Kettingbreuken. 20 april K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N A + 1 P + 1 R + 1 I + 1

Maat: px
Weergave met pagina beginnen:

Download "Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1"

Transcriptie

1 Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L

2 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking van de vorm: a 0 + a + a a 3 + waarbij a 0 Z, en alle andere elementen natuurlijke getallen zijn. Kettingbreuken kunnen zowel eindig als oneindig zijn. Een eindige kettingbreuk stelt een rationaal getal voor, en elk rationaal getal kan op precies manieren geschreven worden als een kettingbreuk, waarover later meer. Elke oneindige kettingbreuk stelt een irrationaal getal voor, en elk irrationaal getal kan precies op manier geschreven worden als een kettingbreuk. Een voorbeeld van een eindige kettingbreuk is: Een voorbeeld van een oneindige kettingbreuk is: Er zijn verschillende notatiemogelijkheden om kettingbreuken verkort weer te geven:. x =< a 0 ; a, a, a 3, >. x = a 0 + a +a +a +a 3 +

3 3. x = a 0 + a + a + a 3 + Dit noemt men de notatie van Pringsheim, een invloedrijke Duitse wiskundige uit de 9 de -0 ste eeuw. 4. x = [a 0 ; a, a, a 3, ] Deze notatie is ingevoerd door Oskar Perron. Perron was een Duits wiskundige die vele bijdragen heeft geleverd aan differentiaalvergelijkingen. Deze notatie zal in de rest van het verslag gebruikt worden. Kettingbreuken bepalen. Kettingbreuken van rationale getallen We gaan nu proberen een rationaal getal te schrijven als een kettingbreuk. De makkelijkste manier om te tonen hoe je dit het best doet, is aan de hand van een voorbeeld: 0, , 345 = [0;,, 8,, 6]

4 We kunnen dit ook korter noteren: 345 = = = = = = De getallen in het rood zijn juist die getallen die de kettingbreuk van 0, 345 bepalen.. Kettingbreuken van tweedegraadswortels Ook hier is het het simpelste om het uit te leggen aan de hand van een voorbeeld. 3 = + 3 = + 3 Nu vermenigvuldigen we de onderste breuk boven en onder met 3 + : = = = = We vermenigvuldigen de onderste breuk boven en onder met 3 + : 3 = =

5 Nu kunnen we de vergelijking in zichzelf invullen. Op de plaats van 3 komt dan de tot nu geconstrueerde kettingbreuk, zodat: 3 = + = = [;,,,,,,,, ] Alle tweedegraadswortels hebben periodieke kettingbreuken. Dit is bewezen door Leonard Euler in 737. Het bewijs hiervan valt buiten het bestek van dit verslag wegens te lang en te moeilijk. 3 Eindige kettingbreuken 3. Voorstelling rationaal getal Elke kettingbreuk stelt een rationaal getal voor, en elk rationaal getal kan geschreven worden op precies verschillende manieren als een kettingbreuk. Deze voorstellingen zijn dezelfde, buiten hun laatste term. Voorbeeld: 4, = 5 = = 5 + = = [ 5;, 4] 4 4 = = [ 5;, 3, ] 3 + Om de korte manier te bepalen, laten we de laatste vallen, maar vermeerderen we de voorlaatste term met. In symbolen: [a 0 ; a, a,, a n,, ] = [a 0 ; a, a,, a n + ] 5

6 Op deze manier is elke breuk uniek als een eindige kettingbreuk. Dat de kettingbreuk uniek is, blijkt wel uit de methode. Het eindige is niet zo moeilijk in te zien. Je houdt immers steeds een rest p over die tussen 0 en ligt, q oftewel 0 p < q. Als p = 0 of p = ben je klaar en is de kettingbreuk zeker eindig. Als p > schrijf je p als q. Dan neem je de entier van q en hou je q p p een rest q over met p q < p < q. Je ziet dat zowel teller als noemer van de rest in de volgende stap strikt kleiner zijn dan in de huidige stap. Aangezien teller en noemer natuurlijke getallen zijn kom je in een eindig aantal stappen in de situatie dat p = 0 of p = terecht. 3. Kettingbreuken van omgekeerde evenredige getallen De voorstelling van een kettingbreuk ([a 0 ; a, a, a 3, ]) van een positief rationaal getal p en de voorstelling van het omgekeerde evenredige getal ( p ) zijn gelijk, buiten dat alle a i s één plaats naar rechts of links verschoven zijn, afhankelijk of p groter of kleiner is dan één. Voorbeeld: 6, 75 = 7 4 = 6 + 6, 75 = 4 7 = = [6; 3, 3] = [0; 6, 3, 3] De entier van een reëel getal x is het grootste gehele getal kleiner of gelijk aan x. 6

7 Bewijs: x > : x = a 0 + a + = [a 0 ; a, ] x = [0; a 0, a, ] a 0 + a + x < : x = [0; a, a, ] a + a x = a + a = [a ; a, ] 4 Oneindige kettingbreuken en convergenten 4. Oneindige ketingbreuken Elke oneindige kettingbreuk stelt precies één irrationaal getal voor, en elk irrationaal getal kan op precies manier geschreven worden als een kettingbreuk. De oneindige kettingbreuken laten zich nog opdelen in periodieke en aperiodieke kettingbreuken. 4. Convergenten Als we slechts een deel beschouwen van een oneindige kettingbreuk (of een eindige kettingbreuk voor het einde afbreken), hebben we te maken met een benadering van de gehele kettingbreuk. Een dergelijk voortijdig afgebroken deel noemen we een convergent. De n-de convergent is opgebouwd uit de getallen a 0, a, a,, a n. 7

8 De opeenvolgende convergenten vormen een rij breuken die steeds beter de originele kettingbreuk zullen gaan benaderen. De convergenten met een even index zijn kleiner dan het rationaal getal dat ze benaderen, deze met een oneven index groter. Zie stelling 5.3 voor het bewijs hiervan. Voor elke kettingbreuk zijn de eerste 3 opeenvolgende convergenten: a 0 a 0 + a = a a 0 + a 0 + a a + a = a 0 + = a (a 0 a + ) + a 0 a a + a a + a = a 0 + a a a + = a 0a a a 0 + a a a + De noemer van de vierde convergent wordt gevormd door de noemer van derde convergent te vermenigvuldigen met a 3 en dit te vermeerderen met de noemer van de tweede convergent. De teller wordt op dezelfde wijze gevormd. De opeenvolgende convergenten worden gevormd door de formule: p k = a kp k + p k a k p k + Hierbij is p k de noemer van de n-de convergent, en de teller van de n-de convergent. Zie stelling 5. voor het bewijs hiervan. 8

9 4.3 Enkele verbazende eigenschappen: De meeste oneindige kettingbreuken hebben geen periodieke kettingbreukontwikkeling en zijn dus volstrekt willekeurig. Wel zijn er enkele verbazende eigenschappen: Constante van Khinchin: Aleksandr Khinchin bewees dat voor bijna elk getal x geldt dat het meetkundige gemiddelde van de getallen a i van een welbepaalde kettingbreuk gelijk is aan een constante, de constante van Khinchin. Het is ongeveer gelijk aan, In symbolen: K 0 = lim n ( n a i ) n i= Voorbeeld: π = De meetkundige gemiddelden zijn: 3; 4, 58; 6, 8; 4, ; 5, 7; 4, ; 3, 47;, 97;, 84;, 56; Deze rij nadert inderdaad de constante van Khinchin. Constante van Lévy: De n-de-machtswortels uit de noemers van de n-de convergent van bijna alle reëele getallen convergeren naar dezelfde limiet, de constante van Lévy. Deze constante bedraagt ongeveer 3,7599. In symbolen: lim n q n n = e π ln = 3, 7599 Soms treffen we patronen aan in aperiodieke oneindige kettingbreuken. Enkele voorbeelden: e = [;,,,, 4,,, 6,,, 8,,, 0, ] φ = [;,,,,, ] tan() = [;,,, 3,, 5,, 7,, 9, ] Het meetkundig gemiddelde van n getallen wordt verkregen door deze getallen met elkaar te vermenigvuldigen en vervolgens van het product de n-de-machtwortel te nemen. 9

10 5 Stellingen 5. Stelling : Als a 0, a, a, een oneindige rij voorstelt, waarbij a 0 een geheel getal is, en de rest natuurlijke getallen voorstellen, geldt: p k = a kp k + p k a k p k +, en waarbij p = p = 0 p 0 = a 0 q = 0 q = q 0 = Hierbij is p k de teller van de k-de convergent, en de noemer van de k-de convergent. Bewijs: We gaan dit bewijzen door middel van volledige inductie. k = 0: p 0 q 0 = a 0, en a 0p + p a 0 q + q = a 0 = p 0 q 0, voor n = 0 klopt het. Neem aan: Te bewijzen: p k = a kp k + p k a k + p k+ + = a k+p k + p k a k+ + We weten dat we p k+ + uit p k kunnen vormen, door alle a k s vervangen door a k + a k+, en teller en noemer te vermenigvuldigen met a k+. Dus: p k+ + = (a k + a k+ )p k + p k (a k + a k+ ) + = a k+p k + p k a k+ + = a k p k + p k p k a k+ a k + a k+ = (p k + p k a k+ )a k+ ( + a k+ )a k+ 0

11 5. Stelling : Voor ieder afgekapte kettingbreuk geldt voor k 0 dat: p k p k = ( ) k, en waarbij: p = p = 0 p 0 = a 0 q = 0 q = q 0 = Bewijs: We gaan dit wederom bewijzen door volledige inductie. k=0: p q 0 p 0 q = a 0 0 = 0 = ( ) 0, voor k = 0 klopt het. Neem aan: Te bewijzen: p k p k = ( ) k p k + p k+ = ( ) k+ We gaan kijken naar: p k + p k+ + = p k p k+ + = p k a k+p k + p k a k+ + = p k p k (a k+ + ) = ( )(p k p k ) + = ( )( )k + = ( )k+ + Hiermee is het bewijs geleverd.

12 5.3 Stelling 3: De convergenten met een even index zijn kleiner dan het rationaal getal dat ze benaderen, deze met een oneven index zijn groter dan het rationaal getal dat ze benaderen. Bewijs: We zullen eerst bewijzen dat c k c k = a k( ) k : c k c k = p k p k = p k p k = (a kp k + p k ) p k (a k + ) = a k(p k p k ) = a k( ) k = a k( ) k Stel k is even: c k c k = a k( ) k, dus c k > c k We zien dat even convergenten steeds groter worden.

13 Stel k is oneven: c k c k = a k( ) k < 0, dus c k < c k We zien dat oneven convergenten steeds kleiner worden. Nu moeten we nog aantonen dat een willekeurige oneven convergent groter is dan een willekeurige even convergent. Laten we het eerst aantonen voor convergenten waarvan de index maar verschilt: c n+ c n = ( )(n+) > 0, dusc n+ > c n Een oneven convergent is dus steeds groter dan de even convergent met een index lager. Laten we hierna het algemene geval doen. Stel dat c n+ een oneven convergent is, en dat c m een even convergent is. Dan geldt: c n+ > c n+m+ > c n+m > c m De eerste ongelijkheid is juist, omdat oneven convergenten in waarde afnemen. De tweede ongelijkheid klopt, aangezien we dit hebben aangetoond. De laatste ongelijkheid is waar, omdat even convergenten in waarde toenemen. Hiermee is het bewijs geleverd. 6 Bronnen: bosma/students/reneebscriptie.pdf

1 Kettingbreuken van rationale getallen

1 Kettingbreuken van rationale getallen Kettingbreuken van rationale getallen Laten we eens starten met een breuk bijvoorbeeld 37/3 Laten we hier ons kettingbreuk algoritme op los, We concluderen hieruit dat 37 3 3 + 3 + + 37 3 + + + hetgeen

Nadere informatie

1 Limiet van een rij Het begrip rij Bepaling van een rij Expliciet voorschrift Recursief voorschrift 3

1 Limiet van een rij Het begrip rij Bepaling van een rij Expliciet voorschrift Recursief voorschrift 3 HOOFDSTUK 6: RIJEN 1 Limiet van een rij 2 1.1 Het begrip rij 2 1.2 Bepaling van een rij 2 1.2.1 Expliciet voorschrift 2 1.2.2 Recursief voorschrift 3 1.2.3 Andere gevallen 3 1.2.4 Rijen met de grafische

Nadere informatie

Bijzondere kettingbreuken

Bijzondere kettingbreuken Hoofdstuk 15 Bijzondere kettingbreuken 15.1 Kwadratische getallen In het vorige hoofdstuk hebben we gezien dat 2 = 1, 2, 2, 2, 2, 2, 2,.... Men kan zich afvragen waarom we vanaf zeker moment alleen maar

Nadere informatie

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π

OVER IRRATIONALE GETALLEN EN MACHTEN VAN π OVER IRRATIONALE GETALLEN EN MACHTEN VAN π KOEN DE NAEGHEL Samenvatting. In deze nota buigen we ons over de vraag of een macht van π een irrationaal getal is. De aangereikte opbouw en bewijsmethoden zijn

Nadere informatie

Het benaderen van irrationale getallen door rationale. Vakantiecursus Wiskunde 2012

Het benaderen van irrationale getallen door rationale. Vakantiecursus Wiskunde 2012 Het benaderen van irrationale getallen door rationale. Vakantiecursus Wiskunde 202 Cor Kraaikamp August 24, 202 Cor Kraaikamp () Het benaderen van irrationale getallen door rationale. Vakantiecursus Wiskunde

Nadere informatie

Irrationaliteit en transcendentie

Irrationaliteit en transcendentie Hoofdstuk 9 Irrationaliteit en transcendentie 9. Irrationale getallen In dit hoofdstuk zullen we aannemen dat de lezer weet wat reële getallen zijn, hoewel dat misschien niet helemaal gerechtvaardigd is.

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.1, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 21 april, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 32 Outline 1 K. P. Hart TW2040: Complexe Functietheorie

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn

Nadere informatie

Hints en uitwerkingen huiswerk 2013 Analyse 1 H17

Hints en uitwerkingen huiswerk 2013 Analyse 1 H17 Hints en uitwerkingen huiswerk 013 Analyse 1 H17 Rocco van Vreumingen augustus 014 1 Inhoudsopgave 1 Hints 1 3 Hints 4 3 Hints 3 4 4 Hints 4 5 5 Hints 5 5 6 Hints 6 6 7 Hints 7 6 8 Hints 8 6 9 Hints 9

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07

Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07 Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde vrijdag 31 januari 2014, 8:30 12:30 Auditorium L.00.07 Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.

Nadere informatie

Uitwerkingen van de opgaven uit Pi

Uitwerkingen van de opgaven uit Pi Uitwerkingen van de opgaven uit Pi Frits Beukers January 3, 2006 Opgave 2.3. Bedoeling van deze opgave is dat we alleen een schatting geven op grond van de gevonden tabel. Er worden geen bewijzen of precieze

Nadere informatie

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule Heron driehoek 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule = s(s a)(s b)(s c) met s = a + b + c 2 die gebruikt wordt om de oppervlakte van een driehoek te berekenen in

Nadere informatie

Het naaldenexperiment van Buffon

Het naaldenexperiment van Buffon Het naaldenexperiment van Buffon (Ph. Cara, 3 april 2015) 1 Definitie en korte geschiedenis van π Reeds in 400 v.chr. stelde de Griek Hippocrates vast dat de verhouding tussen de oppervlakte van een cirkelschijf

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Dan komt er informatie over de aantallen koeien. Over de witte koeien zien we in regels dit w = ( 1 / / 4

Dan komt er informatie over de aantallen koeien. Over de witte koeien zien we in regels dit w = ( 1 / / 4 Dan komt er informatie over de aantallen koeien. Over de witte koeien zien we in regels 7 9 dit w = ( / 3 + / 4 )(Z + z), in regels 0 staat over de zwarte koeien dit z = ( / 4 + / 5 )(* + g), over de gevlekte

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Inhoud college 5 Basiswiskunde Taylorpolynomen

Inhoud college 5 Basiswiskunde Taylorpolynomen Inhoud college 5 Basiswiskunde 4.10 Taylorpolynomen 2 Basiswiskunde_College_5.nb 4.10 Inleiding Gegeven is een functie f met punt a in domein D f. Gezocht een eenvoudige functie, die rond punt a op f lijkt

Nadere informatie

Zoek nu even zelf hoe het verder gaat. Een schematische voorstelling kan hierbij zeker helpen.

Zoek nu even zelf hoe het verder gaat. Een schematische voorstelling kan hierbij zeker helpen. De rij van Fibonacci Leonardo di Pisa (/ ca. 1170, artiestennaam Fibonacci, invoerder van de Indische cijfers in Europa), zat in 1202 met het volgende zware wiskundige probleem: Stel: een boer koopt op

Nadere informatie

Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen

Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen Ter inleiding: tellen Turven, maar: onhandig bij grote aantallen. Romeinse cijfers: speciale symbolen voor

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

1.5.1 Natuurlijke, gehele en rationale getallen

1.5.1 Natuurlijke, gehele en rationale getallen 46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Kettingbreuken Frits Beukers. Masterclass Kettingbreuken Utrecht, 14 en 15 oktober 2011

Kettingbreuken Frits Beukers. Masterclass Kettingbreuken Utrecht, 14 en 15 oktober 2011 Kettingbreuken Frits Beukers Masterclass Kettingbreuken Utrecht, 4 en 5 oktober 20 INHOUDSOPGAVE Inhoudsopgave Inleiding 2 Wat is een kettingbreuk? 3 Eerste eigenschappen 3 4 Kettingbreuken van rationale

Nadere informatie

Aanvulling basiscursus wiskunde. A.C.M. Ran

Aanvulling basiscursus wiskunde. A.C.M. Ran Aanvulling basiscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de basiscursus (Basisboek wiskunde van Jan van de Craats en Rob Bosch) staan. Die

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e 1/3/2017. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e 1/3/2017. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 1/3/2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating) 1. Inleiding

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2 Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van

Nadere informatie

Inleiding Analyse 2009

Inleiding Analyse 2009 Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn

Nadere informatie

PARADOXEN 2 Dr. Luc Gheysens

PARADOXEN 2 Dr. Luc Gheysens PARADOXEN Dr. Luc Gheysens SPELEN MET ONEINDIG Historische nota De Griekse filosoof Zeno (ca. 90-0 v. Chr.) bedacht een aantal paradoen om aan te tonen dat beweging eigenlijk een illusie is. De meest bekende

Nadere informatie

n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1

n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1 Radboud Universiteit Nijmegen Tentamen Calculus 2 NWI-NP004B 6 april 205, 8.00 2.00 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten

Nadere informatie

Hoofdstuk 1 : De reële getallen

Hoofdstuk 1 : De reële getallen Hoofdstuk 1 : De reële getallen - 1 Rationale getallen (boek pag 3): Eventjes herhalen: De verzameling van de rationale getallen stellen voor door :... Elk rationaal getal kan geschreven worden als een

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

Diophantische vergelijkingen

Diophantische vergelijkingen Diophantische vergelijkingen 1 Wat zijn Diophantische vergelijkingen? Een Diophantische vergelijking is een veeltermvergelijking waarbij zowel de coëfficiënten als de oplossingen gehele getallen moeten

Nadere informatie

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen Referentieniveaus uitgelegd De beschrijvingen zijn gebaseerd op het Referentiekader taal en rekenen'. In 'Referentieniveaus uitgelegd' zijn de niveaus voor de verschillende sectoren goed zichtbaar. Door

Nadere informatie

Convergentie van een rij

Convergentie van een rij Hoofdstuk Convergentie van een rij. Basis. Bepaal de som van de volgende oneindige meetkundige rijen a) + 0. + 0.0 + 0.00 + 0.000 +... b) 6 + 8 + + 2 +, +... c) 8 + 2 + 2 + 8 +... 2. Schrijf de volgende

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden

Nadere informatie

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen.

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen. Hoofdstuk 7 Volledige inductie Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen we het volgende: (i) 0 V (ii) k N k V k + 1 V Dan is V = N. Men ziet dit als

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen Hoofdstuk : Partiële differentiaalvergelijkingen en Fourierreeksen Partiële differentiaalvergelijkingen zijn vergelijkingen waarin een onbekende functie van twee of meer variabelen en z n partiële afgeleide(n)

Nadere informatie

Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30

Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30 Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde vrijdag 3 februari 2012, 8:30 12:30 Naam: Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Aardse Stellingen met hemelse bewijzen en Stellingen om van te smullen met (on)verteerbare bewijzen. Zaterdag 16 februari 2019

Aardse Stellingen met hemelse bewijzen en Stellingen om van te smullen met (on)verteerbare bewijzen. Zaterdag 16 februari 2019 Aardse Stellingen met hemelse bewijzen en Stellingen om van te smullen met (on)verteerbare bewijzen Zaterdag 16 februari 2019 Deze presentatie is gegroeid uit mijn jaarlijkse les over, Abstraheren en Structureren

Nadere informatie

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran Aanvulling aansluitingscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de Aansluitingscursus staan. Die onderwerpen zijn: complexe getallen en volledige

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006 1ste semester 31 januari 2006 Analyse I 1. Onderstel dat f : [a, b] R continu is, en dat f(a)f(b) < 0. Toon aan dat f minstens 1 nulpunt heeft gelegen in het interval (a, b). 2. Gegeven is een functie

Nadere informatie

Overzicht Fourier-theorie

Overzicht Fourier-theorie B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

Copyright 2017 Gertjan Laan Versie 3.1. uitgeverij czarina

Copyright 2017 Gertjan Laan Versie 3.1. uitgeverij czarina G E R T J A N L A A N A N A LY S E B O E K U I T G E V E R I J C Z A R I N A Copright 07 Gertjan Laan Versie. uitgeverij czarina www.uitgeverijczarina.nl www.gertjanlaan.nl tufte-late.github.io/tufte-late

Nadere informatie

Universiteit Leiden, 2015 Wiskundewedstrijdtraining, week 14

Universiteit Leiden, 2015 Wiskundewedstrijdtraining, week 14 Universiteit Leiden, 0 Wisundewedstrijdtraining, wee Wee : reesen Een rees is een speciaal soort rij, dus: den altijd eerst na over convergentie! bijzonder: monotone, begrensde rijen convergeren In het

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

Combinatoriek groep 1

Combinatoriek groep 1 Combinatoriek groep 1 Recursie Trainingsdag 3, 2 april 2009 Getallenrijen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een directe formule geeft a n in

Nadere informatie

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 5.7 Vraagstukken Vraagstuk 5.7.1 Beschouw de differentiaalvergelijking d2 y d 2 = 2 y. (i) Schrijf y = a k k. Geef een recurrente betrekking voor de coëfficienten a

Nadere informatie

1. Hoeveel decimalen van π ken je?

1. Hoeveel decimalen van π ken je? Deze samenvatting is bedoeld voor mijn moeder en alle andere lezers die niet veel van wiskunde weten, maar wel graag willen zien waar ik de afgelopen jaren aan heb gewerkt Wiskundigen verwijs ik graag

Nadere informatie

Hoofdstuk 16. De vergelijking van Pell De oplossing. Stel dat N N geen kwadraat is. Beschouw de vergelijking. x 2 Ny 2 = 1

Hoofdstuk 16. De vergelijking van Pell De oplossing. Stel dat N N geen kwadraat is. Beschouw de vergelijking. x 2 Ny 2 = 1 Hoofdstuk 16 De vergelijking van Pell 16.1 De oplossing Stel dat N N geen kwadraat is. Beschouw de vergelijking x Ny = 1 in de onbekenden x, y Z 0. We noemen dit soort vergelijking de vergelijking van

Nadere informatie

Katernen. regionale training. tweede ronde. Nederlandse Wiskunde Olympiade

Katernen. regionale training. tweede ronde. Nederlandse Wiskunde Olympiade Katernen voor de regionale training ten behoeve van de tweede ronde van de Nederlandse Wiskunde Olympiade NEDERLANDSE WISKUNDE OLYMPIADE Birgit van Dalen Julian Lyczak Quintijn Puite Inhoudsopgave Katern

Nadere informatie

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Combinatorische Optimalisatie, 2013 Week 1 20-02-2013 Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Opgave 1.16 Bewijs dat elke graaf een even aantal punten

Nadere informatie

Breuken - Brak - Gebroken. Kettingbreuken

Breuken - Brak - Gebroken. Kettingbreuken Breuken - Brak - Gebroken Kettingbreuken Voorwoord Kettingbreuken is een boekje dat bedoeld is voor HAVO- en VWO leerlingen met wiskunde in hun profiel. Aan het einde van elk hoofdstuk is een aantal oefeningen

Nadere informatie

Functievergelijkingen

Functievergelijkingen Functievergelijkingen Trainingsweek juni 2008 Basistechnieken Je mag alle getallen in het domein invullen in je functievergelijking. Wat er precies handig is, hangt af van het domein en van de functievergelijking.

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Airyfunctie. b + π 3 + xt dt. (2) cos

Airyfunctie. b + π 3 + xt dt. (2) cos LaTeX opdracht Bewijzen en Redeneren 1ste fase bachelor in Fysica, Wiskunde Werk de volgende opdracht individueel uit. U moet hier alleen aan werken. Geef ook geen files door aan anderen. Ingediende opdrachten

Nadere informatie

4.1 Rijen. Inhoud. Convergentie van een reeks. Reeksen. a k. a k = lim. a k = s. s n = a 1 + a 2 + + a n = k=1

4.1 Rijen. Inhoud. Convergentie van een reeks. Reeksen. a k. a k = lim. a k = s. s n = a 1 + a 2 + + a n = k=1 Reesen en Machtreesen Reesen en Machtreesen 4-0 Reesen en Machtreesen Inhoud. Rijen 2. Reesen Definities en enmeren Reesen met niet-negatieve termen Reesen met positieve en negatieve termen 3. Machtreesen

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

Wiskundige vaardigheden

Wiskundige vaardigheden Inleiding Bij het vak natuurkunde ga je veel rekenstappen zetten. Het is noodzakelijk dat je deze rekenstappen goed en snel kunt uitvoeren. In deze presentatie behandelen we de belangrijkste wiskundige

Nadere informatie

Opgaven Inleiding Analyse

Opgaven Inleiding Analyse Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van iet dat y 0 y = 0. (b) Bewijs y 0 y 3 = 0 uit de definitie van iet. (c) Bewijs y 0 y 3

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle  holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/20310 holds various files of this Leiden University dissertation. Author: Jansen, Bas Title: Mersenne primes and class field theory Date: 2012-12-18 Samenvatting

Nadere informatie

Proefexemplaar. Wendy Luyckx Mark Verbelen Els Sas. Dirk Vandamme. bewerkt voor het GO! onderwijs van de Vlaamse Gemeenschap door. Cartoons.

Proefexemplaar. Wendy Luyckx Mark Verbelen Els Sas. Dirk Vandamme. bewerkt voor het GO! onderwijs van de Vlaamse Gemeenschap door. Cartoons. bewerkt voor het GO! onderwijs van de Vlaamse Gemeenschap door Wendy Luyckx Mark Verbelen Els Sas Cartoons Dirk Vandamme Leerboek Getallen ISBN: 78 0 4860 48 8 Kon. Bib.: D/00/047/4 Bestelnr.: 4 0 000

Nadere informatie

Projectieve Vlakken en Codes

Projectieve Vlakken en Codes Projectieve Vlakken en Codes 1. De Fanocode Foutdetecterende en foutverbeterende codes. Anna en Bart doen mee aan een spelprogramma voor koppels. De ene helft van de deelnemers krijgt elk een kaart waarop

Nadere informatie

Nulpunten op een lijn?

Nulpunten op een lijn? Nulpunten op een lijn? Jan van de Craats leadtekst Het belangrijkste open probleem in de wiskunde is het vermoeden van Riemann. Het is één van de millennium problems waarmee je een miljoen dollar kunt

Nadere informatie

Selectietoets vrijdag 10 maart 2017

Selectietoets vrijdag 10 maart 2017 Selectietoets vrijdag 10 maart 2017 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgave 1. Zij n een even positief geheel getal. Een rijtje van n reële getallen noemen we volledig als voor elke gehele

Nadere informatie

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat.

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat. 92 Algebra 3.2 Basiskennis Inhoofdstuk1zijnaandeordegeweest: 3.2.1 De getallenlijn... -5-4 -3-2 -1 0 1 2 3 4 5... 3.2.2 Symbolen, tekens en getallen Het=teken 5+2+3=10 = geeft aan dat wat links van = staat,

Nadere informatie

Dag van de wiskunde 22 november 2014

Dag van de wiskunde 22 november 2014 WISKUNDIGE UITDAGINGEN MET DE TI-84 L U C G H E Y S E N S VRAGEN/OPMERKINGEN/ peter.vandewiele@telenet.be TOEPASSING 1: BODY MASS INDEX Opstarten programma en naamgeven! Peter Vandewiele 1 TOEPASSING 1:

Nadere informatie

Uitwerking Puzzel 93-1, Doelloos

Uitwerking Puzzel 93-1, Doelloos Uitwerking Puzzel 93-1, Doelloos Wobien Doyer Lieke de Rooij Volgens de titel is deze puzzel zonder doel, dus zonder bekende toepassing. Het doel is echter nul en dat is zeker in de wiskunde niet niks.

Nadere informatie

Bewijs door inductie

Bewijs door inductie Bewijs door inductie 1 Bewijs door inductie Vaak bestaat een probleem erin aan te tonen dat een bepaalde eigenschap geldt voor elk natuurlijk getal. Als je wilt weten of iets waar is voor alle natuurlijke

Nadere informatie

Aanvulling bij de cursus Calculus 1. Complexe getallen

Aanvulling bij de cursus Calculus 1. Complexe getallen Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk

Nadere informatie

Analyse 1 Handout limieten en continuïteit

Analyse 1 Handout limieten en continuïteit Analyse Handout ieten en continuïteit Rogier Bos Inhoudsopgave Limieten 2. Intuïtief ieten bepalen........................ 2.2 Rekenen aan ieten........................... 4.3 Limieten als spel.............................

Nadere informatie

KETTINGBREUKEN VAN COMPLEXE GETALLEN MART KELDER

KETTINGBREUKEN VAN COMPLEXE GETALLEN MART KELDER KETTINGBREUKEN VAN COMPLEXE GETALLEN MART KELDER 7 mei 2009 Inhoudsopgave Reële kettingbreuken 2. Voorwoord 2.2 Verschillende reële kettingbreuken 2.3 Roosters 2.3. Definities 2.4 Voorbeelden van Roosters

Nadere informatie

Hoofdstuk 3: NEGATIEVE GETALLEN

Hoofdstuk 3: NEGATIEVE GETALLEN 1-6 H3. Negatieve getallen Hoofdstuk 3: NEGATIEVE GETALLEN 1. Wat moet ik leren? (handboek p. 96 123) 3.1 Positieve en negatieve getallen Het verschil verwoorden tussen positieve en negatieve getallen.

Nadere informatie

Tweede college complexiteit. 12 februari Wiskundige achtergrond

Tweede college complexiteit. 12 februari Wiskundige achtergrond College 2 Tweede college complexiteit 12 februari 2019 Wiskundige achtergrond 1 Agenda vanmiddag Floor, Ceiling Rekenregels logaritmen Tellen Formele definitie O, Ω, Θ met voorbeelden Stellingen over faculteiten

Nadere informatie

Constructie der p-adische getallen

Constructie der p-adische getallen Constructie der p-adische getallen Pim van der Hoorn Marcel de Reus 4 februari 2008 Voorwoord Deze tekst is geschreven als opdracht bij de cursus Kaleidoscoop 2007 2008 aan de Universiteit Utrecht. De

Nadere informatie

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Bijzondere getallen Oneindig (als getal) TomVerhoeff Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica T.Verhoeff@TUE.NL http://www.win.tue.nl/~wstomv/ Oneindig Bijzondere getallen Er

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

BEWIJZEN EN REDENEREN

BEWIJZEN EN REDENEREN BEWIJZEN EN REDENEREN voor Bachelor of Science in Fysica en Wiskunde Academiejaar 2012/2013 Arno KUIJLAARS Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 3001 Heverlee Inhoudsopgave

Nadere informatie

3.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x.

3.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. 3.0 Voorkennis y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. y = -4x + 8 kan herschreven worden als y + 4x = 8 Dit is een lineaire vergelijking met twee variabelen. Als je

Nadere informatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie Inhoud college 4 Basiswiskunde 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie 2 Basiswiskunde_College_4.nb 2.6 Hogere afgeleiden De afgeleide f beschrijft

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

eerste en laatste cijfers Jaap Top

eerste en laatste cijfers Jaap Top eerste en laatste cijfers Jaap Top JBI-RuG & DIAMANT j.top@rug.nl 3-10 april 2013 (Collegecarrousel, Groningen) 1 laatste, eerste?! over getallen 2,..., 101,..., 2014,...... laatste cijfers hiervan: 2,...,

Nadere informatie

Het doel van dit Hoofdstuk is een inleiding te geven in de theorie van kettingbreuken,

Het doel van dit Hoofdstuk is een inleiding te geven in de theorie van kettingbreuken, Kettingbreuken Het doel van dit Hoofdstuk is een inleiding te geven in de theorie van kettingbreuken en enkele toepassingen daarvan te geven.. Eindige kettingbreuken Een aardige manier om kettingbreuken

Nadere informatie

Priemgetallen en de rij van Fibonacci, Vier artikelen voor het tijdschrift Pythagoras

Priemgetallen en de rij van Fibonacci, Vier artikelen voor het tijdschrift Pythagoras Priemgetallen en de rij van Fibonacci, Vier artikelen voor het tijdschrift Pythagoras Bart Zevenhek 0 februari 008 Samenvatting In deze vier artikelen wordt ingegaan op enkele getaltheoretische eigenschappen

Nadere informatie

Eigenschap (Principe van welordening) Elke niet-lege deelverzameling V N bevat een kleinste element.

Eigenschap (Principe van welordening) Elke niet-lege deelverzameling V N bevat een kleinste element. Hoofdstuk 2 De regels van het spel 2.1 De gehele getallen Grof gezegd kunnen we de (elementaire) getaltheorie omschrijven als de wiskunde van de getallen 1, 2, 3, 4,... die we ook de natuurlijke getallen

Nadere informatie

1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1.

1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1. Tentamen-wiskunde?. De basiswiskunde. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + ) =. Oplossing : ln(x + 2) = + ln(x + ) x + 2 = ln + x + 3 = ln dus x =

Nadere informatie

Finaletraining Nederlandse Wiskunde Olympiade

Finaletraining Nederlandse Wiskunde Olympiade NEDERLANDSE W I S K U N D E OLYMPIADE Finaletraining Nederlandse Wiskunde Olympiade Met uitwerkingen Birgit van Dalen, Julian Lyczak, Quintijn Puite Dit trainingsmateriaal is deels gebaseerd op materiaal

Nadere informatie

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,

Nadere informatie

De Dekpuntstelling van Brouwer

De Dekpuntstelling van Brouwer De Dekpuntstelling van Brouwer Non impeditus ab ulla scientia K. P. Hart Faculteit EWI TU Delft Twente, 19 oktober 2009: 18:00 20:00 Outline 1 2 3 4 De formulering Dekpuntstelling van Brouwer Zij n een

Nadere informatie

Naam: Studierichting: Naam assistent:

Naam: Studierichting: Naam assistent: Naam: Tussentijdse Toets Wiskunde I ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, Master Chemie donderdag 4 november

Nadere informatie

OVER HET WARMTETHEOREMA VANNERNST DOOR H. A. LORENTZ.

OVER HET WARMTETHEOREMA VANNERNST DOOR H. A. LORENTZ. OVER HE WARMEHEOREMA VANNERNS DOOR H. A. LORENZ. De thermodynamische stelling die eenige jaren geleden door Nernst werd opgesteld, komt hierop neer dat de entropieën van twee gecondenseerde, b.v. vaste

Nadere informatie