Verbetersleutel examen 6LWI
|
|
|
- Albert Lenaerts
- 8 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Verbeerleuel exaen 6LWI Correcieleuel bij Vraag-V01: De grafiek bechrijf de beweging an een rein die eer rijd in een zone oor beperke nelheid, en daarna ernel op he ogenblik da hij buien de zone i. De oale reiijd i 40 (zoal e zien i op de grafiek). Bereken de afgelegde weg in he ijdineral [0, 0] d... de forule ui de kineaica: a ( ) 0.( ) x 0 0 x x0 x0.( 0) = + + = ( 0) + x0 = 10.0 = 00 (ii) Bereken de afgelegde weg in he ijdineral [0, 40] d... de forule ui de kineaica: Le hierbij echer heel goed op: op = 0 i de beginpoiie x 0 de eindpoiie ui he orig ijdineral (en i de beginnelheid x0 de eindnelheid ui he orig ijdineral)! X x X = x0 + ax( 0) ax = = = a ( ) 1( 0) x = x + + = + + x 0 0 x0.( 0) ( 0) 1( 0) Du: x40 = ( 0) + = ,5. ( 0) = 600 Conrole: de oale afgelegde weg i du: 600 Correcieleuel bij Vraag-V0: grafiek en geiddelde nelheid Anwoord: b Correcieleuel bij Vraag-V03: Vericaal geworpen bal en beginnelheid Anwoord a: De heen- en erugrei bedraag 4,0 oor he balleje. De enkele luch naar boen bedraag du lech,0. In he boene pun (zeg b) i de nelheid nul. Du: = + a. 0 x Nu i (bij een poiiee oriënaie an de X a naar boen):a = 9,81 Voor de enkele luch geld: =,0.De nelheid die daar bij hoor i 0. Du:0 = 0 9,81.,0 0 = 9,81.,0 = 19,6 0 Correcieleuel bij Vraag-V04: Nae ok Anwoord: 1800 /² 'oreknelheid' an de rand an de roel: De iddelpunzoekende ernelling die de ok heef: x π. π. = ωr. =. r, T = = a 3 = = = 1837, 5 1, r 0, 4 Pagina 1 an 5
2 Correcieleuel bij Vraag-V05: Beginelen an Newon Welke we an Newon word in neenaande figuur daardoor geïllureerd? Anwoord: He eere beginel an Newon Verklaar waaro die we hier an oepaing i (en Labik nie ooi eedraai e de koffiepo). Verklaring: Labic rijd eer rechdoor. Al de koffiepo de boch nee, dan werk geen krach eer op Labic. Hij behoud du zijn bewegingoeand en blijf rechdoor gaan. Al ik ui een roeibooje ap, gaa he booje acherui en kan ik in he waer allen. Welke we an Newon word hier geïllureerd en waaro? Anwoord: De derde we, oor elke acie (hier de duw an de peroon op he booje) i er een een groe aar egengeelde krach; die laae zorg da we een beeje oorui geduwd worden. Beide krachen zijn eengroo, aar door de kleine aa an he roeibooje, lieg da oer een eel groere afand acherui in ergelijking e de afand waaroer de peroon oorui beweeg. De roeiboo i du een heel eind acher de peroon weg riching waer!!! Al een oorwerp e conane nelheid beweeg, kan je dan beluien da er geen krachen op werken? Verklaar d... de beginelen an Newon. Verklaring: zeker nie. Er kunnen eerdere krachen werken, aar waaroor de reulerende krach nul i: da laae zorg oor een conane nelheid!! Correcieleuel bij Vraag-V07: Jan en de reinwagon krach op Jan: Anworod: 14 N a x =. x.. 14 F = a F = = N We kunnen de krach inden.b.. de weede we an Newon indien we de ernelling kennen die de peroon onderind. De rekrach i conan, du ook de ernelling. Oda de rein heleaal o iland ko i he erband uen afgelegde weg, ijd en ernelling a gegeen door: hieronder *) a x = (oor liefhebber, zie Hierui inden we de ernelling en al we di inullen in F = a bekoen we oor de krach op Jan: a x =. x.. 14 F = a F = = N Pagina an 5
3 (*) We gebruiken een x-a e al oorprong de plaa waar de rekrach begin e werken: a x = x ( e ) a.. e x =. x =. 1 0x e 0x e en = a. 0 = a. = a. = e = 0 0x 0x e 0x e a. a. a. in 1 : x = a.. x = a. ( ) x = e e e e e e e e e Correcieleuel bij Vraag-V07: Newon in de por Een priner heef een aa 65,0 kg en duw zich ne na he archo af op he arblok e een duwkrach an 800 N. De krach werk in onder hoek an 65 e de horizonale riching. F Ry F R Teken de 3 krachen op de figuur zoal ze werken op de priner (en repeceer de onderlinge erhouding an de grooe an de krachecoren); zwaarekrach, noraalkrach, reaciekrach op de duwkrach. F N Toon aan da de horizonale coponen an de reulerende krach ongeeer 338 N i: Berekening: F Rx F = F.co( 65 ) = 800N.co( 65 ) = 338 N Rx R F z Hoe groo i de ericale coponen an de reulerende krach? Anwoord: d; erklaring; de originele noraalkrach en de zwaarekrach zijn eengroo. De ericale reulerende krach i du enkel een geolg an de ericale coponen an de reaciekrach: F = F.in( 65 ) = 800N.in( 65 ) = 75 N Ry R Hoe groo i de horizonale coponen an de reulerende ernelling? Fx N Anwoord: b; erklaring a = x, = 338 kg = 5 65 Hoe groo i de ericale coponen an de reulerende ernelling? Anwoord: d; erklaring; zie hierboen: De ericale reulerende krach i enkel een geolg an de ericale coponen an de reaciekrach: F Ry = 75 N Fy N de ernelling i du: ay =, = 75 kg = Correcieleuel bij Vraag-V08: Newon - baic Bereken de beginernelling ijden he prille begin an de lancering. Pagina 3 an 5
4 7 7 7 F = F = F F = 3,1.10 N 1, N 1,4.10 N re neo opw z 7 F N 1,4.10 F = a. a = = = 6,53 6,5 1, 9.10 kg ook oegelaen: 6 = = = F F F F 3,1.10 N 1, 9.10 N 1,.10 N re neo opw z 7 F N 1,.10 F = a. a = = = 6,3 6,3 1, 9.10 kg 6 De ericale opwaare krach op he ruiechip blijf conan. Heb je enig idee waaro de ernelling an he ruiechip elelaig oenee na de lancering. De oorzaak lig in he erlie aan aa (door he opbranden an de brandof en weggooien an ank) ook goed e keuren; de oorzaak lig in he erinderen an graiaie bij oeneende hooge (al i he oornoede effec eel groer ) Correcieleuel bij Vraag-V09: Glazen lif Voor de waarneer in de lif: de ij oer olg eigenlijk een ericale worp ui (e 0 =,50 / al beginnelheid)! He aenelel an de waarneer beweeg e dezelfde 0 naar boen di ko neer op een rije al!). Du: g. ² x = 1 = g.. x.3, 00 1 = = = 0,78 g 9,81 = g. = (9,81., 078) = 7, 65 Voor de waarneer buien de lif: kan je he ipel bechouwen; 1) de ij ko lo an he plafond ) na 0,78 i de loer erchoen oer 0,78.,50 3) De ij heef du afgelegd: 3-0,78.,50 1,05 = Of foreel en e een waarde oor de nelheid; oor de waarneer buien de lif kan he ook al olg: g. ² g. ² x = x. = 0 +, x = g. =,50 g. ( x Lx ) liegijd: = 0, 78 0,78 = g. =,50 g.0, 78 5, Lx g. ( 0,78 ) ² 1 x 0, 78 = 0 +,50.0,78 = 1, 03 x Pagina 4 an 5
5 Pagina 5 an 5
De eenparig veranderlijke beweging:
- 53 - De eenparig eranderlijke beweging: T begon alleaal bij Galileï. Deze ialiaane geleerde heef geleefd an 1564 o 164. Van zijn ader oe hij edicijnen gaan uderen in Pia, aar hij inereeerde zich eel
2.4 Oppervlaktemethode
2.4 Opperlakemehode Teken he --diagram an de eenparige beweging me een snelheid an 10 m/s die begin na 2 seconden en eindig na 4 seconden. De afgelegde weg is: =. (m/s) In he --diagram is de hooge an de
FORMULES MECHANICA. Inhoud
FORMULES MECHANICA Inoud FORMULES MECHANICA... BEWEGING... S,,, a... AFGELEGDE WEG... SNELHEID... VERSNELLING... RELATIES TUSSEN AFGELEGDE WEG, SNELHEID EN VERSNELLING... Valbeweinen... 3 VRIJE VAL...
1 Herhalingsoefeningen december
1 Herhalingsoefeningen december Een lichaam word vericaal omhoog geworpen. Welke van de ondersaande v, diagrammen geef dan he juise verloop van de snelheidscomponen weer? Jan rijd me de fies over een lange
Bewegen in grafieken. Hoofdstuk 1 Bewegen in grafieken. 1.1 Snelheid meten
1 Bewegen in grafieken 1.1 Snelheid meen 1 pulje a Een eenheid an afand (m, cm, km, ) en een eenheid an ijd (, min, h, ). uur per meer, lier/econde, km/lichjaar en uur per nach. De eenheid an nelheid i
5 Brandstofverbruik in het verkeer
Newon wo deel 1 Uiwerkingen Hoofduk 5 Brandoferbruik in e erkeer 5 Brandoferbruik in e erkeer 5.1 Inleiding Voorkenni 1 Brandoferbruik a He brandoferbruik i bij.,0 L/0 km of de auo rijd 1 op 11. He i du
= = = 6. methode-b: het oppervlak onder de snelheid-tijd-grafiek is een maat voor de afgelegde weg.
Verbeterleutel Ea 6MWE_LWE Correctieleutel bij Vraag-V01: Steengoede grafiek 7 We bepalen de geiddelde nelheid uit de grafiek: v + 1 0 1 v vg = = = 6 Hieruit volgt voor de afgelegde aftand:. v. g = = vg
Examen VWO. Wiskunde B1 (nieuwe stijl)
Wiskunde B (nieuwe sijl) Examen VW Voorbereidend Weenschappelijk nderwijs Tijdvak Donderdag 22 mei 3.30 6.30 uur 20 03 Voor di examen zijn maximaal 83 punen e behalen; he examen besaa ui 20 vragen. Voor
Examen VWO. Wiskunde B1,2 (nieuwe stijl)
Wiskunde B,2 (nieuwe sijl) Examen VW Voorbereidend Weenschappelijk nderwijs Tijdvak Donderdag 22 mei 3.30 6.30 uur 20 03 Voor di examen zijn maximaal 86 punen e behalen; he examen besaa ui 9 vragen. Voor
1 Inleidende begrippen
1 Inleidende begrippen 1.1 Wanneer is een pun in beweging? Leg di ui aan de hand van een figuur. Rus en beweging (blz. 19) Figuur 1.1 Een pun in beweging 1.2 Wanneer is een pun in rus? Leg di ui aan de
Uitslagen voorspellen
Eindexamen vwo wiskunde A pilo 04-I Vraag Anwoord Scores Uislagen voorspellen maximumscore 3 De afsand ussen Wilders en Thieme is 4 De conclusie: nie meer dan wee maal zo groo maximumscore 3 Bij gelijke
Hoofdstuk 1: Rust en beweging
Hoofdsuk 1: Rus en beweging 1.1 Rus en beweging zijn relaief Ten opziche van he vlieguig is de passagier in................................................ Ten opziche van he aardoppervlak is he vlieguig
Eindexamen wiskunde B 1 vwo 2003-I
Eindexamen wiskunde B vwo 2003-I Lenge Ui saisisch onderzoek is gebleken da de volwassen Nederlandse mannen in 999 gemiddeld 80,0 cm lang waren, en da er een sandaardafwijking van 2,8 cm was in de lengeverdeling.
Dit examen bestaat uit 13 opgaven Bijlage: 1 antwoordpapier
MAVO-D Il EXAMEN MIDDEBAAR AGEMEEN VOORTGEZET ONDERWIJS IN 1986 D - niveau Donderdag 5 juni, 9. 00-11. 00 uur '-,, NATUURKUNDE Di examen besaa ui 13 opgaven Bijlage: 1 anwoordpapier Waar nodig mag bij
wiskunde A pilot vwo 2015-I
Piramiden maximumscore a = en x =,5 geef h = 6,5 (dm) De oppervlake van he grondvlak is,5,5 = 6, 5 (dm²) De inhoud is 6, 5 6,5 4 (dm³) ( nauwkeuriger) maximumscore 4 I = x (9 x ) geef di 6 d = x x x x
faseverschuiving wisselstroomweerstand frequentieafhankelijk weerstand 0 R onafhankelijk spoel stroom ijlt 90 na ωl toename met frequentie ELI 1 ωc
6.2.5 ergelijking faseverschuiving wisselsroomweersand frequenieafhankelijk weersand 0 onafhankelijk spoel sroom ijl 90 na ω oename me frequenie E condensaor sroom ijl 90 voor ω afname me frequenie E Fasordiagramma
Overzicht Examenstof Wiskunde A
Oefenoes ij hoofdsuk en Overzih Examensof Wiskunde A a X min 0, X max 0, Y min 0 en Y max 000. 0 lier per minuu. Als de ank leeg is, dan is W 0, dus 00 0 0 dus 0. Na 0 minuen is de ank leeg. a Neem de
Samenvatting Natuurkunde 1 HAVO Beweging
Beweging Samenvaing Nauurkunde HAVO Eenparig rechlijnige beweging a Eenparig versnelde rechlijnige beweging a a = consan a = 0 m/s Oppervlake = v = 0 m/s Oppervlake = v v v v = consan v() = a Oppervlake
Het berekenen van de transiëntresponsie via de Laplacetransformatie
He berekenen van de raniënreponie via de Laplaceranformaie Om de raniënreponie e berekenen me behulp van de Laplaceranformaie zijn de volgende vier vaardigheden verei : ) He kunnen oploen van newerken
Krommen in het platte vlak
Krommen in he plae vlak 1 Een komee beschrijf een baan om de zon. We brengen een assenselsel aan in he vlak van de baan van de komee, me de zon als oorsprong. Als eenheid in he assenselsel nemen we de
WERKCOLLEGE 1. 1.A Vrije val. 1.B Centrale botsing. Basketbal (toets oktober 2000)
Uiwekinen Wekcollee WERKCOLLEGE.A Vije al De ije al is een ewein an assapunen in de uu an he aadoppelak. Inloeden an de luch (wijin, wind) woden ewaaloosd. a) Sel de eweinseelijkin op oo een deelje in
- 1 - E pot. 2 de graad 2 de jaar (1uur) oefeningen energie. Opgave 1:
de graad de jaar (uur) - - Opgave : Bereken de potentiële energie van een peroon van 60 die een toren van 0 beklit. (Oploing:,9 x 0 ) Oploing : 60 6,0 0 h 0,0 0 Gevr: pot? Forule: pot g h 6,0 0 9,8,0 0
Amplitudemodulatie. 1. Wiskundige vergelijking van een amplitudegemoduleerd signaal.
Aliudeodulaie In deze odule worden drie sooren van aliudeodulaie besroken: de gewone aliudeodulaie, de dubbel-zijbandodulaie en de enkel-zijbandodulaie.. Wiskundige vergelijking van een aliudegeoduleerd
De eenparig veranderlijke beweging:
de jaar de graad (1uur) Hoofdtuk 5 : Eenparig eranderlijke beweging De eenparig eranderlijke beweging: - 45 - T begon alleaal bij Galileï. Deze italiaane geleerde heeft geleefd an 1564 tot 164. Van zijn
Hoofdstuk 2 - Overige verbanden
Moderne Wiskunde Uiwerkingen bij vwo C deel Hoofdsuk Overige verbanden Hoofdsuk - Overige verbanden bladzijde < a D 4 4,, 8 dus heef de vergelijking 4p p +, geen oplossingen en zijn er geen snijpunen van
Oefeningen Elektriciteit I Deel Ia
Oefeningen Elekriciei I Deel Ia Di documen beva opgaven die aansluien bij de cursuseks Elekriciei I deel Ia ui he jaarprogramma van de e kandidauur Indusrieel Ingenieur KaHo Sin-Lieven.. De elekrische
Analoge Elektronika 1 DE SCHMITT TRIGGER
Analoge Elekronika DE SCHMITT TIGGE Een Schmi rigger is een komparaor me hyseresis. Ne zoals bij een komparaor is de ingang een analoog signaal, erwijl de uigang een digiaal signaal is. De uigangsspanning
Eindexamen wiskunde B1 vwo I
indeamen wiskunde B vwo 009 - I Over een parabool gespannen In figuur is de grafiek van de funcie f me f ( ) = 3 geekend. Tussen wee punen en S die even ver van O op de -as liggen, word denkbeeldig een
Antwoordmodel VWO wa II. Speelgoedfabriek
Anwoordmodel VWO wa 00-II Anwoorden Speelgoedfabriek Voorwaarde II hoor bij immeren Voor immeren zijn 60x + 40y minuen nodig Voor immeren zijn 80 uur dus 4800 minuen beschikbaar 60x + 40y 4800 kom overeen
Snelheid en richting
Snelheid en riching Di is een onderdeel van Meekunde me coördinaen en behoeve van he nieuwe programma (05) wiskunde B vwo. Opgaven me di merkeken kun je, zonder de opbouw aan e asen, overslaan. * Bij opgaven
Hoofdstuk 3 - Exponentiële functies
Hoofsuk - Eponeniële funies lazije 7 V-a hooge in m 7, 8 8, 9 ij in uren 9, Aangezien e punen op een rehe lijn liggen, noemen we eze groei lineair. Als je e rehe lijn naar links voorze, an kun je aflezen
11 Bewegingsleer (kinematica)
11 Bewegingleer (kinematica) Onderwerpen - Plaatdiagram - Gemiddelde nelheid en nelheid uit plaat-tijd-diagram - Snelheid op een bepaald tijdtip uit plaat-tijd-diagram - Gemiddelde nelheid uit nelheid-tijd-diagram
wiskunde A vwo 2015-I
wiskunde A vwo 05-I Diabeesrisicoes maximumscore 4 He aanal personen me verborgen diabees is binomiaal verdeeld me n = 400 en p = 0, 0 P( X 00 ) = P( X 99 ) Beschrijven hoe di me de GR berekend word De
2.1 Het differentiequotiënt
hoodsk : Diereniëren. He dierenieqoiën Me een ncie kn je de onwikkeling n een grooheid beschrijen. Neem bijoorbeeld een schoonspringer die n de ienmeerplnk spring. Als je de lchwrijing erwrloos, kn je
Hoofdstuk 7 - DM Toepassingen
Hoofdsuk 7 - DM Toepssingen ldzijde 7 Vul in op je rekenmhine nmin 0, u(n)0+0,u(n-) en u(nmin). Vul ook in (n) 0+0,(n-) en (nmin)0. Neem Xmin 0, Xm 0, Ymin 0 en Ym 0. Bij een openingskoers n euro krijg
Hoofdstuk 5 - Differentiaalvergelijkingen
Hoofdsuk 5 - Differeniaalvergelijkingen 5. Differenievergelijkingen ladzijde a 0 3 4 5 A 00 0 04 06 08 0 oename B 00 30 69,00 9,70 85,6 37,9 oename 30 39 50,70 65,9 85,68 C 00 3 73,60 7,68 97,98 389,38
Blok 1 - Vaardigheden
6 Blok - Vaardigheden Blok - Vaardigheden Exra oefening - Basis B-a Bij abel A zijn de facoren achereenvolgens 8 : = 6 ; 08 : 8 = 6 en 68 : 08 = 6. Bij abel A is sprake van exponeniële groei. Bij abel
Hoofdstuk 3 Exponentiële functies
Havo B deel Uiwerkingen Moderne wiskunde Hoofdsuk Eponeniële funies ladzijde 6 V-a Door zih in weeën e delen vermenigvuldig he aanal aeriën per ijdseenheid zih seeds me een faor is de eginhoeveelheid,
Eindexamen wiskunde A1-2 vwo I
Eindexamen wiskunde A- vwo 009 - I Beoordelingsmodel Vraag Anwoord Scores Emissierechen maximumscore 3 Mogelijkheid kos 50 000 euro Mogelijkheid lever 50 000 euro aan emissierechen op Mogelijkheid kos
Hoofdstuk 3 - Exponentiële functies
Hoofdsuk - Eponeniële funcies Voorkennis: Groeifacoren ladzijde 7 V-a 060, 80 8, - euro 079, 0, 9, 88 c 0, 98, - 998, V-a De facor waarmee je de oude prijs vermenigvuldig om de nieuwe prijs e krijgen is
Uitwerkingen H14 Algebraïsche vaardigheden 1a. x = 6 2 = 4 en y = 9,60 5 = 4,60
Uiwerkingen H Algebraïsche vaardigheden = 6 = en y = 9,60 5 =,60 Voor km een bedrag van,60 euro Per km dus een bedrag van,5 euro. Da is he quoiën van y en. Bij km zijn de kosen 5 euro dus bij 0 km zijn
dwarsrichting Doelstellingen van dit hoofdstuk
7 Afschuiving HOOFDSTUK in langs- en dwarsriching Ga naar www.pearsonmylab.nl voor sudiemaeriaal en oesen om je begrip en kennis van di hoofdsuk ui e breiden en e oefenen. Ook vind je daar videouiwerkingen
t-toets met één steekproef Onderzoeksmethoden: Statistiek 3 t obs = s N Marjan van den Akker Tweezijdige t-toets met één steekproef
-oe me één eekproef vergelijking van één eekproefgemiddelde me een norm (een van e voren bepaald gemiddelde probleem: σ ui populaie i nie bekend en he eekproefaanal i klein (
Vaardigheden - Blok 4
Vaarigheen - Blok lazije + a p p p is nie juis wel gel p p p p 8 ( r ) r r ; e ewering is juis 9 + ( ) ( ) ; e ewering is juis mis 0 9 + 8 ( a a ) a is nie juis wel juis is ( a a ) ( a ) ( a ) a a + (
Integratiepracticum III
Inegraiepracicum III Casus I Projecevaluaie Irrigaie landbouwgronden in Ruriania Bas Beerenhou (556622) & Cliff Voeelink (554506) Deadline casus I: 2 januari 2007 TR2 Inleiding Er zijn een hoop derdewereldlanden.
De Wageningse Methode 5&6 VWO wiskunde B Uitgebreidere antwoorden Hoofdstuk 4 Goniometrie
De Wageningse Mehode & VWO wiskunde B Uigebreidere anwoorden Hoofdsuk Goniomerie Paragraaf Cirkelbewegingen a. De hooge van he wiel is de y-coördinaa van he hoogse pun van de grafiek, dus 80 cm b. De periode
Hoofdstuk 6 - Formules maken
Hoofdsuk 6 - Formules maken ladzijde 0 V-a Formule, wan de grafiek gaa door he pun (,) 0 en formule is exponenieel. Formule heef voor x = 0 geen eekenis, erwijl de grafiek door he pun (0, 3) gaa. Formule,
DE REËLE OPERATIONELE VERSTERKER
naloge Elekronika DE EËLE OPETIONELE VESTEKE De ideale oam (zie figuur ) heef een karakeriiek zoal geekend in figuur. V I B V v V - UIT / - I B v V N / Fig. V - V - Fig. De uiganganning i recie gelijk
Laat een schrift en een iets kleiner blad naast elkaar van gelijke hoogte valllen. Waarneming: Het blad papier valt langzamer dan het schrift
Hoofdtuk 6 : De valbeweging - 63 - De Valbeweging: Proef : Laat een chrift en een iet kleiner blad naat elkaar van gelijke hoogte valllen. Waarneing: Het blad papier valt langzaer dan het chrift Leg het
Logaritmen, Logaritmische processen.
PERIODE Lineaire, Kwadraische en Exponeniele funcies. Logarimen. Logarimen, Logarimische processen. OPDRACHT 1 Gebruik je (G)RM voor de berekening van: 1) log 2) log 0 3) log 00 4) log 000 5) log 1 6)
Hoofdstuk 3 - De afgeleide functie
ladzijde 7 V-a Plo de grafiek van y = x + x +. Me al-zero vind je x 8,. Plo ook de grafiek me y = x+ 5. Me al-inerse vind je x 89, en y= g( 89, ),. V-a d Exa, wan de vergelijking is lineair. Me de rekenmahine,
Hoofdstuk 7 - Logaritmische functies
Hoodsuk 7 - Logarimishe unies ladzijde 0 V-a De dagwaarde egin op 000 en daal naar 000. Dus: 000 g 000 = = 06 ; g = 000 06 0 909. = 000 g ; Op ijdsip = 0 is de dagwaarde 000. De groeiaor g 0 909 dus W
C. von Schwartzenberg 1/11
G&R havo A deel C von Schwarzenberg 1/11 1a m 18:00 uur He verbruik was oen ongeveer 1150 kwh 1b Minimaal ongeveer 7750 kwh (100%), maimaal ongeveer 1150 kwh (145,%) Een oename van ongeveer 45,% 1c 1d
Hoofdstuk 2 - Formules voor groei
Moderne wiskunde 9e ediie Havo A deel Uiwerkingen Hoofdsuk - Formules voor groei bladzijde 00 V-a = 08, ; 870 08, ; 70 0, 8; 60 00 00 870 70 08,, gemiddeld 0,8 b De beginhoeveelheid is 00 en de groeifacor
Eindexamen havo wiskunde A I
Eindexamen havo wiskunde A 0 - I Supersize me maximumscore 3 33,6 G = 5000 G 49 (kg) He anwoord: 49 85 = 64 (kg) ( nauwkeuriger) maximumscore 4 E b = 33,6 85 = 856 Zijn energieoverscho is 5000 856 = 44
Hoofdstuk 1 - Exponentiële formules
V-1a 4 Hoofdsuk 1 - Exponeniële formules Hoofdsuk 1 - Exponeniële formules Voorkennis prijs in euro s 70 78,0 percenage 100 119 1,19 b Je moe de prijs me he geal 1,19 vermenigvuldigen. c De BTW op de fies
4e Het absolute maximum is 3 (voor x = 1). 4c De grafiek is afnemend dalend op 2, 3. 4f Er is een minimum voor x = 3. Dit minimum is 0.
G&R vwo A/C eel C. von Schwarzenberg 1/16 1a 1b 1c Da was begin 00. Er waren oen 140000 banen. Toename van 10000 naar 140000, us een oename van 0000 banen. Vóór juli 1998 is e oename oenemen (e oename
Hoofdstuk 3 Logaritmen en groei. Kern 1 Groeitijden
Uiwerkige Wiskude A Newerk VWO 6 Hoofdsuk Logarime e groei www.uiwerkigesie.l Hoofdsuk Logarime e groei Ker Groeiijde a Op = 0 geld voor eide formules da H = 0. log8 H = 0 = 0 8 = 80. Da is ah keer zo
Analoge Elektronika 1 DE KOMPARATOR
naloge Elekronika DE KOMPRTOR De mees eenvoudige oepassing van de operaionele verserker is de komparaor. Om de werking van de komparaor e begrijpen, bekijken we de karakerisiek van de opamp, zoals geekend
Voorbeelden van lineaire eerste-orde differentiaalvergelijkingen
Voorbeelden van lineaire eerse-orde differeniaalvergelijkingen Hieronder vind je 8 voorbeelden waarbij een differeniaalvergelijking e behulp van he overzich wor opgelos. Opdrach Besudeer de voorbeelden
2 Les- en leerstofopbouw
2 Les- en leersofopbouw 2.7 Didacische benaderingen 2.7.7 Acierende werkormen Peer Dekkers & Wim Sonneeld Inleiding Toen u he in de klas uilegde snape ik he helemaal, maar oen ik he huis zelf ging proberen
Blok 4 - Vaardigheden
Havo B deel Uiwerkingen Moderne wiskunde Blok - Vaardigheden bladzijde a domein en bereik b x = = = c Me behulp van onderdeel b en de grafiek: d Eers: log x = ofwel x = = Dan me behulp van de grafiek:
Hoofdstuk 4. Opdracht 4.16. Algemene oplossing: Algemene oplossing: n 1 1 2 n 1 7/2. Algemene oplossing: + = + ( ) Algemene oplossing: Opdracht 4.
Hoofdsuk Opdrch.6 k x + xk = = r = Algemee oplossig: k r xk = + xk = + / k xk = + k 9 7 x = x + 7 x + x = 7 x x = + + + 7 = r = Algemee oplossig: r 7/ x = + x = + / x = 7 c α α ( α α ) x = x x x x = x
elektriciteit voor 5TSO
e Dirk Sarens 45 elekriciei voor 5TSO versie 1.0 1 2011 Dirk Sarens Versie 1.0 Schooljaar 2011-2012 Gemaak voor he leerplan D/2009/7841/036 Di boek kan worden gekoch via de websie www.nibook.com Had je
QUARK_6-Thema-04-bijzondere krachten Blz. 1. THEMA 4: bijzondere krachten
QUAK_6-Thea-04-bijodere krachte Bl. 1 THEMA 4: bijodere krachte QUAK_6-Thea-04-bijodere krachte Bl. di.gealle: Copoete a poitie-ector: Copoete a elheid-ector Noraalkracht Ee oorwerp dat oderteud wordt,
CONCEPT WATERWERKBLAD BEREKENINGSMETHODE IN VERBAND MET WATERSLAG
Herziening van juni 004 CONCEPT WATERWERKBLAD BEREKENINGSMETHODE IN VERBAND MET WATERSLAG WB. F DATUM: OKT 04 Aueurrehen voorbehouden Di werkbad heef berekking op de berekeningmehode in verband me waerag.
Overzicht. Inleiding. Classificatie. NP compleetheid. Algoritme van Johnson. Oplossing via TSP. Netwerkalgoritme. Job shop scheduling 1
Overzich Inleiding Classificaie NP compleeheid Algorime van Johnson Oplossing via TSP Newerkalgorime Job shop scheduling 1 Inleiding Gegeven zijn Machines: M 1,,..., M m Taken: T 1, T 2,... T n Per aak
Antwoordmodel VWO 2002-II wiskunde A (oude stijl) Speelgoedfabriek
Anwoordmodel VWO 00-II wiskunde A (oude sijl) Anwoorden Speelgoedfabriek Voorwaarde II hoor bij immeren Voor immeren zijn 60x + 40y minuen nodig Voor immeren zijn 80 uur dus 4800 minuen beschikbaar 60x
Correctievoorschrift VWO
Correcievoorschrif VWO 009 ijdvak wiskunde A, He correcievoorschrif besaa ui: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling
THEMA 2: versnelling. Gemiddelde versnelling bij een eendimensionale beweging. t, x. v v v t t t. a is gelijk aan de richtingscoëfficiënt van. a in.
QUARK_6-The-0-vernellin Blz. 1 THEMA : vernellin Geiddelde vernellin bij een eendienionle bewein Een wenje rijd vnui ilnd een hellin f. De hellinhoek i. De rooe vn de nelheid v vn he wenje nee oe l funcie
Hoofdstuk 4 Vergelijkingen. Kern 1 Numeriek oplossen. Netwerk 4 HAVO B uitwerkingen, Hoofdstuk 4, Vergelijkingen 1
Netwerk HAVO B uitwerkingen, Hoofdstuk, Vergelijkingen Hoofdstuk Vergelijkingen Kern Numeriek oplossen a Teken Y = + 0.* (X) en Y = + 0.00 * X op WINDOW [0,00] [0, 0]. b X = 6.5 en Y =.78. Dus na 6,5 dag
