De pariteitstestmatrix van de (6,4) Hamming-code over GF(5) is de volgende: [ H =

De pariteitstestmatrix van de (6,4) Hamming-code over GF(5) is de volgende: [ H = Oplossing examen TAI 11 juni 2008 Veel plezier :) Vraag 1 De pariteitstestmatrix van de (6,4) Hamming-code over GF(5) is de volgende: H = [ 1 0 1 2 3 ] 4 0 1 1 1 1 1 (a) Bepaal de bijhorende generatormatrix

Nadere informatie

Uitwerkingen eerste serie inleveropgaven

Uitwerkingen eerste serie inleveropgaven Uitwerkingen eerste serie inleveropgaven (1) Gegeven het 4 4 grid bestaande uit de 16 punten (i, j) met i, j = 0,..., 3. Bepaal het aantal driehoeken dat je kunt vinden zodanig dat ieder hoekpunt samenvalt

Nadere informatie

Universiteit Gent. Academiejaar Discrete Wiskunde. 1ste kandidatuur Informatica. Collegenota s. Prof. Dr.

Universiteit Gent. Academiejaar Discrete Wiskunde. 1ste kandidatuur Informatica. Collegenota s. Prof. Dr. Universiteit Gent Academiejaar 2001 2002 Discrete Wiskunde 1ste kandidatuur Informatica Collegenota s Prof. Dr. Frank De Clerck Herhalingsoefeningen 1. Bepaal het quotiënt en de rest van de deling van

Nadere informatie

Maak je eigen cd. WISACTUEEL opdracht december 2010

Maak je eigen cd. WISACTUEEL opdracht december 2010 Maak je eigen cd hoeveel uur per dag besteed je aan wiskunde? Misschien is dat meer dan je denkt. als je een dvd kijkt of een game speelt, zit je eigenlijk een flinke berg wiskunde te doen. hetzelfde geldt

Nadere informatie

Ruimtemeetkunde deel 1

Ruimtemeetkunde deel 1 Ruimtemeetkunde deel 1 1 Punten We weten reeds dat Π 0 het meetkundig model is voor de vectorruimte R 2. We definiëren nu op dezelfde manier E 0 als meetkundig model voor de vectorruimte R 3. De elementen

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

De Hamming-code. de wiskunde van het fouten verbeteren in digitale gegevens. Benne de Weger Faculteit Wiskunde en Informatica, TU/e 1/21

De Hamming-code. de wiskunde van het fouten verbeteren in digitale gegevens. Benne de Weger Faculteit Wiskunde en Informatica, TU/e 1/21 De Hamming-code de wiskunde van het fouten verbeteren in digitale gegevens Benne de Weger Faculteit Wiskunde en Informatica, TU/e 1/21 Waar gaat coderen over? Digitale opslag van gegevens gebeurt in bits

Nadere informatie

Extra oefeningen hoofdstuk 2: Natuurlijke getallen

Extra oefeningen hoofdstuk 2: Natuurlijke getallen Extra oefeningen hoofdstuk 2: Natuurlijke getallen 2.1 Natuurlijke getallen 1 Rangschik de volgende natuurlijke getallen van klein naar groot. 45 54 56 78 23 25 77 89 2 050 2 505 2 055 2 500 2 005 879

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

3 Wat is een stelsel lineaire vergelijkingen?

3 Wat is een stelsel lineaire vergelijkingen? In deze les bekijken we de situatie waarin er mogelijk meerdere vergelijkingen zijn ( stelsels ) en meerdere variabelen, maar waarin elke vergelijking er relatief eenvoudig uitziet, namelijk lineair is.

Nadere informatie

PARADOXEN 2 Dr. Luc Gheysens

PARADOXEN 2 Dr. Luc Gheysens PARADOXEN Dr. Luc Gheysens SPELEN MET ONEINDIG Historische nota De Griekse filosoof Zeno (ca. 90-0 v. Chr.) bedacht een aantal paradoen om aan te tonen dat beweging eigenlijk een illusie is. De meest bekende

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

Het grondtal van het decimaal stelsel is 10. Voorbeeld: het getal 8365. Poorten De tellereenheid Mevr. Loncke 1

Het grondtal van het decimaal stelsel is 10. Voorbeeld: het getal 8365. Poorten De tellereenheid Mevr. Loncke 1 1. Inleiding In vorig hoofdstuk hebben we het gehad over invoerelementen, verwerking en uitvoerelementen. Je hebt geleerd dat al deze elementen maar 2 toestanden kennen en kunnen verwerken, namelijk de

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2002-II

Eindexamen wiskunde B1-2 vwo 2002-II ppervlakte Gegeven is de functie f ( x) x. De lijn k raakt aan de grafiek van f in het punt (0, 3). Zie figuur. figuur y k f x 5p Stel met behulp van differentiëren een vergelijking op van k. De grafiek

Nadere informatie

Dualiteit. Raymond van Bommel. 6 april 2010

Dualiteit. Raymond van Bommel. 6 april 2010 Dualiteit Raymond van Bommel 6 april 2010 1 Inleiding Op veel manieren kan meetkunde worden bedreven. De bekendste en meest gebruikte meetkunde is de Euclidische meetkunde. In dit artikel gaan we kijken

Nadere informatie

1. Vectoren in R n. y-as

1. Vectoren in R n. y-as 1. Vectoren in R n Vectoren en hun meetkundige voorstelling. Een vector in R n is een rijtje (a 1, a 2,..., a n ) van reële getallen. De getallen a i heten de coördinaten van de vector. In het speciale

Nadere informatie

Oplossing van opgave 6 en van de kerstbonusopgave.

Oplossing van opgave 6 en van de kerstbonusopgave. Oplossing van opgave 6 en van de kerstbonusopgave. Opgave 6 Lesbrief, opgave 4.5 De getallen m en n zijn verschillende positieve gehele getallen zo, dat de laatste drie cijfers van 1978 m en 1978 n overeenstemmen.

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

EXAMEN INFORMATIETHEORIE I (5JJ40 / 5K020) 25 maart 2004, 9u00 12u00-1 -

EXAMEN INFORMATIETHEORIE I (5JJ40 / 5K020) 25 maart 2004, 9u00 12u00-1 - EXAMEN INFORMATIETHEORIE I (5JJ40 / 5K020) 25 maart 2004, 9u00 12u00-1 - Zet de antwoorden in de daarvoor bestemde vakjes en lever alleen deze bladen in! LET OP: Dit werk bevat zowel de opgaven voor het

Nadere informatie

3.2 Vectoren and matrices

3.2 Vectoren and matrices we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,

Nadere informatie

Combinatoriek groep 1 & 2: Recursie

Combinatoriek groep 1 & 2: Recursie Combinatoriek groep 1 & : Recursie Trainingsweek juni 008 Inleiding Bij een recursieve definitie van een rij wordt elke volgende term berekend uit de vorige. Een voorbeeld van zo n recursieve definitie

Nadere informatie

OPLOSSINGEN VAN DE OEFENINGEN

OPLOSSINGEN VAN DE OEFENINGEN OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal

Nadere informatie

Pijlenklokken. 1 Inleiding

Pijlenklokken. 1 Inleiding Pijlenklokken 1 Inleiding In bovenstaande tekening zie je 1 rode punten. Er staan blauwe pijlen van elk rood punt naar een ander rood punt 4 plaatsen verder op de cirkel. Een dergelijke afbeelding noemen

Nadere informatie

Examen VWO. Wiskunde B1,2 (nieuwe stijl)

Examen VWO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B,2 (nieuwe stijl) Eamen VW Voorbereidend Wetenschappelijk nderwijs Tijdvak 2 Woensdag 9 juni 3.30 6.30 uur 20 02 Voor dit eamen zijn maimaal 84 punten te behalen; het eamen bestaat uit 6 vragen.

Nadere informatie

Symmetrische sudoku s

Symmetrische sudoku s Faculteit Wetenschappen Vakgroep Wiskunde Symmetrische sudoku s Bachelor Project II Lobke Van Impe Promotor: Geertrui Van de Voorde Academiejaar 2011-2012 Inhoudsopgave 1 Inleiding 2 2 Gerechte designs

Nadere informatie

Uitwerkingen van geselecteerde opgaven (laatste update 4 Januari 2018) Zebra 50. De Wiskunde van Rubik s Kubus.

Uitwerkingen van geselecteerde opgaven (laatste update 4 Januari 2018) Zebra 50. De Wiskunde van Rubik s Kubus. Uitwerkingen van geselecteerde opgaven (laatste update 4 Januari 2018) Zebra 50. De Wiskunde van Rubik s Kubus. Opgave 1. Niet alle mogelijke posities zijn door middel van draaien te bereiken. Het is bijvoorbeeld

Nadere informatie

1 Complexe getallen in de vorm a + bi

1 Complexe getallen in de vorm a + bi Paragraaf in de vorm a + bi XX Complex getal Instap Los de vergelijkingen op. a x + = 7 d x + 4 = 3 b 2x = 5 e x 2 = 6 c x 2 = 3 f x 2 = - Welke vergelijkingen hebben een natuurlijk getal als oplossing?...

Nadere informatie

Eigenschappen en Axioma s van de E 6 -meetkunde

Eigenschappen en Axioma s van de E 6 -meetkunde Faculteit Wetenschappen Vakgroep Wiskunde Eigenschappen en Axioma s van de E 6 -meetkunde Magali Victoor Promotor: Prof. dr. Hendrik Van Maldeghem Masterproef ingediend tot het behalen van de academische

Nadere informatie

Rekentijger - Groep 7 Tips bij werkboekje A

Rekentijger - Groep 7 Tips bij werkboekje A Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk

Nadere informatie

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen Worteltrekken modulo een priemgetal: van klok tot cutting edge Roland van der Veen Modulorekenen Twee getallen a en b zijn gelijk modulo p als ze een veelvoud van p verschillen. Notatie: a = b mod p Bijvoorbeeld:

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Elliptische krommen en hun topologische aspecten

Elliptische krommen en hun topologische aspecten Elliptische krommen en hun topologische aspecten René Pannekoek 25 januari 2011 Dit is een korte introductie tot elliptische krommen voor het bachelorseminarium van de Universiteit Leiden. De bespreking

Nadere informatie

Uitleg. Welkom bij de Beverwedstrijd 2006. Je krijgt 15 vragen, die je in maximaal 45 minuten moet beantwoorden.

Uitleg. Welkom bij de Beverwedstrijd 2006. Je krijgt 15 vragen, die je in maximaal 45 minuten moet beantwoorden. Uitleg Welkom bij de Beverwedstrijd 2006 Je krijgt 15 vragen, die je in maximaal 45 minuten moet beantwoorden. Je krijgt 5 vragen van niveau A, 5 vragen van niveau B en 5 vragen van niveau C. Wij denken

Nadere informatie

Sum of Us 2014: Topologische oppervlakken

Sum of Us 2014: Topologische oppervlakken Sum of Us 2014: Topologische oppervlakken Inleiding: topologische oppervlakken en origami Een topologisch oppervlak is, ruwweg gesproken, een tweedimensionaal meetkundig object. We zullen in deze tekst

Nadere informatie

1 Limiet van een rij Het begrip rij Bepaling van een rij Expliciet voorschrift Recursief voorschrift 3

1 Limiet van een rij Het begrip rij Bepaling van een rij Expliciet voorschrift Recursief voorschrift 3 HOOFDSTUK 6: RIJEN 1 Limiet van een rij 2 1.1 Het begrip rij 2 1.2 Bepaling van een rij 2 1.2.1 Expliciet voorschrift 2 1.2.2 Recursief voorschrift 3 1.2.3 Andere gevallen 3 1.2.4 Rijen met de grafische

Nadere informatie

Betrouwbaarheid en levensduur

Betrouwbaarheid en levensduur Kansrekening voor Informatiekunde, 26 Les 7 Betrouwbaarheid en levensduur 7.1 Betrouwbaarheid van systemen Als een systeem of netwerk uit verschillende componenten bestaat, kan men zich de vraag stellen

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

wiskundeleraar.nl

wiskundeleraar.nl 2015-2016 wiskundeleraar.nl 1. voorkennis Volgorde bij bewerkingen 1. haakjes 2. machtsverheffen. vermenigvuldigen en delen van links naar rechts 4. optellen en aftrekken van links naar rechts Voorbeeld

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

Aanvullingen bij Hoofdstuk 6

Aanvullingen bij Hoofdstuk 6 Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W

Nadere informatie

Hoofdstuk 9: NEGATIEVE GETALLEN

Hoofdstuk 9: NEGATIEVE GETALLEN 1 H9. Negatieve getallen Hoofdstuk 9: NEGATIEVE GETALLEN 1. Wat moet ik leren? (handboek p. 53 57) 9.1 Getallen onder 0 Het verschil verwoorden tussen positieve en negatieve getallen. Weten dat we 0 zowel

Nadere informatie

Bespreking van het examen Complexe Analyse (tweede zittijd)

Bespreking van het examen Complexe Analyse (tweede zittijd) Bespreking van het examen Complexe Analyse (tweede zittijd) Bekijk ook de bespreking van het examen van de eerste zittijd (op Toledo). Het valt hier op dat de scores op sommige vragen wel heel slecht zijn.

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 4 Donderdag 23 September 1 / 22 1 Kansrekening Indeling: Permutaties en combinaties 2 / 22 Vragen: verjaardag Wat is de kans dat minstens twee van jullie op dezelfde

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

Hebzucht loont niet altijd

Hebzucht loont niet altijd Thema Discrete wiskunde Hoe verbind je een stel steden met zo weinig mogelijk kilometers asfalt? Hoe maak je een optimaal computernetwerk met kabels die maar een beperkte capaciteit hebben? Veel van zulke

Nadere informatie

Diophantische vergelijkingen

Diophantische vergelijkingen Diophantische vergelijkingen 1 Wat zijn Diophantische vergelijkingen? Een Diophantische vergelijking is een veeltermvergelijking waarbij zowel de coëfficiënten als de oplossingen gehele getallen moeten

Nadere informatie

Magidoku s en verborgen symmetrieën

Magidoku s en verborgen symmetrieën Uitwerking Puzzel 92-6 Magidoku s en verborgen symmetrieën Wobien Doyer Lieke de Rooij Een Latijns vierkant van orde n, is een vierkante matrix, gevuld met n verschillende symbolen waarvan elk precies

Nadere informatie

opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2.

opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2. opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): ℵ 0 #A, B = {b 0,..., b n 1 } voor een zeker natuurlijk getal

Nadere informatie

Lineaire algebra 1 najaar Lineaire codes

Lineaire algebra 1 najaar Lineaire codes Lineaire algebra 1 najaar 2008 Lineaire codes Bij het versturen van digitale informatie worden in principe ketens van bits verstuurd die de waarde 0 of 1 kunnen hebben. Omdat de transmissiekanalen door

Nadere informatie

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback IJkingstoets burgerlijk ingenieur 30 juni 2014 - reeks 1 - p. 1 IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback In totaal namen 716 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Fout detecterende en verbeterende codes

Fout detecterende en verbeterende codes Profielwerkstuk Fout detecterende en verbeterende codes Een compacte module over het onderwerp fouten detectie en verbetering Gemaakt door Roy van Schaijk, Boris Kloeg en Willy Mackus Inhoudsopgave. Introductie

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel

Nadere informatie

Het SET-spel, een toepassing op eindige meetkunde

Het SET-spel, een toepassing op eindige meetkunde Het SET-spel, een toepassing op eindige meetkunde Luc Van den Broeck 1 1 EDUGO campus De Toren, Oostakker ABSTRACT Het kaartspel SET, dat gespeeld wordt met 81 kaarten waarop verschillende geometrische

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. 1 Vlaamse Wiskunde Olympiade 1993-1994 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

Oefeningen Cursus Discrete Wiskunde. 26 mei 2003

Oefeningen Cursus Discrete Wiskunde. 26 mei 2003 Oefeningen Cursus Discrete Wiskunde 26 mei 2003 1 Hoofdstuk 1 Getallen tellen 1.1 Gehele getallen 1.1.1 Inleiding 1.1.2 De optelling en de vermeningvuldiging Oefening 1.1.1 Zoals gebruikelijk noteren wij

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

Opgeloste en onopgeloste mysteries in de getaltheorie

Opgeloste en onopgeloste mysteries in de getaltheorie Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste

Nadere informatie

Uitwerking Puzzel 93-1, Doelloos

Uitwerking Puzzel 93-1, Doelloos Uitwerking Puzzel 93-1, Doelloos Wobien Doyer Lieke de Rooij Volgens de titel is deze puzzel zonder doel, dus zonder bekende toepassing. Het doel is echter nul en dat is zeker in de wiskunde niet niks.

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

5 Inleiding tot de groepentheorie

5 Inleiding tot de groepentheorie 5 Inleiding tot de groepentheorie Oefening 5.1. Stel de Cayleytabel op voor de groep van de symmetrieën van een vierkant. Bewijs dat deze groep de viergroep van Klein bezit als deelgroep van index 2. Oplossing

Nadere informatie

Dossier 3 PRIEMGETALLEN

Dossier 3 PRIEMGETALLEN Dossier 3 PRIEMGETALLEN atomen van de getallenleer Dr. Luc Gheysens Een priemgetal is een natuurlijk getal met twee verschillende delers, nl. 1 en het getal zelf. De priemgetallen zijn dus 2, 3, 5, 7,

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde. Vlaamse Wiskunde Olympiade 989-990: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

Aanvullende tekst bij hoofdstuk 1

Aanvullende tekst bij hoofdstuk 1 Aanvullende tekst bij hoofdstuk 1 Wortels uit willekeurige getallen In paragraaf 1.3.5 hebben we het worteltrekalgoritme besproken. Dat deden we aan de hand van de relatie tussen de (van tevoren gegeven)

Nadere informatie

Hoofdstuk 1. Afspraken en notaties

Hoofdstuk 1. Afspraken en notaties Hoofdstuk 1 Afspraken en notaties In deze tekst onderzoeken we een eenvoudig dobbelspel: twee spelers hebben een dobbelsteen, gooien deze, en wie het hoogst aantal ogen gooit wint. Er blijken setjes dobbelstenen

Nadere informatie

Netwerkdiagram voor een project. AOA: Activities On Arrows - activiteiten op de pijlen.

Netwerkdiagram voor een project. AOA: Activities On Arrows - activiteiten op de pijlen. Netwerkdiagram voor een project. AOA: Activities On Arrows - activiteiten op de pijlen. Opmerking vooraf. Een netwerk is een structuur die is opgebouwd met pijlen en knooppunten. Bij het opstellen van

Nadere informatie

3. Structuren in de taal

3. Structuren in de taal 3. Structuren in de taal In dit hoofdstuk behandelen we de belangrijkst econtrolestructuren die in de algoritmiek gebruikt worden. Dit zijn o.a. de opeenvolging, selectie en lussen (herhaling). Vóór we

Nadere informatie

De Hamming-code. De wiskunde van het fouten verbeteren in digitale gegevens

De Hamming-code. De wiskunde van het fouten verbeteren in digitale gegevens De Hamming-code De wiskunde van het fouten verbeteren in digitale gegevens In het kader van: (Bij) de Faculteit Wiskunde en Informatica van de TU/e op bezoek voorjaar 2007 c Faculteit Wiskunde en Informatica,

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Inleiding Analyse 2009

Inleiding Analyse 2009 Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde 1 Junior Wiskunde Olympiade 2005-2006: eerste ronde 1 Vier van de volgende figuren zijn het beeld van minstens één andere figuur door een draaiing in het vlak Voor één figuur is dit niet het geval Welke?

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

Geldwisselprobleem van Frobenius

Geldwisselprobleem van Frobenius Geldwisselprobleem van Frobenius Karin van de Meeberg en Dieuwertje Ewalts 12 december 2001 1 Inhoudsopgave 1 Inleiding 3 2 Afspraken 3 3 Is er wel zo n g? 3 4 Eén waarde 4 5 Twee waarden 4 6 Lampenalgoritme

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

Uitwerking puzzel 91-7: Je kunt het schudden

Uitwerking puzzel 91-7: Je kunt het schudden Uitwerking puzzel 91-7: Je kunt het schudden Het credit voor deze puzzel gaat naar Frans van Hoeve. Hij stuurde het ons, in een iets andere vorm, met titel Penny-flipping problem. Hij was het tegengekomen

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

Hoofdstuk 3: NEGATIEVE GETALLEN

Hoofdstuk 3: NEGATIEVE GETALLEN 1-6 H3. Negatieve getallen Hoofdstuk 3: NEGATIEVE GETALLEN 1. Wat moet ik leren? (handboek p. 96 123) 3.1 Positieve en negatieve getallen Het verschil verwoorden tussen positieve en negatieve getallen.

Nadere informatie

4,7. Praktische-opdracht door een scholier 1959 woorden 1 juni keer beoordeeld

4,7. Praktische-opdracht door een scholier 1959 woorden 1 juni keer beoordeeld Praktische-opdracht door een scholier 1959 woorden 1 juni 2001 4,7 331 keer beoordeeld Vak Wiskunde Tientallig stelsel In een tientallig stelsel heb je de getallen 0 t/m 9 tot je beschikking. Zoals je

Nadere informatie

Memoriseren: Een getal is deelbaar door 10 als het laatste cijfer een 0 is. Of: Een getal is deelbaar door 10 als het eindigt op 0.

Memoriseren: Een getal is deelbaar door 10 als het laatste cijfer een 0 is. Of: Een getal is deelbaar door 10 als het eindigt op 0. REKENEN VIJFDE KLAS en/of ZESDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Luc Cielen: Regels van deelbaarheid, grootste gemene deler en kleinste gemeen veelvoud 1 Deelbaarheid door 10, 100, 1000. Door

Nadere informatie

Tentamen Discrete Wiskunde

Tentamen Discrete Wiskunde Discrete Wiskunde (WB011C) 22 januari 2016 Tentamen Discrete Wiskunde Schrijf op ieder ingeleverd blad duidelijk leesbaar je naam en studentnummer. De opgaven 1 t/m 6 tellen alle even zwaar. Je hoeft slechts

Nadere informatie

Internationaal Wiskundetoernooi 2017

Internationaal Wiskundetoernooi 2017 Internationaal Wiskundetoernooi 2017 Internationaal Wiskundetoernooi 2017 Voorbereidend materiaal Het Internationaal Wiskundetoernooi bestaat uit twee rondes: de Estafette in de voormiddag en Sum of Us

Nadere informatie

1 Binaire plaatjes en Japanse puzzels

1 Binaire plaatjes en Japanse puzzels Samenvatting Deze samenvatting is voor iedereen die graag wil weten waar mijn proefschrift over gaat, maar de wiskundige notatie in de andere hoofdstukken wat te veel van het goede vindt. Ga er even voor

Nadere informatie

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback IJkingstoets burgerlijk ingenieur 30 juni 2014 - reeks 2 - p. 1 IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback In totaal namen 716 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie