De wiskunde achter knopen

Maat: px
Weergave met pagina beginnen:

Download "De wiskunde achter knopen"

Transcriptie

1 De wiskunde achter knopen Leve de Wiskunde! Jasper Stokman UvA May 3, 2009 Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

2 Een wiskundige knoop Een wiskundige knoop is een gesloten lus in de 3-dimensionale ruimte die zichzelf niet doorsnijdt. Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

3 Gewone knopen Verbind de uiteinden om wiskundige knopen te krijgen: links-en rechtshandig klaverblad Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

4 Gewone versus wiskundige knopen Gewone knoop kan altijd uit de knoop gehaald worden. Niet alle wiskundige knopen zijn te ontwarren. Vragen: 1. Precieze betekenis van ontwarren? 2. Wanneer zeggen we dat twee knopen hetzelfde zijn? Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

5 De antwoorden 1. Precieze betekenis van ontwarren? Antwoord: als de wiskundige knoop, zonder knippen en plakken, om te vormen is tot de onknoop 2. Wanneer zeggen we dat twee knopen hetzelfde zijn? Antwoord: Als de ene knoop een vervorming is van de andere knoop. Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

6 Voorbeelden Zijn deze twee knopen hetzelfde (Perko paar)? Zijn linkshandig klaverblad en rechtshandig klaverblad dezelfde knopen? Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

7 Oorsprong van knopentheorie Lord Kelvin s hypothese (1867): 1. Atomen zijn gesloten wervelingen in de ether. 2. Verknoping bepaalt de (chemische) eigenschappen. Peter Tait: samenstellen van tabel met verschillende knopen. Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

8 Voorbeelden van toepassingen Wiskundige knopen aan de basis van het vakgebied topologie: Bestudering van de eigenschappen van de ruimte die behouden blijven onder continue vervormingen. Andere toepassingen 1 Knopentheorie in chemie en biomedische wetenschappen. Verknoping van DNA in de celkern. 2 Lord Kelvin s idee als belangrijk principe: Eigenschappen bepaald door de wisselwerking met de omgeving. Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

9 De wiskunde achter knopen Centrale vraag: Hoe kunnen we knopen onderscheiden? Een knoopinvariant is de toekenning van een getal aan een knoop. Subtiliteit: het toegekende getal mag geen onderscheid maken tussen de verschillende verschijningsvormen van de knoop! Belang: Als een knoopinvariant verschillende getallen toekent aan twee knopen, dan zijn de knopen verschillend. Naieve poging: het aantal kruisingen in het knoopdiagram. Geen knoopinvariant. Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

10 Een voorbeeld van een knoopinvariant Het kruisgetal is het minimaal aantal kruisingen die je nodig hebt om een knoopdiagram van de knoop te kunnen tekenen. Kruisgetal is een knoopinvariant, maar moeilijk uit te rekenen. Tait s tabel: de verschillende knopen geordend volgens kruisgetal verschillende knopen met kruisgetal verschillende knopen met kruisgetal 15. Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

11 Knoopinvarianten Opmerking: We bekijken vanaf nu knopen in hele smalle strookjes papier: de knoop heeft dus twee kanten. Bijvoorbeeld: de twee 8-knopen beschouwen we als verschillende knopen. Conventie: We tekenen de knoopdiagrammen van knopen zo, dat altijd een van de twee kanten boven is. De knoopdiagrammen van de twee 8-knopen zijn Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

12 Nog een knoopinvariant Het getal 0 (1) aan de knoop toekennen als het aantal kruisingen van het knoopdiagram even (oneven) is. Makkelijk uit te rekenen, maar zwakke knoopinvariant. 1 Onderscheid Perko s knopen niet van onknoop. 2 klaverblad onknoop. Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

13 Knoopinvariant? Het getal 0 (1) aan de knoop toekennen als het aantal kruisingen van het knoopdiagram even (oneven) is. Opmerking: Hier hebben we een getal toegekend aan een willekeurig knoopdiagram van de knoop. Belangrijke afgeleide vraag: Hoe kunnen we aan de knoopdiagrammen zien of knopen hetzelfde danwel verschillend zijn? Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

14 Reidemeister bewegingen: Drie lokale veranderingen in het knoopdiagram die de bijbehorende knoop onveranderd laten. eerste Reidemeister beweging, tweede Reidemeister beweging, en de derde Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

15 Reidemeister s stelling Als twee wiskundige knopen hetzelfde zijn dan zijn hun knoopdiagrammen in elkaar over te voeren door middel van de drie Reidemeister bewegingen. Gevolg: Het even of oneven zijn van het aantal kruisingen is een knoopinvariant. Bonus: Reidemeister stelling maakt het mogelijk om allerlei knoopinvarianten te maken die makkelijk uit te rekenen zijn. Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

16 We gaan los! Kies drie getallen A,B,C. Rekenregel voor toekenning getal aan knoopdiagram: 1 Kies een kruising in het knoopdiagram. 2 Produceer twee nieuwe diagrammen door de kruising te vervangen door of door. 3 Herhaal dit voor alle kruisingen in het knoopdiagram. 4 Eindigt met 2 #kruisingen diagrammen zonder kruisingen. Geef gewicht aan ieder diagram: A # { }B # { 5 Tel nu al die gewichten bijelkaar op! } C #{onknopen 1} Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

17 Voorbeeld: Linkshandig klaverblad A B Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

18 Voorbeeld: Linkshandig klaverblad A B AA AB BA BB Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

19 Voorbeeld: linkshandig klaverblad AA AB BA BB AAA AAB ABA ABB BAA BAB BBA BBB Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

20 Voorbeeld: linkshandig klaverblad AAA AAB ABA ABB BAA BAB BBA BBB A 3 C 2 A 2 BC A 2 BC AB 2 A 2 BC AB 2 AB 2 B 3 C Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

21 Voorbeeld: linkshandig klaverblad AAA AAB ABA ABB BAA BAB BBA BBB A 3 C 2 + A 2 BC + A 2 BC + AB 2 + A 2 BC + AB 2 + AB 2 + B 3 C Linkshandig klaverblad A 3 C 2 +3A 2 BC +3AB 2 +B 3 C. Rechtshandig klaverblad B 3 C 2 +3B 2 AC +3BA 2 +A 3 C. Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

22 Kauffman s knoopinvariant We krijgen zo een knoopinvariant als B=A 1 en C=-A 2 -A 2. Kauffman s invariant van 1 linkshandig klaverblad: A 7 A 3 A 5, 2 rechtshandig klaverblad: A 5 A 3 A 7. Gevolg: Linkshandig klaverblad rechtshandig klaverblad. Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

23 Kauffman s knoopinvariant Bewering: We krijgen een knoopinvariant als B=A 1 en C=-A 2 -A 2. Aan te tonen: een Reidemeister beweging toepassen op het knoopdiagram heeft geen effect op de uitkomst van de rekenregel. Check (tweede Reidemeister beweging): = A + B = A 2 + AB + BA + B 2 = (A 2 +ABC+B 2 ) + AB = als B=A 1 en C=-A 2 -A 2. Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

24 Dror Bar-Natan (in navolging van Kronecker): Wiskundige knopen zijn door God gemaakt, al het andere in topologie is mensenwerk. Jasper Stokman (UvA) De wiskunde achter knopen May 3, / 24

Knoop of onknoop. Walter D. van Suijlekom

Knoop of onknoop. Walter D. van Suijlekom Knoop of onknoop Walter D. van Suijlekom KNOOP OF ONKNOOP WALTER D. VAN SUIJLEKOM 1. Introductie Een knoop in onze schoenveter leggen kunnen we allemaal. In zijn meest simpele vorm ziet die er als volgt

Nadere informatie

Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1

Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1 Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1 Bas Westerbaan bas@westerbaan.name 24 april 2012 1 Opgave 1.1 Een goed en voldoende antwoord is: L 1 = L 2, want L 1 en L 2 zijn alle woorden

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Rekenen aan wortels Werkblad =

Rekenen aan wortels Werkblad = Rekenen aan wortels Werkblad 546121 = Vooraf De vragen en opdrachten in dit werkblad die vooraf gegaan worden door, moeten schriftelijk worden beantwoord. Daarbij moet altijd duidelijk zijn hoe de antwoorden

Nadere informatie

Automaten. Informatica, UvA. Yde Venema

Automaten. Informatica, UvA. Yde Venema Automaten Informatica, UvA Yde Venema i Inhoud Inleiding 1 1 Formele talen en reguliere expressies 2 1.1 Formele talen.................................... 2 1.2 Reguliere expressies................................

Nadere informatie

Formeel Denken. Herfst 2004

Formeel Denken. Herfst 2004 Formeel Denken Herman Geuvers Deels gebaseerd op het herfst 2002 dictaat van Henk Barendregt en Bas Spitters, met dank aan het Discrete Wiskunde dictaat van Wim Gielen Herfst 2004 Contents 1 Talen 1 1.1

Nadere informatie

6.4 Toepassingen van de algebra

6.4 Toepassingen van de algebra Toepassingen van de algebra 175 6.4 Toepassingen van de algebra 6.4.1 Snelrekentrucs Even snel: hoeveel is 59 61? Als je dit niet snel uit je hoofd kunt, dan is het handig gebruik te maken van haakjes

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

Invarianten van Kauffman in de knopentheorie

Invarianten van Kauffman in de knopentheorie achelorstageverslag Invarianten van Kauffman in de knopentheorie uteur: Elise Hopman egeleider: Dr. Michael Müger 28 maart 2012 Inhoudsopgave Voorwoord 2 1 Introductie knopentheorie 3 2 Het bracketpolynoom

Nadere informatie

De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a.

De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a. 98 Algebra 3.3 Variabelen 3.3.1 Inleiding F= 9 5 15+32= 27+32=59 15 C= 59 F In de inleidende tekst aan het begin van dit hoofdstuk staat een afkorting waarmee de temperatuur in graden Celsius in graden

Nadere informatie

7.1 Grafieken en vergelijkingen [1]

7.1 Grafieken en vergelijkingen [1] 7.1 Grafieken en vergelijkingen [1] Voorbeeld: Getekend zijn de grafieken van y = x 2 4 en y = x + 2. De grafieken snijden elkaar in de punten A(-2, 0) en B(3, 5). Controle voor x = -2 y = x 2 4 y = x

Nadere informatie

Welke van de volgende getallen zou de lengte van de spiraal kunnen weergeven?

Welke van de volgende getallen zou de lengte van de spiraal kunnen weergeven? Bever opgaven voor klas 1 en 2 november 2005 A1 Jan heeft onderstaande rechthoekige spiraal getekend en daarbij gebruik gemaakt van 2 logo opdrachten: vooruit 10 10 stappen vooruit van lengte 1; tijdens

Nadere informatie

1 Religie vs herschrijven 3. 2 Herschrijven 4. 3 Rekenen 5. 4 Tellen 6. 5 Syracuse probleem 7. 6 Herschrijftheorie 8. 7 Terminatie en Confluentie 9

1 Religie vs herschrijven 3. 2 Herschrijven 4. 3 Rekenen 5. 4 Tellen 6. 5 Syracuse probleem 7. 6 Herschrijftheorie 8. 7 Terminatie en Confluentie 9 1 Religie vs herschrijven 3 2 Herschrijven 4 3 Rekenen 5 4 Tellen 6 5 Syracuse probleem 7 6 Herschrijftheorie 8 Page 1 of 31 7 Terminatie en Confluentie 9 8 SN en CR in rekenen 10 9 SN en CR in tellen

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules. I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Bilineaire Vormen. Hoofdstuk 9

Bilineaire Vormen. Hoofdstuk 9 Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte

Nadere informatie

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's Cabri-werkblad Driehoeken, rechthoeken en vierkanten 1. Eerst twee macro's Bij de opdrachten van dit werkblad zullen we vaak een vierkant nodig hebben waarvan alleen de beide eindpunten van een zijde gegeven

Nadere informatie

Krommen tellen: van de Griekse Oudheid tot snaartheorie

Krommen tellen: van de Griekse Oudheid tot snaartheorie Krommen tellen: van de Griekse Oudheid tot snaartheorie Martijn Kool Mathematisch Instituut Universiteit Utrecht 1/34 Introductie Meetkunde Algebraïsche Meetkunde Aftellende Meetkunde Reis: Griekse Oudheid

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

Wiskunde Module! Basisprogramma Psychologische Methodenleer! Alexander Ly (en Raoul Grasman)!

Wiskunde Module! Basisprogramma Psychologische Methodenleer! Alexander Ly (en Raoul Grasman)! Wiskunde Module! Basisprogramma Psychologische Methodenleer! Alexander Ly (en Raoul Grasman)! Inhoudsopgave! Wiskunde en psychologie! Doelstelling van de module! Opzet van de module! Algebra: reken regels!

Nadere informatie

inhoudsopgave januari 2005 handleiding algebra 2

inhoudsopgave januari 2005 handleiding algebra 2 handleiding algebra inhoudsopgave Inhoudsopgave 2 De grote lijn 3 Bespreking per paragraaf 1 Routes in een rooster 4 2 Oppervlakte in een rooster 4 3 Producten 4 4 Onderzoek 5 Tijdpad 9 Materialen voor

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 2 Donderdag 16 September 1 / 31 1 Kansrekening Indeling: Eigenschappen van kansen Continue uitkomstenruimtes Continue stochasten 2 / 31 Vragen: cirkels Een computer genereert

Nadere informatie

Rekenvaardigheden voor klas 3 en 4 VWO

Rekenvaardigheden voor klas 3 en 4 VWO Rekenvaardigheden voor klas en VWO Een project in het kader van het Netwerk VO-HO West Brabant Voorjaar 00 Samenstelling: M. Alberts (Markenhage College, Breda) I. van den Bliek (Mencia de Mendoza, Breda)

Nadere informatie

Driehoeksongelijkheid en Ravi (groep 1)

Driehoeksongelijkheid en Ravi (groep 1) Driehoeksongelijkheid en Ravi (groep 1) Trainingsdag 3, april 009 Driehoeksongelijkheid Driehoeksongelijkheid Voor drie punten in het vlak A, B en C geldt altijd dat AC + CB AB. Gelijkheid geldt precies

Nadere informatie

Faculteit Elektrotechniek - Leerstoel ES Tentamen Schakeltechniek. Vakcode 5A050, 17 november 2004, 9:00u-12:00u

Faculteit Elektrotechniek - Leerstoel ES Tentamen Schakeltechniek. Vakcode 5A050, 17 november 2004, 9:00u-12:00u achternaam : voorletters : identiteitsnummer : opleiding : Tijdens dit tentamen is het gebruik van rekenmachine of computer niet toegestaan. Vul je antwoorden in op dit formulier. Je dient dit formulier

Nadere informatie

Toelichting op de werkwijzer

Toelichting op de werkwijzer Toelichting op de werkwijzer NEDERLANDSE W I S K U N D E OLYMPIADE Birgit van Dalen, Quintijn Puite De opgaven voor de training komen uit het boekje De Nederlandse Wiskunde Olympiade 100 opgaven met hints,

Nadere informatie

Oneindig in Wiskunde & Informatica. Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft. Tom Verhoeff

Oneindig in Wiskunde & Informatica. Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft. Tom Verhoeff Oneindig in Wiskunde & Informatica Lezing in de reeks Oneindig 3 oktober 2007 / Studium Generale TU Delft Tom Verhoeff Technische Universiteit Eindhoven Faculteit Wiskunde & Informatica http://www.win.tue.nl/~wstomv/

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

Tentamen TI2310 Automaten en Talen. 19 april 2012, uur

Tentamen TI2310 Automaten en Talen. 19 april 2012, uur TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica TP Delft Tentamen TI2310 Automaten en Talen 19 april 2012, 14.00-17.00 uur Totaal aantal pagina's (exclusief dit titelblad):

Nadere informatie

workshop Zwaartepunten wiskundeddag 1 juni 2011 Dolf van den Hombergh, Leon van den Broek

workshop Zwaartepunten wiskundeddag 1 juni 2011 Dolf van den Hombergh, Leon van den Broek Alexander Calder : Calder Unions (Rainbow), Kenitic Mobile, 2001) workshop Zwaartepunten wiskundeddag 1 juni 2011 Dolf van den Hombergh, Leon van den Broek 1 Evenwicht Fietsen over een koord Technopolis

Nadere informatie

R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet.

R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. R. Van Nieuwenhuyze Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@gmail.com Van Nieuwenhuyze Roger Probleemoplossend werken in de tweede graad

Nadere informatie

Inhoud eindtoets. Eindtoets. Introductie 2. Opgaven 3. Terugkoppeling 6

Inhoud eindtoets. Eindtoets. Introductie 2. Opgaven 3. Terugkoppeling 6 Inhoud eindtoets Eindtoets Introductie 2 Opgaven 3 Terugkoppeling 6 1 Formele talen en automaten Eindtoets I N T R O D U C T I E Deze eindtoets is bedoeld als voorbereiding op het tentamen van de cursus

Nadere informatie

Wiskundige beweringen en hun bewijzen

Wiskundige beweringen en hun bewijzen Wiskundige beweringen en hun bewijzen Analyse (en feitelijk de gehele wiskunde) gaat over het bewijzen van beweringen (proposities), d.w.z. uitspraken waaraan de karakterisering waar of onwaar toegekend

Nadere informatie

Faculteit Elektrotechniek - Capaciteitsgroep ICS Tentamen Schakeltechniek. Vakcodes 5A010/5A050, 19 januari 2004, 9:00u-12:00u

Faculteit Elektrotechniek - Capaciteitsgroep ICS Tentamen Schakeltechniek. Vakcodes 5A010/5A050, 19 januari 2004, 9:00u-12:00u Faculteit Elektrotechniek - Capaciteitsgroep ICS Tentamen Schakeltechniek Vakcodes 5A010/5A050, 19 januari 2004, 9:00u-12:00u achternaam : voorletters : identiteitsnummer : opleiding : Tijdens dit tentamen

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

VERZAMELINGEN EN AFBEELDINGEN

VERZAMELINGEN EN AFBEELDINGEN I VERZAMELINGEN EN AFBEELDINGEN Het begrip verzameling kennen we uit het dagelijks leven: een bibliotheek bevat een verzameling van boeken, een museum een verzameling van kunstvoorwerpen. We kennen verzamelingen

Nadere informatie

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

Automaten & Complexiteit (X )

Automaten & Complexiteit (X ) Automaten & Complexiteit (X 401049) Beschrijven van reguliere talen Jeroen Keiren j.j.a.keiren@gmail.com VU University Amsterdam 5 Februari 2015 Talen Vorig college: Talen als verzamelingen Eindige automaten:

Nadere informatie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 16 januari, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Zij V een deelruimte met basis v 1,..., v k.

Nadere informatie

Correctievoorschrift HAVO. wiskunde B1

Correctievoorschrift HAVO. wiskunde B1 wiskunde B Correctievoorschrift HAVO Hoger Algemeen Voortgezet Onderwijs 0 04 Tijdvak inzenden scores Verwerk de scores van de alfabetisch eerste vijf kandidaten per school in het programma Wolf vul de

Nadere informatie

Min maal min is plus

Min maal min is plus Min maal min is plus Als ik een verontruste wiskundeleraar moet geloven, is de rekenregel voor het product van twee negatieve getallen nog steeds een probleem. Hessel Pot schreef me: waarom willen we dat

Nadere informatie

TENTAMEN Basismodellen in de Informatica VOORBEELDUITWERKING

TENTAMEN Basismodellen in de Informatica VOORBEELDUITWERKING TENTAMEN Basismodellen in de Informatica vakcode: 211180 datum: 2 juli 2009 tijd: 9:00 12:30 uur VOORBEELDUITWERKING Algemeen Bij dit tentamen mag gebruik worden gemaakt van het boek van Sudkamp, van de

Nadere informatie

Examen VWO. wiskunde B1

Examen VWO. wiskunde B1 wiskunde B Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Dinsdag 3 mei 3.3 6.3 uur 5 Voor dit eamen zijn maimaal 87 punten te behalen; het eamen bestaat uit vragen. Voor elk vraagnummer is

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

Proeftentamen Digitale technieken

Proeftentamen Digitale technieken Proeftentamen Digitale technieken André Deutz October 17, 2007 De opgaven kunnen uiteraard in willekeurige volgorde gemaakt worden geef heel duidelijk aan op welke opgave een antwoord gegegeven wordt.

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Verzamelingen. Hoofdstuk 5

Verzamelingen. Hoofdstuk 5 Hoofdstuk 5 Verzamelingen In de meest uiteenlopende omstandigheden kan het handig zijn om een stel objecten, elementen, of wat dan ook, samen een naam te geven. Het resultaat noemen we dan een verzameling.

Nadere informatie

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16 Inhoud Voorwoord v Het metrieke stelsel vii Inhoud ix Trefwoordenlijst x 1 Basis 1.1 1.1 Veel voorkomende berekeningen 1.1 1.2 Van punt tot vlak 1.4 1.3 Oppervlakten berekenen 1.12 1.4 Zelf tekenen 1.16

Nadere informatie

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is. 3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde 1 Junior Wiskunde Olympiade 2011-2012: eerste ronde 1.Xavieris51,Yvette39enZander60.Watishungemiddeldeleeftijd? (A) 45 (B) 49 (C) 50 (D) 51 (E) 55 2.Vantweenatuurlijkegetallenmennismevenennoneven.Welkvanvolgendegetallen

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 = e 5,00 e 3,70 e,58 = e,7 over. b e 5,00 3 (e,85 + e 3,9) = e 5,00 3 e 5, = e 5,00 e 0,8 = e,7 V-a 3 = 3 9 = 7 b 9 (5 ) = 9 (5 ) = 9 = c 0 3 = 000 3 =

Nadere informatie

De wiskunde van de beeldherkenning

De wiskunde van de beeldherkenning De wiskunde van de beeldherkenning Op zoek naar wat er niet verandert! In het kader van: (Bij) de Faculteit Wiskunde en Informatica van de TU/e op bezoek c Faculteit Wiskunde en Informatica, TU/e Inhoudsopgave

Nadere informatie

Handleiding Excel. bij. hoofdstuk 18 Cijfers in Orde Wageningse Methode

Handleiding Excel. bij. hoofdstuk 18 Cijfers in Orde Wageningse Methode Handleiding Excel bij hoofdstuk 18 Cijfers in Orde Wageningse Methode oktober 2008 1 Excel (Nederlandtalig) Excel is een programma dat snel allerlei berekeningen kan uitvoeren. Ook kan het programma gemakkelijk

Nadere informatie

Escher in Het Paleis. Wiskundepakket. Ruimtelijke figuren

Escher in Het Paleis. Wiskundepakket. Ruimtelijke figuren Escher in Het Paleis Wiskundepakket Ruimtelijke figuren Ruimtelijke figuren Escher maakt in EEN AANTAL prenten gebruik van wiskundig interessante ruimtelijke vormen, zoals Platonische lichamen en Möbiusbanden.

Nadere informatie

WISNET-HBO. update aug. 2011

WISNET-HBO. update aug. 2011 Basiskennis van machten WISNET-HBO update aug. 0 Inleiding Deze les doorwerken met pen en papier! We noemen de uitdrukking a 4 (spreek uit: a tot de vierde macht) een macht van a (in dit geval de vierde

Nadere informatie

Thema 08: Hoeken vmbo-b12. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie.

Thema 08: Hoeken vmbo-b12. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie. Auteur VO-content Laatst gewijzigd 25 May 2016 Licentie CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie Webadres http://maken.wikiwijs.nl/56977 Dit lesmateriaal is gemaakt met Wikiwijs Maken van

Nadere informatie

44 De stelling van Pythagoras

44 De stelling van Pythagoras 44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten

Nadere informatie

!" #$% & '! &! ( " # )

! #$% & '! &! (  # ) ! #$% &'! &! ( #) $%& ' (#!)*,#!! #$ $ %& $ $ % ' ( ))* (,)( #) * -. / * #%))*, // * 0 ** #,-&#.#,/ 0 * 12!!/3%&--#,/ 4 *5 &%.&&,-&&3#67&2 8 '. ))/1, )/1, 2 * #,-&#.#,/ &9%&2,&&,#,%&2,&!,!-:3&1!,&%!%&23$!3&.2#6;

Nadere informatie

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.smart.be www.rekenzeker.nl www.sanderspuzzelboeken.nl www.schoolsupport.nl

Nadere informatie

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2 Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) = a b 5.1 Herleiden [1] Voorbeeld 1: (a + 5)(a 6) (a + 5)(-a + 7) = a 6a + 5a 30 ( a + 14a 5a + 35) = a 6a + 5a 30

Nadere informatie

Vergelijkingen met breuken

Vergelijkingen met breuken Vergelijkingen met breuken WISNET-HBO update juli 2013 De bedoeling van deze les is het doorwerken van begin tot einde met behulp van pen en papier. 1 Oplossen van gebroken vergelijkingen Kijk ook nog

Nadere informatie

REKENEN MET EXCEL. Naam Nr Klas Datum

REKENEN MET EXCEL. Naam Nr Klas Datum REKENEN MET EXCEL Naam Nr Klas Datum Microsoft Excel wordt gebruikt om facturen, bestelbonnen, prijsoffertes, rapporten en ander rekenwerk uit te voeren. Rekenbladen moeten dus formules bevatten! In deze

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

WISKUNDE-ESTAFETTE 2011 Uitwerkingen

WISKUNDE-ESTAFETTE 2011 Uitwerkingen WISKUNDE-ESTAFETTE 2011 Uitwerkingen 1 C D O A O B Omdat driehoek ACD gelijkbenig is, is CAD = ACD en daarmee zien we dat 2 CAD+ ADC = 180. Maar we weten ook dat 180 = ADC + ADB. Dus ADB = 2 CAD. Driehoek

Nadere informatie

Formeel Denken. Herfst Contents. 1 Combinatoriek 1

Formeel Denken. Herfst Contents. 1 Combinatoriek 1 Formeel Denken Herman Geuvers Deels gebaseerd op het herfst 00 dictaat van Henk Barendregt en Bas Spitters, met dank aan het Discrete Wiskunde dictaat van Wim Gielen Herfst 004 Contents 1 Combinatoriek

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

Basic Creative Engineering Skills

Basic Creative Engineering Skills Mechanica November 2015 Theaterschool OTT-1 1 November 2015 Theaterschool OTT-1 2 De leer van wat er met dingen (lichamen) gebeurt als er krachten op worden uitgeoefend Soorten Mechanica Starre lichamen

Nadere informatie

3 Cirkels, Hoeken en Bogen. Inversies.

3 Cirkels, Hoeken en Bogen. Inversies. 3 Cirkels, Hoeken en Bogen. Inversies. 3.1. Inleiding Het derde college betreft drie onderwerpen (hoeken, bogen en inversies), die in concrete meetkundige situaties vaak optreden. Dit hoofdstuk is bedoeld

Nadere informatie

22a. Bos. Bos c. 81b. 81a. enb. 54a. 1 n. aan BOS. a a. a a. n 6. s aa. a a. nne. 1t/m11. 36a a. e e. v o. g g. s a a. a a. s a a.

22a. Bos. Bos c. 81b. 81a. enb. 54a. 1 n. aan BOS. a a. a a. n 6. s aa. a a. nne. 1t/m11. 36a a. e e. v o. g g. s a a. a a. s a a. Pb. L f 0 bb R R c 0 0 0 0 0 0 0 0 z 00 L 0 0 0 0 0 0 0 L E K 0 0 0 L L P 0 0 0 S 0 S S E O 0 - - E O - 0 z c K z V - - 0 N 0 0-0 - z E 0 - b [] - C E - - - 0 0 Tf 0 E z c K 0 0 - c z R b 0 0b K 0 Sc 0

Nadere informatie

Faculteit Elektrotechniek - Leerstoel ES Tentamen Schakeltechniek. Vakcode 5A050, 19 januari 2005, 14:00u-17:00u

Faculteit Elektrotechniek - Leerstoel ES Tentamen Schakeltechniek. Vakcode 5A050, 19 januari 2005, 14:00u-17:00u Faculteit Elektrotechniek - Leerstoel ES Tentamen Schakeltechniek Vakcode 5A050, 19 januari 2005, 14:00u-17:00u achternaam : voorletters : identiteitsnummer : opleiding : Tijdens dit tentamen is het gebruik

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE 2012 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Optellen De som van twee getallen van twee cijfers is een getal van drie cijfers (geen van deze

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:

Nadere informatie

3.2 Vectoren and matrices

3.2 Vectoren and matrices we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,

Nadere informatie

toelatingsexamen-geneeskunde.be Vraag 2 Wat is de ph van een zwakke base in een waterige oplossing met een concentratie van 0,1 M?

toelatingsexamen-geneeskunde.be Vraag 2 Wat is de ph van een zwakke base in een waterige oplossing met een concentratie van 0,1 M? Chemie juli 2009 Laatste wijziging: 31/07/09 Gebaseerd op vragen uit het examen. Vraag 1 Geef de structuurformule van nitriet. A. B. C. D. Vraag 2 Wat is de ph van een zwakke base in een waterige oplossing

Nadere informatie

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2

Nadere informatie

kan worden vereenvoudigd tot kan worden vereenvoudigd tot 15 16.

kan worden vereenvoudigd tot kan worden vereenvoudigd tot 15 16. Voorkennistoets Met behulp van deze toets kun je voor jezelf nagaan of je voldoende kennis en vaardigheden in huis hebt om het vak wiskunde in het eerste jaar van de studie Bedrijfskunde te kunnen volgen

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

Uitwerkingen Combinatoriek Hoofdstuk 1 vwo A/C deel 1

Uitwerkingen Combinatoriek Hoofdstuk 1 vwo A/C deel 1 Uitwerkingen Combinatoriek Hoofdstuk 1 vwo A/C deel 1 1. a. Er zijn in totaal 6 mogelijkheden. Te berekenen met het product 2. 3 = 6 mogelijkheden. Voordeel : makkelijker te tekenen. Nadeel : Het aantal

Nadere informatie

HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit

HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit HOOFDSTUK : Kansrekening. De productregel Opgave : van de knikkers zijn rood rood uit II ) d. 0, e. 0, Opgave : 0 twee wit 0, ) 0 0 ) 0 0 ) 0 0 blauw en rood 0, wit en groen 0, d. geen blauw 7 0, ) 0 0

Nadere informatie

WISKUNDE D VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE D VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE D VWO VAKINFORMATIE STAATSEAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de

Nadere informatie

glas tot aan vloer doorvalveilig (gelaagd) metselwerk: Tilburg (rood gemeleerd) metselwerk: Tilburg (rood) bk. nok 8.

glas tot aan vloer doorvalveilig (gelaagd) metselwerk: Tilburg (rood gemeleerd) metselwerk: Tilburg (rood) bk. nok 8. dakpannen rood, passend bij steen 9.657 glas tot aan vloer doorvalveilig (gelaagd) RAL 733 8.88 7.56 A-a8 A-a9 ventilatie dmv open stootvoegen A-c3 A-c4 segment hefdeur volkernpaneel A-a5 A-a6 A-a6 A-a7

Nadere informatie

Alle opgaven tellen even zwaar, 10 punten per opgave.

Alle opgaven tellen even zwaar, 10 punten per opgave. WAT IS WISKUNDE (English version on the other side) Maandag 5 november 2012, 13.30 1.30 uur Gebruik voor iedere opgave een apart vel. Schrijf je naam en studentnummer op elk vel. Alle opgaven tellen even

Nadere informatie

De constructie van een raaklijn aan een cirkel is, op basis van deze stelling, niet zo erg moeilijk meer.

De constructie van een raaklijn aan een cirkel is, op basis van deze stelling, niet zo erg moeilijk meer. Cabri-werkblad Raaklijnen Raaklijnen aan een cirkel Definitie Een raaklijn aan een cirkel is een rechte lijn die precies één punt (het raakpunt) met de cirkel gemeenschappelijk heeft. Stelling De raaklijn

Nadere informatie

Vergelijkingen en hun oplossingen

Vergelijkingen en hun oplossingen Vergelijkingen en hun oplossingen + 3 = 5 is een voorbeeld van een wiskundige vergelijking: er komt een = teken in voor, en een onbekende of variabele: in dit geval de letter. Alleen als we voor de variabele

Nadere informatie

Onderzoek of de rijen rekenkundig, meetkundig of geen van beide zijn. Geef bij de rekenkundige rijen v en t 7 en bij de meetkundige rijen q en t 7.

Onderzoek of de rijen rekenkundig, meetkundig of geen van beide zijn. Geef bij de rekenkundige rijen v en t 7 en bij de meetkundige rijen q en t 7. Herhalingsoefeningen Rijen Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1 Onderzoek of de

Nadere informatie

RECHTEN. 1. Vul in met of. co(a) = (-2,3) a y = -2x + 1 A a want 3-2.(-2)+3 co(a) = (4,1) a 3x -5y -2 = 0 A a want

RECHTEN. 1. Vul in met of. co(a) = (-2,3) a y = -2x + 1 A a want 3-2.(-2)+3 co(a) = (4,1) a 3x -5y -2 = 0 A a want ANALYTISCHE MEETKUNDE: HERHALING DERDE JAAR OEFENINGEN Lees eerst de formules op het andere blad, en los vervolgens de oefeningen van het bijbehorende deel op. Wanneer je alles hebt opgelost, maak je de

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 31 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 31 mei uur wiskunde B,2 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Dinsdag 3 mei 3.30 6.30 uur 20 05 Voor dit examen zijn maximaal 89 punten te behalen; het examen bestaat uit 20 vragen. Voor elk

Nadere informatie