Uitwerkingen eerste serie inleveropgaven

Maat: px
Weergave met pagina beginnen:

Download "Uitwerkingen eerste serie inleveropgaven"

Transcriptie

1 Uitwerkingen eerste serie inleveropgaven (1) Gegeven het 4 4 grid bestaande uit de 16 punten (i, j) met i, j = 0,..., 3. Bepaal het aantal driehoeken dat je kunt vinden zodanig dat ieder hoekpunt samenvalt met een punt van het grid. Ieder drietal verschillende punten dat niet op één lijn ligt leidt tot een driehoek. Het totale aantal mogelijkheden om 3 punten te kiezen is ( ) 16 3 = 560. Hier moet je nog alle drietallen vanaf trekken die op één lijn liggen. Er zijn 10 viertallen van punten op één lijn (alle horizontale en verticale lijnen door het grid plus de twee lange diagonalen), en er zijn 4 drietallen van punten op één lijn (alle korte diagonalen, zoals (0, 1), (1, 2), (2, 3)). Voor de viertallen heb je steeds ( ) 4 3 mogelijke drietallen op één lijn. In totaal kun je dan = 44 drietallen kiezen die op één lijn liggen. Het totale aantal mogelijkheden is dus = 516 stuks. (2) Bepaal het aantal verschillende gehele getallen tussen 100 en 1000 die een veelvoud zijn van 6 en die bestaan uit verschillende cijfers; de 0 doet niet mee. Het getal is deelbaar door 6 dan en slechts dan als het laatste cijfer even is en de som van de cijfers deelbaar is door 3. Verdeel de cijfers 1,..., 9 in drie sets afhankelijk van hun rest bij deling door 3. Dit levert S 0 = {3, 6, 9}, S 1 = {1, 4, 7} en S 2 = {2, 5, 8}. Om aan de eis dat de som van de cijfers een drietal is te voldoen moet je óf alle drie cijfers uit dezelfde deelverzameling kiezen, óf uit iedere deelverzameling precies één. Wanneer je alle cijfers uit S 0 of S 1 kiest, dan moet je het even getal achteraan zetten, waarna je nog twee mogelijkheden overhoudt. Wanneer je alle cijfers uit S 2 kiest, dan heb je twee keuzes voor het laatste cijfer en nog twee voor het voorlaatste cijfer. In totaal voor deze drie opties zijn er = 8 mogelijkheden. Wanneer je ze uit verschillende deelverzamelingen kiest, dan heb je voor het laatste cijfer 4 mogelijkheden. Daarna heb je nog 6 mogelijkheden voor het voorlaatste cijfer (ieder getal uit de resterende twee deelverzamelingen is toegestaan) en dan nog 3 mogelijkheden voor het eerste cijfer: in totaal dus = 72 mogelijkheden. Het totale aantal mogelijkheden bedraagt = 80. (3a) S(n, k) is gedefinieerd als het aantal mogelijkheden om n herkenbare ballen te verdelen over k onherkenbare dozen, waarbij iedere doos minstens 1 bal krijgt. Bewijs (combinatorisch) dat S(n, k) = ks(n 1, k) + S(n 1, k 1) We gaan de situatie op een andere manier tellen. We bekijken eerst op hoeveel manieren we de eerste n 1 ballen kunnen verdelen over de k dozen en voegen vervolgens bal n toe. We onderscheiden hierbij twee gevallen: 1. In alle k dozen komt minstens één bal terecht door het toevoegen van de eerste n 1 ballen. Dit eerste kan uiteraard op S(n 1, k) manieren. We kunnen nu bal n in elk van de dozen toevoegen (immers overal zit al een bal in). Merk op dat de dozen 1

2 nu al herkenbaar zijn doordat we er herkenbare ballen in hebben gestopt. Dit geeft in totaal dus ks(n 1, k) manieren. 2. Niet in alle dozen komt bij het toevoegen van de eerste n 1 ballen een bal terecht. Uiteraard komt er wel in k 1 dozen een bal terecht (anders kunnen nooit alle dozen vol raken met door toevoegen van bal n. We kunnen dit dan op S(n 1, k 1) manieren doen. Maar nu hebben we voor bal n geen keuze meer, dus dat levert geen extra mogelijkheden. We concluderen dat we op deze manier precies S(n 1, k 1) mogelijkheden hebben. Bovenstaand opgesplitst proces is natuurlijk precies hetzelfde als n herkenbare ballen verdelen over k onherkenbare dozen. We kunnen nu dus concluderen dat inderdaad geldt dat S(n, k) = ks(n 1, k) + S(n 1, k 1). (3b) Definieer Q(n, k) als het aantal mogelijkheden om n herkenbare elementen te verdelen in k groepjes, waarbij je voor ieder groepje het aantal verschillende ordeningen telt; twee ordeningen zijn verschillend wanneer ze een verschillend cykel opleveren (bijv. ABC en ACB zijn verschillend; ABC en BCA zijn gelijk). Druk Q(n, k) uit in Q(n 1, k) en Q(n 1, k 1) en bewijs de correctheid van deze uitdrukking met een combinatorisch bewijs. We claimen dat Q(n, k) = Q(n 1, k 1)+(n 1)Q(n 1, k). We gaan dit combinatorisch bewijzen. Hiervoor bekijken we net als in de vorige opgave wat er kan gebeuren als we de eerste n 1 elementen verdelen. We onderscheiden wederom 2 gevallen: 1. De n 1 elementen zijn al opgedeeld in k cykels. Er geldt dat we deze opdeling op Q(n 1, k) manieren kunnen doen. We gaan nu het n-de element toevoegen. Merk echter op dat het niet voldoende is om aan te wijzen in welke groep we dit element toevoegen, immers in elke groep onderscheiden we verschillende cykels. We kunnen het echter wel als volgt zien. We zetten het n-de in dezelfde groep als het m de element en dan ook precies voor het m de element in de cykel (dit kan dus op n 1 manieren). Merk op dat we op deze manier altijd een andere verdeling van de cykels maken. Bovendien krijgen we ze ook allemaal (Stel we krijgen er 1 niet, als m niet achteraan staat is het duidelijk dat we hem wel kunnen maken, anders, draai de bijbehorende cykel een slag door, dan is het nu duidelijk dat we deze verdeling kunnen construeren. Tegenspraak, we hebben dus een bijectie. We concluderen dat we op deze manier in totaal (n 1)Q(n 1, k) manieren hebben. 2. De n 1 elementen zijn in precies k 1 cykels (groepen) opgedeeld (minder kan natuurlijk niet). Dit kan op Q(n 1, k 1) manieren. Maar nu is het duidelijk dat we het n de element apart moeten zetten, dit kan maar op 1 manier. Dus totaal levert deze mogelijkheid Q(n 1, k 1) manieren op. We hebben nu precies Q(n, k) door onderscheid te maken naar twee gevallen. We concluderen nu dat Q(n, k) = Q(n 1, k 1) + (n 1)Q(n 1, k). 2

3 (3c) Bewijs dat n Q(n, k) = n! k=0 door middel van een combinatorisch bewijs. Gegeven de elementen 1, 2,..., n. We bekijken nu een willekeurige permutatie van deze elementen. Merk op dat we een permutatie kunnen ontbinden in disjuncte cykels, bijvoorbeeld: (12345) (13425) kunnen we schrijven als (1)(234)(5), dit is bekend uit onder andere groepentheorie. Als we nu k het aantal disjuncte cykels noemen dan is dit niets anders dan een mogelijkheid om n elementen over k (onherkenbare) groepjes te verdelen waarbij we onderscheid maken tussen verschillende cykels. Merk op dat we voor elke verschillende permutatie van n elementen een andere andere verdeling van de elementen over een (eventueel) ander aantal groepjes. Een andere manier om het bovenstaande inzichtelijk te maken is dat we een gerichte graaf maken met punten 1,..., n en waarbij we een pijl trekken van i naar π(i), voor i = 1,..., n. Deze graaf valt uiteen in één of meer deelcykels. Ieder deelcykel correspondeert weer met de (volgorde-afhankelijke) inhoud van een doos. Omgekeerd correspondeert de inhoud van iedere doos met een deelcykel. (4) De 52 kaarten van een kaartspel zijn eerlijk (allen 13 kaarten) verdeeld over de vier spelers, die we aanduiden met Noord, Oost, Zuid en West. Gegeven dat Noord en Zuid samen 9 schoppens, 8 hartens, 4 ruitens en 5 klavers hebben, wat is de kans op precies 2 of 3 hartens bij West? Als we de kaarten van Noord en Zuid niet meetellen zijn er nog 4 schoppen, 5 harten, 9 ruiten en 8 klaveren over. Uit deze 26 kaarten (5 harten en 21 niet harten) moet de hand van West worden samengesteld. Dit kan op ( ) (de kaarten zijn onderscheidbaar) manieren. We kijken nu bij hoeveel samenstellingen er 2 of 3 harten zitten. Er zijn uiteraard ( )( ( )( ) 2 11) handen waarbij West 2 harten krijgt en 3 10 handen waarbij West 3 harten krijgt. Nu volgt dat de kans op 2 of 3 harten precies gelijk is aan ( )( ( )( ) 2 11) ) = 156 = 0, ( (5) Gegeven is een groep van n 1 dames en n 2 heren en een grote ronde tafel met precies n 1 +n 2 plaatsen. Om redenen die ik niet durf te vertellen wil ik een tafelschikking maken zodanig dat het niet voorkomt dat een persoon (m/v) tussen twee dames zit. (a) Laat zien dat dit onmogelijk is als n 1 > n 2. Stel dat je wel zo n tafelschikking hebt. Dan geldt voor iedere dame dat er twee posities verderop (zeg maar aan de linkerkant) een heer hoort te zitten. Dit betekent dat bij iedere dame een andere heer hoort in de tafelschikking, en je hebt dus minstens evenveel heren als dames nodig. Ik had er bij kunnen zetten dat ook hier er voldoende dames en heren 3

4 zijn, want theoretisch lukt het wel met één dame (maar dat is niet gezellig). (b) Stel dat geldt dat n 1 = n 2 = n 10 (deze 10 is willekeurig, maar het moet groot genoeg zijn om triviale gevallen uit te sluiten). Voor welke waarden van n is het mogelijk om een tafelschikking te maken? Stel dat je een correcte tafelschikking hebt. Kijk naar de omvang van de groepjes heren. Uiteraard moet ieder groepje heren een omvang van minstens 2 hebben. Wanneer er een groepje is met 3 heren, dan kun je daaruit eentje weglaten zonder dat dit de tafelschikking incorrect maakt. Maar dan houd je minder heren dan dames over, en volgens (a) is het niet mogelijk dat er dan een correcte tafelschikking is. Dit betekent dat alle groepjes heren uit 2 stuks moeten bestaan: je moet dus hebben dat n even is. Dan kun je een tafelschikking maken door te werken met groepjes van steeds twee dames en twee heren; drie of meer dames in een groepje mag niet, want dan zit de middelste dame naast twee dames. (c) Geef een uitdrukking voor het aantal mogelijke tafelschikkingen voor de waarden van n waarvoor dit mogelijk is. Hierbij geldt dat de gastheer en gastvrouw een vaste plaats naast elkaar hebben en dat alle dames en heren herkenbaar zijn. Aangezien de gastheer en gastvrouw naast elkaar zitten, ligt de positie van alle groepjes heren en dames ook vast (afhankelijk van of de gastheer nu links of rechts van de gastvrouw zit). Dit betekent dat je de resterende (n 1) dames en heren over de voor hen beschikbare plaatsen moet verdelen. Dit kan op (n 1)! manieren voor allebei, dus volgens de productregel zijn er [(n 1)!] 2 mogelijkheden. (6) Gegeven is een willekeurig positief, geheel getal n. Bepaal het aantal ongeordende paren van positieve gehele getallen (y, z), waarbij geldt dat (a) het kleinste gemene veelvoud van y en z gelijk is aan n. (b) y en z delers van n zijn met grootste gemene deler 1. (c) y n 2 ; z n 2, y en z zijn beide delers van n 2 en de grootste gemene deler van y en z is gelijk aan n. Bepaal eerst de priemontbinding van n; neem aan dat er k priemfactoren x 1,..., x k zijn met exponenten m 1,..., m k, dus n = k i=1 x m i i. (a) Om ervoor te zorgen dat KGV (y, z) = n moet gelden dat de maximale exponent van x i in y en z gelijk is aan m i, voor alle i = 1,..., k; de exponent in het andere getal kan iedere waarde uit {0, 1,..., m i } zijn. Omdat je mag kiezen of y of z de factor x m i i bevat krijg je dan 2m i + 1 mogelijkheden. Dit levert als aantal geordende paren k (2m i + 1). i=1 4

5 Het aantal ongeordende paren is het bovenstaande plus 1 gedeeld door 2, aangezien je ieder paar dubbbel hebt, behalve (n, n). (b) Nu geldt dat de minimale exponent van x i in y en z gelijk is aan 0, voor alle i = 1,..., k; de exponent in het andere getal kan iedere waarde uit {0, 1,..., m i } zijn. Dit leidt tot hetzelfde aantal als boven, aangezien het verder dezelfde situatie is. (c) Nu geldt dat de minimale exponent van x i in y en z gelijk is aan m i, en de exponent in het andere getal kan iedere waarde uit {m i, m i + 1,..., 2m i }. Ook dit leidt weer tot hetzelfde aantal ongeordende paren. 5

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 Extremenprincipe 6 3 Ladenprincipe 11 1 Bewijs uit het ongerijmde In Katern hebben we de volgende rekenregel bewezen, als onderdeel van

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Uitwerkingen toets 9 juni 2012

Uitwerkingen toets 9 juni 2012 Uitwerkingen toets 9 juni 0 Opgave. Voor positieve gehele getallen a en b definiëren we a b = a b ggd(a, b). Bewijs dat voor elk geheel getal n > geldt: n is een priemmacht (d.w.z. dat n te schrijven is

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

WISKUNDE-ESTAFETTE 2011 Uitwerkingen

WISKUNDE-ESTAFETTE 2011 Uitwerkingen WISKUNDE-ESTAFETTE 2011 Uitwerkingen 1 C D O A O B Omdat driehoek ACD gelijkbenig is, is CAD = ACD en daarmee zien we dat 2 CAD+ ADC = 180. Maar we weten ook dat 180 = ADC + ADB. Dus ADB = 2 CAD. Driehoek

Nadere informatie

Wiskunde D Online uitwerking oefenopgaven 4 VWO blok 3 les 1

Wiskunde D Online uitwerking oefenopgaven 4 VWO blok 3 les 1 Paragraaf De kansdefinitie Opgave a) Als de kikker verspringt, gaat hij van zwart naar wit, of andersom Hij zit dus afwisselend op een zwart en een wit veld Op een willekeurig moment is de kans even groot

Nadere informatie

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6 Breuken Breuk betekent dat er iets gebroken is. Het is niet meer heel. Als je een meloen doormidden snijdt, is die niet meer heel, maar verdeeld in twee stukken. Eén zo n stuk is dan een halve meloen,

Nadere informatie

Oplossing van opgave 6 en van de kerstbonusopgave.

Oplossing van opgave 6 en van de kerstbonusopgave. Oplossing van opgave 6 en van de kerstbonusopgave. Opgave 6 Lesbrief, opgave 4.5 De getallen m en n zijn verschillende positieve gehele getallen zo, dat de laatste drie cijfers van 1978 m en 1978 n overeenstemmen.

Nadere informatie

Combinatoriek. Oefeningen op hoofdstuk 3. 3.1 Het duivenhokprincipe. 3.2 Dubbele telling

Combinatoriek. Oefeningen op hoofdstuk 3. 3.1 Het duivenhokprincipe. 3.2 Dubbele telling Oefeningen op hoofdstuk 3 Combinatoriek 3.1 Het duivenhokprincipe Oefening 3.1. Geraldine heeft twaalf roze kousen, zes appelblauwzeegroene en tien gele allemaal door elkaar in haar lade. Het is pikdonker

Nadere informatie

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Combinatorische Optimalisatie, 2013 Week 1 20-02-2013 Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Opgave 1.16 Bewijs dat elke graaf een even aantal punten

Nadere informatie

Projectieve Vlakken en Codes

Projectieve Vlakken en Codes Projectieve Vlakken en Codes 1. De Fanocode Foutdetecterende en foutverbeterende codes. Anna en Bart doen mee aan een spelprogramma voor koppels. De ene helft van de deelnemers krijgt elk een kaart waarop

Nadere informatie

Finaletraining Nederlandse Wiskunde Olympiade

Finaletraining Nederlandse Wiskunde Olympiade NEDERLANDSE W I S K U N D E OLYMPIADE Finaletraining Nederlandse Wiskunde Olympiade Met uitwerkingen Birgit van Dalen, Julian Lyczak, Quintijn Puite Dit trainingsmateriaal is deels gebaseerd op materiaal

Nadere informatie

OPLOSSINGEN VAN DE OEFENINGEN

OPLOSSINGEN VAN DE OEFENINGEN OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal

Nadere informatie

Oefeningen Cursus Discrete Wiskunde. 26 mei 2003

Oefeningen Cursus Discrete Wiskunde. 26 mei 2003 Oefeningen Cursus Discrete Wiskunde 26 mei 2003 1 Hoofdstuk 1 Getallen tellen 1.1 Gehele getallen 1.1.1 Inleiding 1.1.2 De optelling en de vermeningvuldiging Oefening 1.1.1 Zoals gebruikelijk noteren wij

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209.

1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. 1. Het getal 200 9 = 1800 is even. De andere antwoorden zijn oneven: 2009, 2 + 0 + 0 + 9 = 11, 200 9 = 191, 200 + 9 = 209. Kangoeroewedstrijd editie Wallabie: jaargang 2009, probleem 1; Kangoeroewedstrijd

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

Rekentijger - Groep 7 Tips bij werkboekje A

Rekentijger - Groep 7 Tips bij werkboekje A Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk

Nadere informatie

In de 4som-puzzel kun je de gegeven sommen variëren. Nog zo eentje.

In de 4som-puzzel kun je de gegeven sommen variëren. Nog zo eentje. 4som kaart a In een 4som-puzzel moeten in vier hokjes getallen worden geschreven. Van de (horizontale) rijen en van de (verticale) kolommen is de som gegeven en ook van de diagonalen. Welke getallen moeten

Nadere informatie

Oefening: Markeer de getallen die een priemgetal zijn.

Oefening: Markeer de getallen die een priemgetal zijn. Getallenkennis : Priemgetallen. Wat is een priemgetal? Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. (m.a.w. een priemgetal is een natuurlijk getal

Nadere informatie

De huwelijksstelling van Hall

De huwelijksstelling van Hall Thema Discrete wiskunde In de vorige twee afleveringen heb je al kennis kunnen maken met het begrip graaf en hoe grafen worden gebruikt door Google s zoekmachine en door de NS bij het maken van een optimale

Nadere informatie

met gehele getallen Voer de volgende berekeningen uit: 1.1 a. 873 112 1718 157 3461 + 1.2 a. 9134 4319 b. 4585 3287 b. 1578 9553 7218 212 4139 +

met gehele getallen Voer de volgende berekeningen uit: 1.1 a. 873 112 1718 157 3461 + 1.2 a. 9134 4319 b. 4585 3287 b. 1578 9553 7218 212 4139 + I Getall 0 e π 8 9 Dit deel gaat over het rek met getall. Ze kom in allerlei soort voor: positieve getall, negatieve getall, gehele getall, rationale irrationale getall. De getall, π e zijn voorbeeld van

Nadere informatie

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken

6 Breuken VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Breuken Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Breuken K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- info@k-publisher.nl www.k-publisher.nl Breuken Breuk

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Toelichting op de werkwijzer

Toelichting op de werkwijzer Toelichting op de werkwijzer NEDERLANDSE W I S K U N D E OLYMPIADE Birgit van Dalen, Quintijn Puite De opgaven voor de training komen uit het boekje De Nederlandse Wiskunde Olympiade 100 opgaven met hints,

Nadere informatie

Katernen. regionale training. tweede ronde. Nederlandse Wiskunde Olympiade

Katernen. regionale training. tweede ronde. Nederlandse Wiskunde Olympiade Katernen voor de regionale training ten behoeve van de tweede ronde van de Nederlandse Wiskunde Olympiade NEDERLANDSE WISKUNDE OLYMPIADE Birgit van Dalen Julian Lyczak Quintijn Puite Inhoudsopgave Katern

Nadere informatie

Begrenzing van het aantal iteraties in het max-flow algoritme

Begrenzing van het aantal iteraties in het max-flow algoritme Begrenzing van het aantal iteraties in het max-flow algoritme Het oplossen van het maximum stroom probleem met behulp van stroomvermeerderende paden werkt, maar het aantal iteraties kan aardig de spuigaten

Nadere informatie

Kernbegrippen Handig met getallen 1, onderdeel Bewerkingen

Kernbegrippen Handig met getallen 1, onderdeel Bewerkingen Kernbegrippen Handig met getallen 1, onderdeel Bewerkingen 1.12 Kernbegrippen van de Kennisbasis Hele getallen, onderdeel Bewerkingen Aftrekker De aftrekker in een aftreksom is het getal dat aangeeft hoeveel

Nadere informatie

Over de construeerbaarheid van gehele hoeken

Over de construeerbaarheid van gehele hoeken Over de construeerbaarheid van gehele hoeken Dick Klingens maart 00. Inleiding In de getallentheorie worden algebraïsche getallen gedefinieerd via rationale veeltermen f van de n-de graad in één onbekende:

Nadere informatie

1.5.1 Natuurlijke, gehele en rationale getallen

1.5.1 Natuurlijke, gehele en rationale getallen 46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:

Nadere informatie

In het vervolg gaan we steeds uit van een verzameling A bestaande uit n verschillende objecten. We geven de elementen van A een naam door ze te

In het vervolg gaan we steeds uit van een verzameling A bestaande uit n verschillende objecten. We geven de elementen van A een naam door ze te Tellen 1. Telproblemen Tussen sommige objecten maken we onderscheid (die beschouwen we dus allemaal als verschillend), bijvoorbeeld tussen de 26 letters van het alfabet, tussen een peer, een appel en een

Nadere informatie

Extra oefeningen hoofdstuk 4: Deelbaarheid

Extra oefeningen hoofdstuk 4: Deelbaarheid Extra oefeningen hoofdstuk 4: Deelbaarheid 4.1 Delers en veelvouden 1 Bepaal door opsomming. a) del 84 =... b) del 13 =... c) del 44 =... d) del 89 =... e) del 1 =... f) del 360 =... 2 Bepaal de eerste

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

Getaltheorie II. ax + by = c, a, b, c Z (1)

Getaltheorie II. ax + by = c, a, b, c Z (1) Lesbrief 2 Getaltheorie II 1 Lineaire vergelijkingen Een vergelijking van de vorm ax + by = c, a, b, c Z (1) heet een lineaire vergelijking. In de getaltheorie gaat het er slechts om gehele oplossingen

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11.

2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11. Uitwerkingen wizbrain 2013 1. E 2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11. 3. C De vetgedrukte kaarsen in de volgende tabel branden na 55 minuten: begin 0 10 20 30

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 Antwoorden

WISKUNDE-ESTAFETTE RU 2006 Antwoorden WISKUNDE-ESTAFETTE RU 2006 Antwoorden 1 V 1 8 en 12 V 2 7 en 11 V 3 6 en 10 V 4 5 en 9 2 5040 opstellingen 3 De zijde is 37 4 α = 100 5 10, 2 liter 6 De volgorde is 2, 5, 3, 4, 1 7 30 euro 8 De straal

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE 2015 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Gegeven zijn drie verschillende gehele getallen a, b en c, die elk groter dan 0 en kleiner dan

Nadere informatie

Uitwerkingen Sum of Us

Uitwerkingen Sum of Us Instant Insanity Uitwerkingen Sum of Us Opgave A: - Opgave B: Voor elk van de vier kubussen kun je een graaf maken die correspondeert met de desbetreffende kubus. Elk van deze grafen bevat drie lijnen.

Nadere informatie

7.1 Het aantal inverteerbare restklassen

7.1 Het aantal inverteerbare restklassen Hoofdstuk 7 Congruenties in actie 7.1 Het aantal inverteerbare restklassen We pakken hier de vraag op waarmee we in het vorige hoofdstuk geëindigd zijn, namelijk hoeveel inverteerbare restklassen modulo

Nadere informatie

WISKUNDE-ESTAFETTE 2010 Uitwerkingen

WISKUNDE-ESTAFETTE 2010 Uitwerkingen WISKUNDE-ESTAFETTE 010 Uitwerkingen 1 We tellen het aantal donkere tegels in elke rij. Rij 1 (en rij 19) bestaat uit 10 witte tegels. Rij (en rij 18) bestaat uit 11 tegels, waarvan 6 wit en 5 donker. Rij

Nadere informatie

Voor de minder ervaren spelers

Voor de minder ervaren spelers Bron: Bridge Service.nl Voor de minder ervaren spelers Voor welke vier eerste biedingen kies je met de gegeven zuidhand? Spel West Noord Oost Zuid Zuidhand 1 -- 1 pas?? 4 2 V B 6 5 H 9 8 4 3 2 -- 1 pas??

Nadere informatie

Hoofdstuk 1. Getallen tellen. 1.1 Gehele getallen. 1.2 Recursieve definities. 1.3 Het induktieprincipe

Hoofdstuk 1. Getallen tellen. 1.1 Gehele getallen. 1.2 Recursieve definities. 1.3 Het induktieprincipe Hoofdstuk 1 Getallen tellen 1.1 Gehele getallen 1.1.1 Inleiding 1.1.2 De optelling en de vermeningvuldiging 1.1.3 De ordening van de gehele getallen 1.1.4 Het axioma van de goede ordening 1.2 Recursieve

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

Hoofdstuk 6 : DEELBAARHEID

Hoofdstuk 6 : DEELBAARHEID 1 H6. Deelbaarheid Hoofdstuk 6 : DEELBAARHEID 1. Wat moet ik leren? (handboek p. 203-230 ) 6.1 Delers en veelvouden Verklaren waarom een natuurlijk getal (wel of geen) deler is van een ander natuurlijk

Nadere informatie

inhoudsopgave inhoudsopgave 2 de grote lijn 3 bespreking per paragraaf 4

inhoudsopgave inhoudsopgave 2 de grote lijn 3 bespreking per paragraaf 4 handleiding tellen inhoudsopgave inhoudsopgave 2 de grote lijn 3 bespreking per paragraaf 4 Applets 4 1 turven en superturven 4 2 tellen en formules 4 3 tellen en plaatjes 4 4 veelvouden en delers Error!

Nadere informatie

Spookgetallen. Jan van de Craats en Janina Müttel

Spookgetallen. Jan van de Craats en Janina Müttel Spookgetallen Jan van de Craats en Janina Müttel leadtekst In de serie Open Problemen deze keer drie beroemde onopgeloste raadsels. Je kunt er geen miljoen dollar mee winnen, maar wel onsterfelijke roem.

Nadere informatie

SYMMETRIEËN VAN RUIMTELIJKE FIGUREN. Prof. dr. Ronald Meester

SYMMETRIEËN VAN RUIMTELIJKE FIGUREN. Prof. dr. Ronald Meester SYMMETRIEËN VAN RUIMTELIJKE FIGUREN Prof. dr. Ronald Meester Inleiding In dit college onderzoeken we symmetrie-eigenschappen van ruimtelijke figuren zoals driehoeken, vierkanten, kubussen en andere veelvlakken

Nadere informatie

Een combinatorische oplossing voor vraag 10 van de LIMO 2010

Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Een combinatorische oplossing voor vraag 10 van de LIMO 2010 Stijn Vermeeren (University of Leeds) 16 juni 2010 Samenvatting Probleem 10 van de Landelijke Interuniversitaire Mathematische Olympiade 2010vraagt

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

Sum of Us 2014: Topologische oppervlakken

Sum of Us 2014: Topologische oppervlakken Sum of Us 2014: Topologische oppervlakken Inleiding: topologische oppervlakken en origami Een topologisch oppervlak is, ruwweg gesproken, een tweedimensionaal meetkundig object. We zullen in deze tekst

Nadere informatie

inhoudsopgave januari 2005 handleiding algebra 2

inhoudsopgave januari 2005 handleiding algebra 2 handleiding algebra inhoudsopgave Inhoudsopgave 2 De grote lijn 3 Bespreking per paragraaf 1 Routes in een rooster 4 2 Oppervlakte in een rooster 4 3 Producten 4 4 Onderzoek 5 Tijdpad 9 Materialen voor

Nadere informatie

5. C De routes langs A en C zijn even lang, dus is de route langs C ook 215 meter langer.

5. C De routes langs A en C zijn even lang, dus is de route langs C ook 215 meter langer. ANTWOORDEN KANGOEROE 2001 BRUGKLAS en KLAS 2 1. E 2. E 18 doosjes voor de rode, 13 voor de blauwe: totaal 31 doosjes 3. C De ringen A, B en D zitten allemaal alleen door ring C. 4. B De twee getallen moeten

Nadere informatie

Voor de minder ervaren spelers

Voor de minder ervaren spelers Bron: Bridge Service.nl Voor de minder ervaren spelers Spel 1 B 4 3 A B 4 V 2 A H V B 10 A H V Aan alle tafels speelt zuid 3SA. De helft van de westspelers start met H en de andere helft met 10. Hoe moet

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 2003-2004: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Getaltheorie groep 3: Primitieve wortels

Getaltheorie groep 3: Primitieve wortels Getaltheorie groep 3: Primitieve wortels Trainingsweek juni 2008 Inleiding Voor a relatief priem met m hebben we de orde van a modulo m gedefinieerd als ord m (a) = min { n Z + a n 1 (mod m) }. De verzameling

Nadere informatie

Inhoud leereenheid 13. Combinatoriek. Introductie 23. Leerkern 24. Samenvatting 45. Zelftoets 46

Inhoud leereenheid 13. Combinatoriek. Introductie 23. Leerkern 24. Samenvatting 45. Zelftoets 46 Inhoud leereenheid 13 Combinatoriek Introductie 23 Leerkern 24 13.1 Tellen, maar wat? 24 13.2 De ene verzameling is de andere niet, of toch wel? 27 13.3 Waar alle tellen mee begint 28 13.4 Herhalingsrangschikkingen

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek I Tjing Opgave 1. Het aantal hoofdstukken in de I Tjing correspondeert met het totale aantal

Nadere informatie

W i s k u n d e. voor de eerste klas van het gymnasium UITWERKINGEN AUTEUR: JOHANNES SUPIT

W i s k u n d e. voor de eerste klas van het gymnasium UITWERKINGEN AUTEUR: JOHANNES SUPIT W i s k u n d e voor de eerste klas van het gymnasium UITWERKINGEN UTEUR: JOHNNES SUPIT COSMICUS MONTESSORI LYCEUM MSTERDM, 200 Inhoudsopgave Getallen. Van de één naar de nul................................

Nadere informatie

1 Junior Wiskunde Olympiade 2010-2011: tweede ronde

1 Junior Wiskunde Olympiade 2010-2011: tweede ronde 1 Junior Wiskunde Olympiade 2010-2011: tweede ronde 1. Het quotiënt 28 is gelijk aan 82 (A) 2 0 () 2 1 (C) 2 2 (D) 2 3 (E) 2 4 2. Het resultaat van de vermenigvuldiging 1 3 5 7 9 2011 eindigt op het cijfer

Nadere informatie

= 50 : 2 = 25 Zo kun je bijvoorbeeld ook rekenen bij 24 : 5 + 24 : 20 = 24 x 1 5 + 24 x 1

= 50 : 2 = 25 Zo kun je bijvoorbeeld ook rekenen bij 24 : 5 + 24 : 20 = 24 x 1 5 + 24 x 1 Moeilijke deelsom 50 : 6 + 50 : 3 = 50 x 1 6 + 50 x 1 3 = 50 x ( 1 6 + 1 3 ) = 50 x 1 2 = 50 : 2 = 25 Zo kun je bijvoorbeeld ook rekenen bij 24 : 5 + 24 : 20 = 24 x 1 5 + 24 x 1 20 = 24 x (1 5 + 1 20 )

Nadere informatie

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999 ANTWOORDEN blz. 3 a. Zeer onwaarschijnlijk Zeer onwaarschijnlijk a. Dan heb je ergens een schuld uitstaan 86 Dan hadden beide een kopie van de kerfstok; om fraude te voorkomen a. MMXII, MCCCXXVII, DLXXXVI,

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Viervlakken. Op een tafel vóór je staan vier viervlakken V 1, V 2, V 3 en V 4. Op elk grensvlak

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 986 987: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij of zij

Nadere informatie

3. Elke lijn van een graaf draagt twee bij tot de som van alle graden.

3. Elke lijn van een graaf draagt twee bij tot de som van alle graden. Antwoorden Doeboek 4 Grafen.. De middelste en de rechtergraaf.. Een onsamenhangende graaf met vijf punten en vijf lijnen: Teken een vierhoek met één diagonaal. Het vijfde punt is niet verbonden met een

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

Bridge Vaardigheids Bewijs

Bridge Vaardigheids Bewijs Bridge Vaardigheids Bewijs Plezierig bridge is alleen mogelijk als de deelnemers op hoffelijke wijze met elkaar omgaan en weten wat hun rechten en plichten zijn. Als je van de volgende 25 vragen er minstens

Nadere informatie

Het SET-spel, een toepassing op eindige meetkunde

Het SET-spel, een toepassing op eindige meetkunde Het SET-spel, een toepassing op eindige meetkunde Luc Van den Broeck 1 1 EDUGO campus De Toren, Oostakker ABSTRACT Het kaartspel SET, dat gespeeld wordt met 81 kaarten waarop verschillende geometrische

Nadere informatie

Antwoorden bij Rekenen met het hoofd

Antwoorden bij Rekenen met het hoofd Antwoorden bij Rekenen met het hoofd Hoofdstuk Basisbewerkingen. Bewerkingen in beeld a. : splitsen in 5 en. Eerst min 5, dan min 0 en tenslotte nog min : splitsen in 5 en, die uitvoeren en dan nog stapsgewijs

Nadere informatie

RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen

RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen Uitwerkingen 2. Kennismaken met breuken 2.. Deel van geheel Opdracht B 8 deel. ( deel + 8 deel). Opdracht 2 C 5 deel Opdracht C Driehoek C past in driehoek A. Aangezien driehoek A deel is van de tekening,

Nadere informatie

Discrete Wiskunde 2WC15, Lente Jan Draisma

Discrete Wiskunde 2WC15, Lente Jan Draisma Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma HOOFDSTUK 3 De Nullstellensatz 1. De zwakke Nullstellensatz Stelling 1.1. Zij K een algebraïsch gesloten lichaam en zij I een ideaal in K[x] = K[x 1,...,

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTFETTE 2014 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 00 1 (20 punten) Gegeven zijn drie aan elkaar rakende cirkels met straal 1. Hoe groot is de (donkergrijze) oppervlakte

Nadere informatie

Hoofdstuk 1. Afspraken en notaties

Hoofdstuk 1. Afspraken en notaties Hoofdstuk 1 Afspraken en notaties In deze tekst onderzoeken we een eenvoudig dobbelspel: twee spelers hebben een dobbelsteen, gooien deze, en wie het hoogst aantal ogen gooit wint. Er blijken setjes dobbelstenen

Nadere informatie

Pythagoreïsche drietallen Guy Van Leemput, Sint-Jozefcollege te Turnhout, België

Pythagoreïsche drietallen Guy Van Leemput, Sint-Jozefcollege te Turnhout, België Pythagoreïsche drietallen Guy Van Leemput, Sint-Jozefcollege te Turnhout, België Toelichtingen: Wat op de volgende bladzijden volgt is een werktekst met antwoorden rond het zoeken van rechthoekige driehoeken

Nadere informatie

De grootste gemeenschappelijke deler van twee of meerdere getallen

De grootste gemeenschappelijke deler van twee of meerdere getallen De grootste gemeenschappelijke deler van twee of meerdere getallen Vraagstuk : In een houtbedrijf heeft schrijnwerker een balk hout met een breedte van 231 cm, een lengte van 735 cm en een hoogte van 210

Nadere informatie

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen.

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen. Hoofdstuk 7 Volledige inductie Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen we het volgende: (i) 0 V (ii) k N k V k + 1 V Dan is V = N. Men ziet dit als

Nadere informatie

Diophantische vergelijkingen

Diophantische vergelijkingen Diophantische vergelijkingen 1 Wat zijn Diophantische vergelijkingen? Een Diophantische vergelijking is een veeltermvergelijking waarbij zowel de coëfficiënten als de oplossingen gehele getallen moeten

Nadere informatie

handleiding ontbinden

handleiding ontbinden handleiding ontbinden inhoudsopgave inhoudsopgave de grote lijn 3 Bespreking per paragraaf 4 Applets 4 1 met gegeven product 4 ontbinden van getallen 4 3 vergelijkingen 5 4 onderzoek 6 tijdpad 9 materialen

Nadere informatie

Meetkunde. Trainingsweekend 23 25 januari 2009. 1 Gerichte hoeken. gerichte hoeken, driehoeksongelijkheid, Ravi

Meetkunde. Trainingsweekend 23 25 januari 2009. 1 Gerichte hoeken. gerichte hoeken, driehoeksongelijkheid, Ravi Meetkunde gerichte hoeken, driehoeksongelijkheid, Ravi Trainingsweekend 23 25 januari 2009 Als je een meetkundig probleem aan het oplossen bent, stuit je vaak op verschillende oplossingen voor de verschillende

Nadere informatie

Je kunt de kansen met wiskunde technieken berekenen (bijvoorbeeld boomdiagramman), maar je kunt ook deze door simulaties achterhalen.

Je kunt de kansen met wiskunde technieken berekenen (bijvoorbeeld boomdiagramman), maar je kunt ook deze door simulaties achterhalen. Spelen met Kansen Bij wiskunde A, havo en vwo In een heleboel gezelschapsspellen speelt het toeval een grote rol, bijvoorbeeld Patience, Ganzenbord, Thodi, Black Jack, Risk, Poker, Bridge. Deze spellen

Nadere informatie

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,

Nadere informatie

Opgave 3 - Uitwerking

Opgave 3 - Uitwerking Mathrace 2014 Opgave 3 - Uitwerking Teken de rode hulplijntjes, en noem de lengte van dit lijntje y. Noem verder de lengte van een zijde van de gelijkzijdige driehoek x. Door de hoek van 45 graden in de

Nadere informatie

GETALTHEORIE 1. de Leuke En Uitdagende Wiskunde 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65,

GETALTHEORIE 1. de Leuke En Uitdagende Wiskunde 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65, GETALTHEORIE 1 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65, SAMENSTELLING: H. de Leuw - 1 - 1. NATUURLIJKE GETALLEN. Als kind hebben we allemaal leren tellen: 1,

Nadere informatie

wizbrain 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizbrain 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 75 minuten de tijd www.smart.be

Nadere informatie

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs Uitwerkingen van de opgaven bij de basisvaardigheden 1 Hele getallen Peter Ale Martine van Schaik u i t g e v e r ij c o u t i

Nadere informatie

WISKUNDE-ESTAFETTE RU 2004 Uitwerkingen

WISKUNDE-ESTAFETTE RU 2004 Uitwerkingen WISKUNDE-ESTAFETTE RU 2004 Uitwerkingen 1 We zoeken punten P waarvoor AP = 2 BP. Zij m de verticale lijn door X. We kunnen dan drie situaties onderscheiden: Als P links van de lijn m ligt dan is AP BP.

Nadere informatie

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken.

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken. Rood-wit-blauw werkblad 1 Bij het hele werkblad: Alle rode getallen zijn deelbaar door hetzelfde getal. Elk wit getal is gelijk aan een rood getal + 1, elk blauw getal aan een rood getal + 2 Russisch vermenigvuldigen

Nadere informatie

Combinatoriek groep 2

Combinatoriek groep 2 Combinatoriek groep 2 Recursie Trainingsdag 3, 2 april 2009 Homogene lineaire recurrente betrekkingen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Uitwerkingen tentamen Algebra 3 8 juni 2017, 14:00 17:00

Uitwerkingen tentamen Algebra 3 8 juni 2017, 14:00 17:00 Uitwerkingen tentamen Algebra 3 8 juni 207, 4:00 7:00 Je mocht zoals gezegd niet zonder uitleg naar opgaven verwijzen. Sommige berekeningen zijn hier weggelaten. Die moest je op je tentamen wel laten zien.

Nadere informatie

Dossier 3 PRIEMGETALLEN

Dossier 3 PRIEMGETALLEN Dossier 3 PRIEMGETALLEN atomen van de getallenleer Dr. Luc Gheysens Een priemgetal is een natuurlijk getal met twee verschillende delers, nl. 1 en het getal zelf. De priemgetallen zijn dus 2, 3, 5, 7,

Nadere informatie