verschil vervanging = (A A ) (A B ) distributie = U (A B ) inverse = A B identiteit

Maat: px
Weergave met pagina beginnen:

Download "verschil vervanging = (A A ) (A B ) distributie = U (A B ) inverse = A B identiteit"

Transcriptie

1 e. A (A B ) = A (A B ) verschil vervanging = (A A ) (A B ) distributie = U (A B ) inverse = A B identiteit = B A = B A = B A = B A Conclusie: de stelling is juist. = B A commutativiteit dubbel complement de Morgan dubbel complement vervanging verschil Algemene methode: m.b.v. een Venn-diagram eerst uitknobbelen of de stelling waar is of niet; daarna bewijzen/tegenvoorbeeld zoeken (dit laatste kan heel handig m.b.v. het Venn-diagram: men bedenke echter dat een Venn-diagram NOOIT een tegenvoorbeeld is maar slechts een hulpmiddel!!) a. A ( B C ) A B C ( A B ) ( A C ) A B C Uit de Venn-diagrammen blijkt: de stelling is onjuist en we kunnen het tegenvoorbeeld het beste zoeken door A drie verschillende elementen (zie: stippen in Venn-diagram) te laten bevatten. Dus b.v.: kies A = {a, b, c } met B = {b }enc = {c }. Dan geldt: A (B C ) = {a } terwijl A B = {a, c }ena C = {a, b } zodat (A B ) (A C ) = {a, b, c } Conclusie: daar {a } {a, b, c } is de onjuistheid van de stelling bewezen. -2-

2 b. Kies U = {a, b, c, d, e } met A = {a, b, c, d } en dus A = {e } en B = {b, c, d, e } dus B = {a }. P (A ) = {, {e }} en P (B ) = {, {a }} dus: P (A ) P (B ) = {, {e },{a }} Ook geldt: A B = {b, c, d } dus: A B = {a, e }. terwijl: P (A B ) = {,{a },{e},{a, e }}. Conclusie: de bewering is onjuist c. Afleiding leidt tot: A A B = A (A B ) verschil vervanging; = (A A ) (A B ) distributie; = U (A B ) inverse; = A B identiteit; Dit laatste is doorgaans ongelijk aan A B : de stelling lijkt onjuist: Kies U = {a, b, c, d, e } met A = {a }enb = {b } zodat: A B = {a, b } dus A B = {c, d, e } Dan geldt: A (A B ) = {a, c, d, e } terwijl: A B = {a, b }! Conclusie: de bewering is onjuist d. Afleiding leidt tot: A (B A ) = A (B A ) verschil vervanging; = A (B A ) dubbel complement; = A (A B ) commutativiteit; = (A A ) B associativiteit; = A B gelijkwaardigheid; Conclusie: de stelling is juist. e. Afleiding leidt tot: A (B A ) = A (B A ) verschil vervanging; = A (A B ) commutativiteit; = (A A ) B associativiteit; = B inverse; = dominantie; Dit laatste is meestal ongelijk aan A B! -22-

3 Kies: U = {a, b, c, d, e } met A = {a }enb = {b }. Dan geldt: B = {a, c, d, e } dus B A = {c, d, e } en dus: A (B A ) = (zie afleiding hierboven: dit moet er altijd uitkomen) terwijl: A B = {a }. Conclusie: de bewering is onjuist a. A 2 A = {2} b. c. A i = {,2,,4} i = A i = {2} i = a. A 2 = {, 2 } b. A 2 A = {, 2 } {, } = { } c. d. A i = {,, 2, } i = 4 A i = { } i = a. A 2 = < 2, ] b. A 2 A = <, ] c. d. A i = <, ] i = 4 A i = < 0, ] i = a. A 4 = [4,6] b. B = <, 6 ] c. A 2 B 4 = d. e. f. 5 A i = [,25] i = 4 B i = i = 2 4 i = 2 ( A i B i ) = -2-

4 2.6. Z inductief gedefinieerd:. basis Z 2. inductie ( x Z ) ((x ) Z ). uitsluiting Alléén elementen die door toepassing van stap en een (eventueel herhaald aantal malen) toepassen van stap 2 verkregen kunnen worden, behoren tot Z De verzameling (O ) gehele, positieve, oneven getallen inductief gedefinieerd:. basis O 2. inductie ( x O ) ((x + 2) O ). uitsluiting Alléén elementen die door toepassing van stap en een (eventueel herhaald aantal malen) toepassen van stap 2 verkregen kunnen worden, behoren tot O a. V = { 0,, 0,, 00, 0, 0,,... } (N.B.: binaire getallen als 00, 0 enzovoorts, die dus beginnen met een 0 en uit twee of meer cijfers bestaan, behoren NIET tot V. Dit komt doordat 0*0=0, dus 0*0 + 0 =0, enzovoorts. b. De meest linkse uit dit element zit er vanwege de basis in. Dan: 0* + 0 = 0 (eerste maal inductie-stap) Dan: 0*0 + = 0 (tweede maal inductie-stap) Dan: 0*0 + = 00 + = 0 (derde maal inductie-stap) 2.7. Neen! Elk alfabet mag alléén elementen van lengte bevatten. (*N.B.:als we begin als één karakter of symbool van lengte mogen beschouwen, dan wel*) a. w mag wel: bevat slechts het symbool uit het alfabet a. b. w 2 mag ook: bevat de symbolen 4, + en x uit het alfabet. c. w mag ook: bevat de symbolen, 4, x, y, +, = uit het alfabet. d. w 4 mag NIET: bevat het symbool - en dit is géén element van Σ. e. r mag NIET: bevat het symbool - en dit is géén element van Σ. f. r 2 mag NIET: bevat de symbolen { en } en dit zijn géén elementen van Σ.. w w 2 = abc w 2 w = 2abc. -24-

5 . w w 2 w = abc 2abc. 4. w εw = abcabc. 5. w w ε = abcabc. b. Neen: zie antwoord op a en a 2 hierboven. c. Ja: zie antwoord op a 4 en a 5 hierboven Neen! Het bewijs hiervan leveren we met een (geschikt gekozen) tegenvoorbeeld: Neem Σ = {a } dan geldt: Σ + = { a, aa, aaa,... } en Σ = { ε, a, aa, aaa,... } terwijl Σ + = { a, aa, aaa,... }. Dus geldt (voor dit tegenvoorbeeld) dat Σ Σ +. terwijl Σ een Neen! Een machtsverzameling is een verzameling van verzamelingen verzameling van strings is. Bovendien heeft elke Σ een oneindig aantal elementen (hoe Σ er ook uitziet), terwijl de machtsverzameling van een eindige verzameling altijd een eindig aantal elementen bevat a. Ja: T is een taal over Σ: hij bevat slechts één string (4x ) en die ene string bevat alléén symbolen die beide elementen uit Σ zijn. b. Ja: T 2 is een taal over Σ: hij bevat twee strings (44 en x +4) en die twee strings bevatten alléén symbolen die alle elementen uit Σ zijn. c. Neen: T bevat onder andere x =4 als element en deze string bevat onder meer = als symbool, terwijl dit géén element van Σ is. d. Ja: A is een taal over Σ: hij bevat drie strings en die drie strings bevatten alléén symbolen die alle elementen uit Σ zijn. e. Neen: B is geen verzameling, dus ook geen taal. a. T T 2 = { dd, cdcccd }. b. T 2 T = { dd, cdcccd } (eigenschap verzamelingen). c. T T 2 = { c, dd, ccdd, cdcccd, cdef, a, cdcd, ccef }. d. T T 2 = { c, ccdd, cdef }. e. T T 2 = { dd, cdcccd } (zie antwoord op vraag a), dus ( T T 2 ) T 2 = { dda, dddd, ddcdcd, N.B.: we gaan er bij deze opgave van uit dat beide talen T en T 2 over hetzelfde alfabet Σ gedefinieerd zijn (anders hebben de gevraagde uitdrukkingen geen betekenis). -25-

6 ddcdcccd, ddccef, cdcccda, cdcccddd, cdcccdcdcd, cdcccdcdcccd, cdcccdccef } f. T T 2 = { dd, cdcccd } (zie antwoord op vraag a), dus T 2 ( T T 2 ) = { add, acdcccd, dddd, ddcdcccd, cdcddd, cdcdcdcccd, cdcccddd, cdcccdcdcccd, ccefdd, ccefcdcccd } Merk op dat de antwoorden op vraag e en f niet gelijk zijn a. Ja. b. Ja. c. Ja. d. Ja a. A : e. Neen! Want ε Σ(zie: uitsluitingsstap). b. B + : a b 2 c. B : 2 d. A + B + : b a 2-26-

7 e. A B: f. A + B B A: 2 b a a b 2 a b a. ( A B + ) ( B A ) : b. Bijvoorbeeld 0, 0, 0 00 enzovoorts, zijn géén elementen van bovengenoemde taal ( A B + ) ( B A ). -27-

8 -28-

9 Relaties.2. a. A B = {(a, ), (a, 4), (b, ), (b, 4), (c, ), (c,4)} merk op: A B = A. B =.2 = 6. b. A B = {(a, a ), (a, b ), (a, c ), (b, a ), (b, b ), (b, c )(c, a ), (c, b ), (c, c )} merk op: A A = A. A =. = 9. c. A B = IR IN = {(x, y ) x IR y IN } -29-

10 .2.2 te bewijzen: (A B ) (A C ) = A (B C ) Bewijs: Neem x, y U willekeurig, dan geldt: (x, y ) ( (A B ) (A C ) ) (x, y ) (A B ) (x, y ) (A C ) (y C ) ) (y C ) )) ( x A y B ) (x A y C ) ( x A y B ) ((x A ) definitie definitie (2*) de Morgan x A ( y B ((x A ) associativiteit van x A (((x A ) (y C ) ) y B ) commutativiteit van ( x A ((x A ) (y C ) )) y B associativiteit van ( x A (x A ) ) ( x A (y C ) ) y B distributie van over ( F ) ( x A (y C ) ) y B inverse ( x A (y C ) ) y B identiteit x A ((y C ) y B ) ) x A ((y B ) (y C ) x A ( y (B C )) (x, y ) ( A (B C )) definitie Conclusie: (A B ) (A C ) = A (B C ) is bewezen. associativiteit van de commutativiteit van de definitie.. a. binaire relatie (= een verzameling geordende paren). mogelijke Cartesische producten zijn: IN IN, IN IR, IR IN, IR IR, b. geen binaire relatie (het is een verzameling gewone getallen, dus géén geordende paren). c. binaire relatie (= een verzameling geordende paren). mogelijke Cartesische producten zijn: IR IR en IR IN. d. binaire relatie (= een verzameling geordende paren). het enig mogelijke Cartesische product is: IR IR. e. binaire relatie (= een verzameling geordende paren). mogelijke Cartesische producten zijn: IN IN, IN IR, IR IN, IR IR. f. binaire relatie (= een verzameling geordende paren). mogelijke Cartesische producten zijn: IN IN, IN IR, IR IN, IR IR,(uitleg: een -0-

Verzamelingen deel 3. Derde college

Verzamelingen deel 3. Derde college 1 Verzamelingen deel 3 Derde college rekenregels Een bewerking op A heet commutatief als voor alle x en y in A geldt dat x y = y x. Een bewerking op A heet associatief als voor alle x, y en z in A geldt

Nadere informatie

Verzamelingen. Hoofdstuk 5

Verzamelingen. Hoofdstuk 5 Hoofdstuk 5 Verzamelingen In de meest uiteenlopende omstandigheden kan het handig zijn om een stel objecten, elementen, of wat dan ook, samen een naam te geven. Het resultaat noemen we dan een verzameling.

Nadere informatie

VERZAMELINGEN EN AFBEELDINGEN

VERZAMELINGEN EN AFBEELDINGEN I VERZAMELINGEN EN AFBEELDINGEN Het begrip verzameling kennen we uit het dagelijks leven: een bibliotheek bevat een verzameling van boeken, een museum een verzameling van kunstvoorwerpen. We kennen verzamelingen

Nadere informatie

opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2.

opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): 2 a 2. opgaven formele structuren tellen Opgave 1. Zij A een oneindige verzameling en B een eindige. Dat wil zeggen (zie pagina 6 van het dictaat): ℵ 0 #A, B = {b 0,..., b n 1 } voor een zeker natuurlijk getal

Nadere informatie

6.3.2 We moeten onderzoeken of de volgende bewering juist is of niet: x [ P (x ) Q (x )] xp(x ) xq(x ). De bewering is onjuist:

6.3.2 We moeten onderzoeken of de volgende bewering juist is of niet: x [ P (x ) Q (x )] xp(x ) xq(x ). De bewering is onjuist: 6.3.2 We moeten onderzoeken of de volgende bewering juist is of niet: x [ P (x ) Q (x ) xp(x ) xq(x ). De bewering is onjuist: Kies als tegenvoorbeeld: P (x ):x 2 > 0enQ (x ):x>0, voor U = R Dan geldt:

Nadere informatie

Verzamelingen deel 2. Tweede college

Verzamelingen deel 2. Tweede college 1 Verzamelingen deel 2 Tweede college herhaling Deelverzameling: AB wil zeggen dat elk element van A ook in B te vinden is: als x A dan x B Er geldt: A=B AB en BA De lege verzameling {} heeft geen elementen.

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dystra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 12 februari 2008 INLEIDING Discrete Structuren Wee1: Inleiding Onderwerpen

Nadere informatie

5.4.2 a. Neen: dit lukt alléén met 1, 3, 7 enzovoort. b. Ja: dit lukt met elk aantal knopen! Bijvoorbeeld de volgende boom: 1

5.4.2 a. Neen: dit lukt alléén met 1, 3, 7 enzovoort. b. Ja: dit lukt met elk aantal knopen! Bijvoorbeeld de volgende boom: 1 c. het langste gerichte pad: 4 2 3 met lengte twee. d. het langste on -gerichte pad is oneindig lang: je mag bijvoorbeeld voortdurend tussen twee knopen heen en weer wandelen. e. ja: elke knoop heeft maximaal

Nadere informatie

1 Logica. 1.2.1 a. tautologie -1-

1 Logica. 1.2.1 a. tautologie -1- 1 Logica 1.1.1 a. neen: de spreker bedoelt met "hier" de plek waar hij op dat moment is, maar "warm" is subjectief; vgl.: "het is hier 25 graden Celsius". b. ja: de uitspraak is onwaar (=120 uur). c. neen:

Nadere informatie

opgaven formele structuren deterministische eindige automaten

opgaven formele structuren deterministische eindige automaten opgaven formele structuren deterministische eindige automaten Opgave. De taal L over het alfabet {a, b} bestaat uit alle strings die beginnen met aa en eindigen met ab. Geef een reguliere expressie voor

Nadere informatie

Talen & Automaten. Wim Hesselink Piter Dykstra Opleidingsinstituut Informatica en Cognitie 9 mei 2008

Talen & Automaten. Wim Hesselink Piter Dykstra Opleidingsinstituut Informatica en Cognitie   9 mei 2008 Talen & Automaten Wim Hesselink Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.cs.rug.nl/~wim 9 mei 2008 Talen & automaten Week 1: Inleiding Dit college Talen Automaten Berekenbaarheid Weekoverzicht

Nadere informatie

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules. I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk

Nadere informatie

Gödels theorem An Incomplete Guide to Its Use and Abuse, Hoofdstuk 3

Gödels theorem An Incomplete Guide to Its Use and Abuse, Hoofdstuk 3 Gödels theorem An Incomplete Guide to Its Use and Abuse, Hoofdstuk 3 Koen Rutten, Aris van Dijk 30 mei 2007 Inhoudsopgave 1 Verzamelingen 2 1.1 Definitie................................ 2 1.2 Eigenschappen............................

Nadere informatie

Inleiding Analyse 2009

Inleiding Analyse 2009 Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn

Nadere informatie

Inhoudsopgave. Relaties geordend paar, cartesisch product, binaire relatie, inverse, functie, domein, bereik, karakteristieke functies

Inhoudsopgave. Relaties geordend paar, cartesisch product, binaire relatie, inverse, functie, domein, bereik, karakteristieke functies Inhoudsopgave Verzamelingen element, Venn-diagram, singleton, lege verzameling, gelijkheid, deelverzameling, machtsverzameling, vereniging, doorsnede, verschilverzameling Relaties geordend paar, cartesisch

Nadere informatie

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Rick van der Zwet 13 november 2010 Samenvatting Dit schrijven zal uitwerkingen van opgaven behandelen uit het boek [JS2009]

Nadere informatie

Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30

Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30 Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde vrijdag 3 februari 2012, 8:30 12:30 Naam: Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.

Nadere informatie

Dossier 1 SYMBOLENTAAL

Dossier 1 SYMBOLENTAAL Dossier 1 SYMBOLENTAAL basis voor wiskundige communicatie Dr. Luc Gheysens Wiskundigen hebben een eigen symbolentaal waarmee ze onderling communiceren, redeneringen en bewijzen neerschrijven, mathematische

Nadere informatie

Bewijzen en Redeneren voor Informatici

Bewijzen en Redeneren voor Informatici Bewijzen en Redeneren voor Informatici Reinoud Berkein 17 januari 2018 Samenvatting Een korte samenvatting van definities uit de cursus. Hoofdstuk 1 Doorsnede: De verzamerling die alle elementen bevat

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie 9 februari 2009 INLEIDING

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie   9 februari 2009 INLEIDING Discrete Structuren Piter Dystra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 9 februari 2009 INLEIDING Discrete Structuren Wee1: Inleiding Onderwerpen Elementaire

Nadere informatie

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015 Je hebt twee uur de tijd voor het oplossen van de vraagstukken. Elk vraagstuk is maximaal 10 punten waard. Begin elke opgave op een nieuw vel papier. µkw uitwerkingen 12 juni 2015 Vraagstuk 1. We kunnen

Nadere informatie

Getallensystemen, verzamelingen en relaties

Getallensystemen, verzamelingen en relaties Hoofdstuk 1 Getallensystemen, verzamelingen en relaties 1.1 Getallensystemen 1.1.1 De natuurlijke getallen N = {0, 1, 2, 3,...} N 0 = {1, 2, 3,...} 1.1.2 De gehele getallen Z = {..., 4, 3, 2, 1, 0, 1,

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07

Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07 Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde vrijdag 31 januari 2014, 8:30 12:30 Auditorium L.00.07 Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.

Nadere informatie

Automaten. Informatica, UvA. Yde Venema

Automaten. Informatica, UvA. Yde Venema Automaten Informatica, UvA Yde Venema i Inhoud Inleiding 1 1 Formele talen en reguliere expressies 2 1.1 Formele talen.................................... 2 1.2 Reguliere expressies................................

Nadere informatie

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010

Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Opdracht 1 Topics on Parsing and Formal Languages - fall 2010 Rick van der Zwet 8 december 2010 Samenvatting Dit schrijven zal uitwerkingen van opgaven behandelen uit het boek [JS2009]

Nadere informatie

Eigenschap (Principe van welordening) Elke niet-lege deelverzameling V N bevat een kleinste element.

Eigenschap (Principe van welordening) Elke niet-lege deelverzameling V N bevat een kleinste element. Hoofdstuk 2 De regels van het spel 2.1 De gehele getallen Grof gezegd kunnen we de (elementaire) getaltheorie omschrijven als de wiskunde van de getallen 1, 2, 3, 4,... die we ook de natuurlijke getallen

Nadere informatie

1 Kettingbreuken van rationale getallen

1 Kettingbreuken van rationale getallen Kettingbreuken van rationale getallen Laten we eens starten met een breuk bijvoorbeeld 37/3 Laten we hier ons kettingbreuk algoritme op los, We concluderen hieruit dat 37 3 3 + 3 + + 37 3 + + + hetgeen

Nadere informatie

BEWIJZEN EN REDENEREN

BEWIJZEN EN REDENEREN BEWIJZEN EN REDENEREN voor Bachelor of Science in Fysica en Wiskunde Academiejaar 2012/2013 Arno KUIJLAARS Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 3001 Heverlee Inhoudsopgave

Nadere informatie

OPLOSSINGEN VAN DE OEFENINGEN

OPLOSSINGEN VAN DE OEFENINGEN OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal

Nadere informatie

Examen G0U13B Bewijzen en Redeneren (6 sp.) Bachelor of Science Wiskunde. vrijdag 1 februari 2013, 8:30 12:30

Examen G0U13B Bewijzen en Redeneren (6 sp.) Bachelor of Science Wiskunde. vrijdag 1 februari 2013, 8:30 12:30 Examen G0U13B Bewijzen en Redeneren (6 sp.) Bachelor of Science Wiskunde vrijdag 1 februari 2013, 8:30 12:30 Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen. Begin

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

Wiskundige Structuren

Wiskundige Structuren wi1607 Wiskundige Structuren Cursus 2009/2010 Eva Coplakova en Bas Edixhoven i Inhoudsopgave I Verzamelingen en afbeeldingen..... 2 I.1 Notatie........3 I.2 Operaties op verzamelingen...7 I.3 Functies.......10

Nadere informatie

Formeel Denken 2014 Uitwerkingen Tentamen

Formeel Denken 2014 Uitwerkingen Tentamen Formeel Denken 2014 Uitwerkingen Tentamen (29/01/15) 1. Benader de betekenis van de volgende Nederlandse zin zo goed mogelijk (6 punten) door een formule van de propositielogica: Als het regent word ik

Nadere informatie

Verzamelingenleer. Inhoud leereenheid 5. Introductie 9

Verzamelingenleer. Inhoud leereenheid 5. Introductie 9 Inhoud leereenheid 5 Introductie 9 1 Verzamelingen 10 2 Deelverzamelingen 15 3 Operaties op verzamelingen 20 3.1 Doorsnede en lege verzameling 20 3.2 Vereniging en verschil 24 3.3 Complement en universum

Nadere informatie

Oefening 2.2. Welke van de volgende beweringen zijn waar?

Oefening 2.2. Welke van de volgende beweringen zijn waar? Oefeningen op hoofdstuk 2 Verzamelingenleer 2.1 Verzamelingen Oefening 2.1. Beschouw A = {1, {1}, {2}}. Welke van de volgende beweringen zijn waar? Beschouw nu A = {1, 2, {2}}, zelfde vraag. a. 1 A c.

Nadere informatie

Uitgebreide uitwerking Tentamen Complexiteit, juni 2016

Uitgebreide uitwerking Tentamen Complexiteit, juni 2016 Uitgebreide uitwerking Tentamen Complexiteit, juni 016 Opgave 1. (3+10++7+6) a. De hoogte van de beslissingsboom (lengte van het langste pad) stelt het aantal arrayvergelijkingen in de worst case voor.

Nadere informatie

Mededelingen. TI1300: Redeneren en Logica. Waarheidstafels. Waarheidsfunctionele Connectieven

Mededelingen. TI1300: Redeneren en Logica. Waarheidstafels. Waarheidsfunctionele Connectieven Mededelingen TI1300: Redeneren en Logica College 4: Waarheidstafels, Redeneringen, Syntaxis van PROP Tomas Klos Algoritmiek Groep Voor de Fibonacci getallen geldt f 0 = f 1 = 1 (niet 0) Practicum 1 Practicum

Nadere informatie

Groepen, ringen en velden

Groepen, ringen en velden Groepen, ringen en velden Groep Een groep G is een verzameling van elementen en een binaire operator met volgende eigenschappen: 1. closure (gesloten): als a en b tot G behoren, doet a b dat ook. 2. associativiteit:

Nadere informatie

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,

Nadere informatie

TENTAMEN Basismodellen in de Informatica VOORBEELDUITWERKING

TENTAMEN Basismodellen in de Informatica VOORBEELDUITWERKING TENTAMEN Basismodellen in de Informatica vakcode: 211180 datum: 2 juli 2009 tijd: 9:00 12:30 uur VOORBEELDUITWERKING Algemeen Bij dit tentamen mag gebruik worden gemaakt van het boek van Sudkamp, van de

Nadere informatie

IN2505 II Berekenbaarheidstheorie Tentamen Maandag 2 juli 2007, uur

IN2505 II Berekenbaarheidstheorie Tentamen Maandag 2 juli 2007, uur TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Mekelweg 4 2628 CD Delft IN2505 II Berekenbaarheidstheorie Tentamen Maandag 2 juli 2007, 14.00-17.00 uur BELANGRIJK Beschikbare

Nadere informatie

Getaltheorie groep 3: Primitieve wortels

Getaltheorie groep 3: Primitieve wortels Getaltheorie groep 3: Primitieve wortels Trainingsweek juni 2008 Inleiding Voor a relatief priem met m hebben we de orde van a modulo m gedefinieerd als ord m (a) = min { n Z + a n 1 (mod m) }. De verzameling

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Combinatoriek groep 1

Combinatoriek groep 1 Combinatoriek groep 1 Recursie Trainingsdag 3, 2 april 2009 Getallenrijen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een directe formule geeft a n in

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

Oneindige spelen. Dion Coumans. Begeleider: dr. W. Veldman

Oneindige spelen. Dion Coumans. Begeleider: dr. W. Veldman Oneindige spelen ion Coumans Begeleider: dr. W. Veldman Inhoudsopgave 1 Voorwoord 3 2 efinities 4 3 A is aftelbaar 6 4 Gale-Stewart-stelling 7 5 Stelling van Wolfe 11 2 1 Voorwoord Banach, Mazur en Ulam

Nadere informatie

Semantiek (2IT40) Jos Baeten. HG 7.19 tel.: Hoorcollege 3 (12 april 2007)

Semantiek (2IT40) Jos Baeten.  HG 7.19 tel.: Hoorcollege 3 (12 april 2007) Jos Baeten josb@wintuenl http://wwwwintuenl/~josb/ HG 719 tel: 040 247 5155 Hoorcollege 3 (12 april 2007) Voorbeeld [Bewijstechniek 2 niet altijd succesvol] Executie van commands is deterministisch: c

Nadere informatie

Formeel Denken. Herfst 2004

Formeel Denken. Herfst 2004 Formeel Denken Herman Geuvers Deels gebaseerd op het herfst 2002 dictaat van Henk Barendregt en Bas Spitters, met dank aan het Discrete Wiskunde dictaat van Wim Gielen Herfst 2004 Contents 1 Talen 1 1.1

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

III.3 Supremum en infimum

III.3 Supremum en infimum III.3 Supremum en infimum Zowel de reële getallen als de rationale getallen vormen geordende lichamen. Deze geordende lichamen zijn echter principieel verschillend. De verzameling R is bijvoorbeeld aanzienlijk

Nadere informatie

Enige informatie over groepen ten bate van het college Topologie en Meetkunde (Jaap van Oosten, Juni 2003)

Enige informatie over groepen ten bate van het college Topologie en Meetkunde (Jaap van Oosten, Juni 2003) Enige informatie over groepen ten bate van het college Topologie en Meetkunde (Jaap van Oosten, Juni 2003) Een groep is een verzameling G met daarop een operatie : G G G (die we schrijven als g, h g h),

Nadere informatie

Driehoeksongelijkheid en Ravi (groep 1)

Driehoeksongelijkheid en Ravi (groep 1) Driehoeksongelijkheid en Ravi (groep 1) Trainingsdag 3, april 009 Driehoeksongelijkheid Driehoeksongelijkheid Voor drie punten in het vlak A, B en C geldt altijd dat AC + CB AB. Gelijkheid geldt precies

Nadere informatie

Proeftentamen Digitale technieken

Proeftentamen Digitale technieken Proeftentamen Digitale technieken André Deutz October 17, 2007 De opgaven kunnen uiteraard in willekeurige volgorde gemaakt worden geef heel duidelijk aan op welke opgave een antwoord gegegeven wordt.

Nadere informatie

Week 22: De macht van het spoor en het spoor van de macht

Week 22: De macht van het spoor en het spoor van de macht Week 22: De macht van het spoor en het spoor van de macht Een belangrijke invariant van een lineaire afbeelding is het spoor. Als we een basis kiezen dan is het spoor simpelweg de som van de elementen

Nadere informatie

Bijzondere kettingbreuken

Bijzondere kettingbreuken Hoofdstuk 15 Bijzondere kettingbreuken 15.1 Kwadratische getallen In het vorige hoofdstuk hebben we gezien dat 2 = 1, 2, 2, 2, 2, 2, 2,.... Men kan zich afvragen waarom we vanaf zeker moment alleen maar

Nadere informatie

Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1

Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1 Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1 Bas Westerbaan bas@westerbaan.name 24 april 2012 1 Opgave 1.1 Een goed en voldoende antwoord is: L 1 = L 2, want L 1 en L 2 zijn alle woorden

Nadere informatie

PROPOSITIELOGICA. fundament voor wiskundig redeneren. Dr. Luc Gheysens

PROPOSITIELOGICA. fundament voor wiskundig redeneren. Dr. Luc Gheysens PROPOSITIELOGICA fundament voor wiskundig redeneren Dr. Luc Gheysens PROPOSITIELOGICA Een propositie of logische uitspraak, verder weergegeven door een letter p, q, r is een uitspraak die in een vastgelegde

Nadere informatie

Recursie en inductie i

Recursie en inductie i Recursie en inductie i deel 2 Negende college inductiebewijzen 1 inductieprincipe Structurele inductie (inductie naar de opbouw) is de bewijstechniek die hoort bij inductief opgebouwde objecten zoals bomen

Nadere informatie

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 Handout 2B Jan Terlouw woensdag 17 februari 2010 Deze handout sluit aan op handout 2A van maandag 15 februari. De gepresenteerde stof valt grotendeels

Nadere informatie

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen.

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen. Hoofdstuk 7 Volledige inductie Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen we het volgende: (i) 0 V (ii) k N k V k + 1 V Dan is V = N. Men ziet dit als

Nadere informatie

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1 Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking

Nadere informatie

Fundamenten. Lerarenprogramma Mastermath, versie 2015/12/02. Theo van den Bogaart Bas Edixhoven

Fundamenten. Lerarenprogramma Mastermath, versie 2015/12/02. Theo van den Bogaart Bas Edixhoven Fundamenten Lerarenprogramma Mastermath, versie 2015/12/02 Theo van den Bogaart Bas Edixhoven i Inhoudsopgave I Verzamelingen en afbeeldingen............................................... 3 I.1 Notatie.........................................................................

Nadere informatie

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren.

Week 1 20-02-2013. Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Combinatorische Optimalisatie, 2013 Week 1 20-02-2013 Hier vind je uitwerkingen van enkele opgaven uit het dictaat Grafen: Kleuren en Routeren. Opgave 1.16 Bewijs dat elke graaf een even aantal punten

Nadere informatie

Uitwerking Puzzel 93-1, Doelloos

Uitwerking Puzzel 93-1, Doelloos Uitwerking Puzzel 93-1, Doelloos Wobien Doyer Lieke de Rooij Volgens de titel is deze puzzel zonder doel, dus zonder bekende toepassing. Het doel is echter nul en dat is zeker in de wiskunde niet niks.

Nadere informatie

Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren

Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren Overzicht TI1300: Redeneren en Logica College 10: Verzamelingenleer Tomas Klos Algoritmiek Groep Colleges 1 2: Bewijstechnieken Colleges 3 9: Propositielogica Vandaag en morgen: Verzamelingenleer Colleges

Nadere informatie

KU Leuven. Algebra. Notities. Tom Sydney Kerckhove

KU Leuven. Algebra. Notities. Tom Sydney Kerckhove KU Leuven Algebra Notities Tom Sydney Kerckhove Gestart 23 september 2014 Gecompileerd 28 oktober 2014 Inhoudsopgave 1 Verzamelingen 3 1.1 Basisbegrippen....................................... 3 1.2 De

Nadere informatie

Ter Leering ende Vermaeck

Ter Leering ende Vermaeck Ter Leering ende Vermaeck 15 december 2011 1 Caleidoscoop 1. Geef een relatie op Z die niet reflexief of symmetrisch is, maar wel transitief. 2. Geef een relatie op Z die niet symmetrisch is, maar wel

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

Collegestof verzamelingenleer. Verzamelingenleer. Inhoud dit deel college. Verzamelingen. Universele en lege verzameling. Verzamelingen en elementen

Collegestof verzamelingenleer. Verzamelingenleer. Inhoud dit deel college. Verzamelingen. Universele en lege verzameling. Verzamelingen en elementen Collegesto verzamelingenleer Verzamelingenleer Pro dr J-J Ch Meyer UU - ICS Gebaseerd op (aantal hoodstukken van) het boek: Set Theory and Related Topics by Seymour Lipschutz Schaum s Outlines, McGraw-Hill

Nadere informatie

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2 Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van

Nadere informatie

Samenvatting. TI1306 Redeneren & Logica Review Guide 2014 Door: David Alderliesten. Disclaimer

Samenvatting. TI1306 Redeneren & Logica Review Guide 2014 Door: David Alderliesten. Disclaimer Samenvatting TI1306 Redeneren & Logica Review Guide 2014 Door: David Alderliesten Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst mogelijke

Nadere informatie

Wiskundige beweringen en hun bewijzen

Wiskundige beweringen en hun bewijzen Wiskundige beweringen en hun bewijzen Analyse (en feitelijk de gehele wiskunde) gaat over het bewijzen van beweringen (proposities), d.w.z. uitspraken waaraan de karakterisering waar of onwaar toegekend

Nadere informatie

De wiskunde achter knopen

De wiskunde achter knopen De wiskunde achter knopen Leve de Wiskunde! Jasper Stokman UvA May 3, 2009 Jasper Stokman (UvA) De wiskunde achter knopen May 3, 2009 1 / 24 Een wiskundige knoop Een wiskundige knoop is een gesloten lus

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

6.4 Toepassingen van de algebra

6.4 Toepassingen van de algebra Toepassingen van de algebra 175 6.4 Toepassingen van de algebra 6.4.1 Snelrekentrucs Even snel: hoeveel is 59 61? Als je dit niet snel uit je hoofd kunt, dan is het handig gebruik te maken van haakjes

Nadere informatie

Faculteit Wetenschappen Vakgroep Wiskunde. Baire ruimten. Bachelor Project I. Wouter Van Den Haute. Prof. Eva Colebunders

Faculteit Wetenschappen Vakgroep Wiskunde. Baire ruimten. Bachelor Project I. Wouter Van Den Haute. Prof. Eva Colebunders Faculteit Wetenschappen Vakgroep Wiskunde Baire ruimten Bachelor Project I Wouter Van Den Haute Promotor: Prof. Eva Colebunders Academiejaar 2011-2012 Inhoudsopgave 1 Inleiding 2 2 Ruimten van eerste en

Nadere informatie

1 Rekenen in eindige precisie

1 Rekenen in eindige precisie Rekenen in eindige precisie Een computer rekent per definitie met een eindige deelverzameling van getallen. In dit hoofdstuk bekijken we hoe dit binnen een computer is ingericht, en wat daarvan de gevolgen

Nadere informatie

Unitaire en Hermitese transformaties

Unitaire en Hermitese transformaties Hoofdstuk 11 Unitaire en Hermitese transformaties We beschouwen vervolgens lineaire transformaties van reële en complexe inproductruimten die aan extra eigenschappen voldoen die betrekking hebben op het

Nadere informatie

Automaten en Berekenbaarheid

Automaten en Berekenbaarheid Automaten en Berekenbaarheid Bart Demoen KU Leuven 2016-2017 Les 3: 36-54 Myhill-Nerode relaties; regulier pompen Myhill-Nerode equivalentieklassen in Σ I 2/10 belangrijk te verstaan: een equivalentie-relatie

Nadere informatie

2WO12: Optimalisering in Netwerken

2WO12: Optimalisering in Netwerken 2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TUE) en Centrum Wiskunde & Informatica (CWI) 3 en 6 februari 2014 Leo van Iersel (TUE/CWI) 2WO12: Optimalisering in

Nadere informatie

Vorig college. IN2505-II Berekenbaarheidstheorie. Aanbevolen opgaven. Wat is oneindigheid? College 5

Vorig college. IN2505-II Berekenbaarheidstheorie. Aanbevolen opgaven. Wat is oneindigheid? College 5 Vorig college College 5 Algoritmiekgroep Faculteit EWI TU Delft Opsommers vs. Herkenners Church-Turing These Codering van problemen 23 april 2009 1 2 Aanbevolen opgaven Wat is oneindigheid? Sipser p. 163

Nadere informatie

Tentamen TI1300 en IN1305-A (Redeneren en) Logica

Tentamen TI1300 en IN1305-A (Redeneren en) Logica TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Tentamen TI1300 en IN1305-A (Redeneren en) Logica 21 Januari 2011, 8.30 11.30 uur LEES DEZE OPMERKINGEN AANDACHTIG DOOR

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 9 J.Keijsper (TUE)

Nadere informatie

Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie

Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie Kennisrepresentatie & Redeneren Piter Dykstra Instituut voor Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 8 oktober 2007 GRAMMATICA S Kennisrepresentatie & Redeneren Week6: Grammatica

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

Relaties en Functies

Relaties en Functies Logica voor Informatica Relaties en Functies Mehdi Dastani m.m.dastani@uu.nl Intelligent Systems Utrecht University Geordende paren, productverzameling, relatie (a, b) geordend paar (a, b) = (c, d) a =

Nadere informatie

Inverse limieten en de A-dèle ring. Pim van der Hoorn

Inverse limieten en de A-dèle ring. Pim van der Hoorn Inverse limieten en de A-dèle ring Pim van der Hoorn 29 augustus 2008 Voorwoord Deze scriptie is gebaseerd op onderzoek gedaan in het eerste halfjaar van het jaar 2008 door Marcel de Reus en Pim van der

Nadere informatie

Hints en uitwerkingen huiswerk 2013 Analyse 1 H17

Hints en uitwerkingen huiswerk 2013 Analyse 1 H17 Hints en uitwerkingen huiswerk 013 Analyse 1 H17 Rocco van Vreumingen augustus 014 1 Inhoudsopgave 1 Hints 1 3 Hints 4 3 Hints 3 4 4 Hints 4 5 5 Hints 5 5 6 Hints 6 6 7 Hints 7 6 8 Hints 8 6 9 Hints 9

Nadere informatie

Enkele valkuilen om te vermijden

Enkele valkuilen om te vermijden Enkele valkuilen om te vermijden Dit document is bedoeld om per onderwerp enkele nuttige strategieën voor opgaven te geven. Ook wordt er op een aantal veelgemaakte fouten gewezen. Het is géén volledige

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Combinatoriek groep 2

Combinatoriek groep 2 Combinatoriek groep 2 Recursie Trainingsdag 3, 2 april 2009 Homogene lineaire recurrente betrekkingen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een

Nadere informatie

Tentamen Discrete Wiskunde

Tentamen Discrete Wiskunde Discrete Wiskunde (WB011C) 22 januari 2016 Tentamen Discrete Wiskunde Schrijf op ieder ingeleverd blad duidelijk leesbaar je naam en studentnummer. De opgaven 1 t/m 6 tellen alle even zwaar. Je hoeft slechts

Nadere informatie

Uitgebreide uitwerking Tentamen Complexiteit, juni 2017

Uitgebreide uitwerking Tentamen Complexiteit, juni 2017 Uitgebreide uitwerking Tentamen Complexiteit, juni 017 Opgave 1. a. Een pad van de wortel naar een blad stelt de serie achtereenvolgende arrayvergelijkingen voor die het algoritme doet op zekere invoer.

Nadere informatie

Uitgebreide uitwerking Tentamen Complexiteit, mei 2007

Uitgebreide uitwerking Tentamen Complexiteit, mei 2007 Uitgebreide uitwerking Tentamen Complexiteit, mei 007 Opgave. a. Een beslissingsboom beschrijft de werking van het betreffende algoritme (gebaseerd op arrayvergelijkingen) op elke mogelijke invoer. In

Nadere informatie

Geef niet alleen antwoorden, maar bewijs al je beweringen.

Geef niet alleen antwoorden, maar bewijs al je beweringen. Tentamen Lineaire Algebra maandag 3--27, 3.3-6.3 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken. Schrijf op elk

Nadere informatie