De enveloppenparadox



Vergelijkbare documenten
TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

Tentamen Inleiding Kansrekening 9 juni 2016, 10:00 13:00 Docent: Prof. dr. F. den Hollander

Kansrekening en stochastische processen 2DE18

Kansrekening en Statistiek

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Definitie 1.1. Een partitie van een natuurlijk getal n is een niet stijgende rij positieve natuurlijke getallen met som n

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

III.2 De ordening op R en ongelijkheden

Statistiek voor A.I. College 10. Dinsdag 16 Oktober

FLIPIT 5. (a i,j + a j,i )d i d j = d j + 0 = e d. i<j

Getaltheorie I. c = c 1 = 1 c (1)

Kansrekening en statistiek wi2105in deel I 29 januari 2010, uur

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken Gelijksoortige termen samennemen Rekenen met machten Rekenen met wortels 4

LANDSEXAMEN VWO Het examenprogramma Het examenprogramma voor het commissie-examen Wiskunde D bestaat uit de volgende (sub)domeinen:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

Wiskundige beweringen en hun bewijzen

Statistiek voor A.I. College 6. Donderdag 27 September

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

Keuze-Axioma en filosofische vragen over de Wiskunde

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

Set 3 Inleveropgaven Kansrekening (2WS20) Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje.

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

Hoofdstuk 1. Inleiding. Het binomiaalgetal ( n

2E HUISWERKOPDRACHT CONTINUE WISKUNDE

Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07

Tentamen Inleiding Kansrekening 16 juni 2017, 14:00 17:00 Docent: Prof. dr. F. den Hollander

Netwerkdiagram voor een project. AON: Activities On Nodes - activiteiten op knooppunten

Eindexamen wiskunde A1 vwo 2001-II

Ongelijkheden groep 1

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

3 Wat is een stelsel lineaire vergelijkingen?

Praktische opdracht Wiskunde som van de ogen van drie dobbelstenen

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli dr. Brenda Casteleyn

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

PARADOXEN 2 Dr. Luc Gheysens

Statistiek voor A.I. College 4. Donderdag 20 September 2012

Domein A: Vaardigheden

Lineaire Algebra voor ST

Public Key Cryptography. Wieb Bosma

Examen G0U13 Bewijzen en Redeneren Bachelor of Science Fysica en Wiskunde. vrijdag 3 februari 2012, 8:30 12:30

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen

Statistiek voor A.I. College 5. Dinsdag 25 September 2012

Statistiek voor A.I. College 3. Dinsdag 18 September 2012

Functievergelijkingen

Een combinatorische oplossing voor vraag 10 van de LIMO 2010

Het opstellen van een lineaire formule.

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)

PARADOXEN 1 Dr. Luc Gheysens

Uitwerkingen Mei Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Feedback proefexamen Statistiek I

Examenprogramma wiskunde D vwo

De Minimax-Stelling en Nash-Evenwichten

Aanvullingen bij Hoofdstuk 8

Hoofdstuk 3. Equivalentierelaties. 3.1 Modulo Rekenen

Antwoorden. 1. Rekenen met complexe getallen

1E HUISWERKOPDRACHT CONTINUE WISKUNDE

Modulewijzer InfPbs00DT

VERZAMELINGEN EN AFBEELDINGEN

Examenprogramma wiskunde A vwo

Dan is de waarde van het recessieve allel q dus 0,87, vanwege het feit dat p + q = 1.

Basiskennis lineaire algebra

Combinatoriek groep 1 & 2: Recursie

Kansrekening en Statistiek

Recursie en inductie i

Hertentamen Inleiding Kansrekening 5 juli 2017, 14:00 17:00 Docent: Prof. dr. F. den Hollander

Reeksnr.: Naam: t 2. arcsin x f(t) = 2 dx. 1 x

Onderzoek of de rijen rekenkundig, meetkundig of geen van beide zijn. Geef bij de rekenkundige rijen v en t 7 en bij de meetkundige rijen q en t 7.

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie 9 februari 2009 BEWIJZEN

Eindexamen wiskunde A 1-2 havo 2005-II

Tentamen Inleiding Kansrekening wi juni 2010, uur

Medische Statistiek Kansrekening

Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur.

Toegepaste Wiskunde 2: Het Kalman-filter

Tuyaux 3de Bachelor Wiskunde WINAK

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

De wortel uit min één, Cardano, Kepler en Newton

Uitwerking Tentamen Inleiding Kansrekening 11 juni 2015, uur Docent: Prof. dr. F. den Hollander

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uit: Niks relatief. Vincent Icke Contact, 2005

Selectietoets vrijdag 10 maart 2017

Gezamenlijke kansverdeling van twee stochasten

Algebra groep 2 & 3: Standaardtechnieken kwadratische functies

Vorig college. IN2505-II Berekenbaarheidstheorie College 4. Opsommers versus herkenners (Th. 3.21) Opsommers

Kansrekening en Statistiek

Numerieke aspecten van de vergelijking van Cantor. Opgedragen aan Th. J. Dekker. H. W. Lenstra, Jr.

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel)

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van uur.

Praktische toepassing van functies

4 Positieve en niet-negatieve lineaire algebra

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e 1/3/2017. dr. Brenda Casteleyn

Lineaire Algebra voor ST

Discrete Wiskunde 2WC15, Lente Jan Draisma

Kansrekening en Statistiek

Uitwerkingen Sum of Us

De verstrooide professor

Transcriptie:

De enveloppenparadox Mats Vermeeren Berlin Mathematical School) 6 april 013 1 Inleiding Een spel gaat als volgt. Je krijgt twee identiek uitziende enveloppen aangeboden, waarvan je er één moet kiezen. Je weet dat er in één envelop dubbel zo veel geld zit als in de andere, maar je weet niet welke bedragen dat zijn. Nadat je een envelop gekozen hebt mag je hem openmaken. Daarna krijg je de mogelijkheid om nog van gedachten te veranderen. Je mag de andere envelop nemen, maar je mag ook gewoon het geld dat je in de eerste envelop gevonden hebt mee naar huis nemen. Wat is de beste keuze? De naïve aanpak gaat als volgt. Noem het bedrag dat je in de eerste envelop gevonden hebt x. In de andere envelop zit ofwel x, ofwel x. Omdat er geen verschil te zien is tussen de twee enveloppen, is het even waarschijnlijk dat we de vette genomen hebben als dat we de magere gekozen hebben. In andere woorden: de kans dat de andere envelop x bevat is 1, net zoals de kans dat de andere envelop x bevat. De verwachtingswaarde als we van envelop wisselen is dus 1 x + 1 x x + x 4 5x 4, en dat is groter dan x. Gemiddeld gezien is het dus beter om te wisselen, ongeacht de waarde van x. Probleem opgelost? Niet echt. Als je deze redenering volgt zal je keuze niet afhangen van wat je in de eerste envelop vind. Dus je had even goed van het begin af de andere envelop kunnen nemen. En dan zou je met dezelfde redenering besluiten dat het beter is om te wisselen, dus dat toch de eerste envelop beter is! Het gras is altijd groener bij de buren, zegt men, maar in de wiskunde zou het niet mogelijk mogen zijn dat A beter is dan B én B beter dan A. Wat is er misgelopen? 1

De jacht op de paradox Noem de envelop die je in eerste instantie kiest A en de andere B. Het probleem is dat de kans dat envelop B het bedrag x respectievelijk x ) bevat een voorwaardelijke kans is. Het is namelijk dat kans dat B de vette respectievelijk magere) envelop is gegeven het feit dat A het bedrag x bevat. De correcte verwachtingswaarde is PB is vet A bevat x) x + PB is mager A bevat x) x. Deze voorwaardelijke kansen hangen af van de kansverdeling van de hoeveelheid geld die in de enveloppen zit. De kansen zijn enkel gelijk aan 1 voor elke waarde van x als die verdeling uniform is. Maar alle positieve reële getallen zijn mogelijke bedragen, en er bestaat geen uniforme verdeling op al deze getallen. Om het probleem toegankelijk te houden is het beter om de mogelijke waarden ietwat te beperken, namelijk tot machten van twee. De mogelijke waarden zijn dan dus, 1, 4, 3 8,... maar ook 0 1, 1 1, 1 4,... Verder gaan we ervan uit dat elk van deze waarden met een kans verschillend van nul optreedt. Deze aannamen maken het rekenwerk veel gemakkelijker, maar veranderen niets essentieels aan het probleem. 1 Het enveloppenspel kunnen we met twee toevalsvariabelen modelleren: X is het bedrag dat in de magere envelop zit. Y is 1 als we de magere envelop kiezen en als we de vette envelop kiezen. Er geldt dus dat PY 1) PY ) 1. Het bedrag dat we in de gekozen envelop vinden wordt dan gemodelleerd door de toevalsvariabele XY. We geven de geobserveerde waarde van dit bedrag de naam a. Het bedrag dat we krijgen als we van envelop wisselen is X 3 Y ): als Y 1 vinden we na het wisselen de vette envelop met bedrag X X 3 1); als Y vinden we na het wisselen de magere envelop met bedrag X X 3 ). De voorwaardelijke) verwachtingswaarde als we wisselen is dan EX 3 Y ) XY a) E3X XY XY a) E3X XY a) EXY XY a) 3 EX XY a) a. 1 In het bijzonder bestaat er ook op deze verzameling van getallen geen uniforme verdeling.

We weten niet wat EX XY a) is, dat hangt van de verdeling van X af. Wat we willen weten is welke verdelingen tot een paradox leiden, dus voor welke verdelingen de voorwaardelijke verwachtingswaarde bij wisselen groter is dan a, het bedrag dat we krijgen als we niet wisselen. Dit feit wordt beschreven door de ongelijkheid 3 EX XY a) a > a, of equivalent, EX XY a) > a. 1) 3 Ik kan het belang van deze ongelijkheid niet genoeg benadrukken: de kern van de enveloppenparadox is dat wisselen voordeel biedt ongeacht van wat we in de eerste envelop vinden, dus dat deze ongelijkheid voor alle waarden van a voldaan is. Stelling. Als ongelijkheid 1) geldt voor alle mogelijke waarden van a, dan is EX). Met andere woorden: als er een paradox is, dan is het verwachte bedrag in de enveloppen oneindig. Opmerking. De verwachting in de stelling is geen voorwaardelijke verwachting, we spreken dus over het bedrag dat we verwachten voordat we de eerste envelop geopend hebben. Bewijs. We willen informatie over de verdeling van X, maar ongelijkheid 1) zegt enkel iets over de voorwaardelijke verdeling van X gegeven XY a. Een verband tussen die twee vinden we door in de formule EX XY a) a PX a XY a)+ a P X a XY a het rechterlid te herschrijven. Hiervoor maken we ervan gebruik dat X en Y onafhankelijk zijn en dat P Y 1) P Y ): PX a en XY a) PX a XY a) PXY a) PX a en Y 1) PX a en Y 1) + P X a en Y ) PX a)py 1) PX a)py 1) + P X a ) P Y ) PX a) PX a) + P X a ) ) ) 3

en P X a ) XY a P X a en XY a) P XY a) P X a en Y ) P X a en Y 1) + P X a P X a ) P X a) + P X a ). en Y ) Dus vergelijking ) kan geschreven worden als E X XY ) a P X a) + a P X a P X a) + P X a ). Hiermee kunnen we ongelijkheid 1) zonder voorwaardelijke verachting herschrijven: a P X a) + a P X a ) P X a) + P X a ) > 3 a. Dit is equivalent met P X a) + 1 P X a ) > 3 P X a) + P X a )), en dus met P X a) > P X a ). Uit deze ongelijkheid volgt dat voor elk natuurlijk getal n n P X n ) > n 1 P X n 1) >... > P X 1). 3) Dit heeft grote gevolgen als we de verwachte waarde van X berekenen. Deze verwachting is namelijk gelijk aan E X) n Z n P X n )... + 1 P X 1 ) + P X 1) + P X ) +... Al deze termen zijn positief, dus door termen te schrappen volgt hieruit dat E X) n N n P X n ) P X 1) + P X ) +... ) 4

Door op al deze termen ongelijkheid 3) toe te passen, volgt tenslotte dat EX) n N P X 1) PX 1) + PX 1) +..., want per aanname is PX 1) > 0. 3 Interpretatie Als het verwachte bedrag oneindig is, is het niet meer paradoxaal dat wisselen een betere verwachte waarde geeft. Je verwacht dan oneindig veel geld, dus elk mogelijk eindig bedrag is een teleurstelling. Daarom kan je altijd verwachten dat er in de andere envelop meer geld zit. Als je het niet eens bent met deze interpretatie, dan ben ik er waarschijnlijk in geslaagd om een andere moraal mee te geven: verdelingen met een oneindige verwachting zijn vreemd! In de praktijk zijn zulke verdelingen dan ook heel zeldzaam. In de context van het enveloppenprobleem zou een oneindige verwachting impliceren dat de organisator van het spel over oneindig veel geld beschikt. Dat is natuurlijk een compleet onrealistische aanname. Dus als je het enveloppenprobleem nog steeds paradoxaal vindt, besef dan tenminste dat de paradox zijn wortels in deze absurde aanname heeft, niet in de wiskunde. 5