Public Key Cryptography. Wieb Bosma
|
|
|
- Joris Bauwens
- 10 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Public Key Cryptography de wiskunde van het perfecte kopje koffie Wieb Bosma Radboud Universiteit Nijmegen Bachelordag 2 april 2011 Nijmegen, 6 november
2 Nijmegen, 6 november cryptografie Cryptografie is de wetenschap van het ontwerpen en kraken van systemen om geheime informatie te delen. Er wordt meestal gebruikt gemaakt van een bekend systeem met geheime sleutels om de informatie te versluieren. In een klassiek cryptosysteem spreek je samen geheime sleutels af alvorens je kunt beginnen. Probleem Hoe wissel je geheime sleutels uit? Antwoord Met public key cryptosystemen!
3 Nijmegen, 6 november analogie Bij een klassiek cryptosysteem kun je denken aan het volgende brandkastmodel: er zijn inbraakveilige brandkasten in omloop die met een degelijk hangslot afgesloten kunnen worden. Om met iemand anders geheime informatie uit te kunnen wisselen, kies je samen een hangslot met twee identieke sleutels (en niemand anders krijgt dezelfde sleutel). Bij het verzenden van een bericht stopt de één de geheime informatie in de brandkast, doet het hangslot op slot, en de brandkast wordt naar de ander gebracht, die met de andere sleutel toegang krijgt tot het geheime bericht. Maar hoe wissel je de geheime sleutels uit?
4 Nijmegen, 6 november nog een analogie Het slimme idee achter een public key cryptosysteem is dit: degene die de geheime boodschap in de brandkast stopt, hoeft daarna helemaal niet meer in staat te zijn om het slot zelf weer open te maken: de zender heeft helemaal geen sleutel nodig! Denk aan een open hangslot dat je dicht kunt klikken, maar dan niet zonder sleutel weer kunt openen. Iedereen mag dus de open hangsloten van de ontvanger hebben en kan informatie uitsluitend voor de ontvanger beschikbaar maken door zo n slot op een brandkast dicht te klikken.
5 Nijmegen, 6 november wiskunde Waar is de wiskunde? Informatie in de vorm van getallen, electronisch opgeslagen. We zoeken een één-richtingsfunctie: makkelijk toe te passen maar moeilijk ongedaan te maken, tenzij je extra, geheime, informatie kent. De één-richtingsfunctie fungeert als hangslot, de extra informatie is de sleutel. Iedereen mag de één-richtingsfunctie toepassen, slechts 1 persoon kan de bewerking ongedaan maken.
6 Nijmegen, 6 november priemgetallen Definities De natuurlijke getallen zijn 1, 2, 3, 4,.... Een priemgetal is een natuurlijk getal p > 1 dat alleen deelbaar is door 1 en p zelf. Een samengesteld getal is een natuurlijk getal n met meer delers dan alleen 1 en n. Voorbeelden 2, 3, 19 en 31 zijn priemgetallen 6 = 2 3 en 33 = 3 11, en 150 = 2 75 = 3 50 = zijn samengestelde getallen 1 is geen priemgetal en is ook niet samengesteld Stelling Er zijn oneindig veel priemgetallen en oneindig veel samengestelde getallen
7 Nijmegen, 6 november paradox Paradox Om met de definitie te bewijzen dat 31 een priemgetal is, kun je laten zien dat 31 niet deelbaar is door 2, 3, 4, 5, 6,..., 29, 30. Om te bewijzen dat 33 geen priemgetal is hoef je alleen maar een echte deler te vinden: inderdaad is 3 11 gelijk aan 33. Dit is een paradox omdat veel cryptografische systemen juist gebaseerd zijn op de volgende eigenschap: Van een groot getal is gemakkelijk vast te stellen of het een priemgetal of een samengesteld getal is. Maar van een product van grote priemgetallen zijn de delers moeilijk te vinden!
8 Nijmegen, 6 november paradox Dit is niet een echte tegenspraak: er zijn veel betere methoden om te zien of een getal een priemgetal is dan testen of het delers heeft; gebruik andere karakteristieke eigenschappen het is wel eenvoudig om na te gaan dat een ontbinding klopt (33 = 3 11) maar de beste methoden om de factoren van grote getallen te vinden zijn niet vergelijkbaar veel beter dan het proberen van de mogelijkheden Conclusie Het vermenigvuldigen van grote priemgetallen is een goede één-richtingsfunctie
9 Nijmegen, 6 november één-richting Het vergt wat meer eerstejaarswiskunde om hier een mooie toepassing van te geven. We gaan over op een andere één-richtingsfunctie: machtsverheffen modulo p. Machtsverheffen modulo p: we werken alleen met getallen van 0 tot en met p 1. Van een getal groter dan p 1 trekken we p af tot het kleiner is geworden. Voorbeeld p = 5 Nu is 2 3 = 8 groter dan 4, dus we trekken er 5 af en schrijven 2 3 = 8 3 modulo 5
10 Nijmegen, 6 november voorbeeld Laten we dit voor alle machten van 2 modulo p = 5 doen: 2 1 = 2 modulo = 4 modulo = 8 3 modulo = 16 1 modulo modulo 5, enzovoort, want we zijn rond! We hebben zo alle getallen 1,2,3,4 tussen 0 en 5 gevonden als macht van 2
11 Nijmegen, 6 november voorbeeld Stelling Bij elke p is (gemakkelijk) een w te vinden zodat modulo p de getallen w 1, w 2,..., w p 1 precies alle getallen van 1 tot en met p 1 opleveren. Voorbeeld p = 31 en w = 3, dan 3 1 = 3 modulo = 9 modulo = 27 modulo = modulo = modulo 31 en als we door gaan vinden we: 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 4, 12, 5, 15, 14, 11, 2, 6, 18, 23, 7, 21, 1
12 Nijmegen, 6 november opmerkingen Definitie Een getal w zodat w 1, w 2,..., w p 1 modulo p precies alle getallen 1, 2,..., p 1 geven, heet een primitieve wortel modulo p. Merk op dat de getallen in een rare volgorde optreden. 1 nooit een primitieve wortel modulo p is (behalve voor p = 2) 3 is een primitieve wortel modulo 31, maar 2 is dat niet: modulo modulo modulo modulo modulo 31 en daarna herhaalt het zich
13 Nijmegen, 6 november één-richting Machtsverheffen modulo p is heel eenvoudig. Omgekeerd, gegeven een getal r modulo p is er geen methode bekend die heel veel efficiënter de macht e vindt waarvoor w e r modulo p dan door te proberen. Voorbeeld p = 31 en r = 22, dan vinden we in het lijstje dat modulo 31. Conclusie Machtsverheffen modulo p is een goede één-richtingsfunctie!
14 Nijmegen, 6 november wachtwoord Toepassing: wachtwoord Kies een priemgetal p van 30 cijfers met een primitieve wortel w. Laat elke gebruiker van een computersysteem een getal k van 30 cijfers kiezen, het wachtwoord. Sla in een bestand de paren op bestaande uit de login-naam en w k modulo p. Als de gebruiker zich wil aanmelden, geeft hij de login-naam en het geheime getal k; het systeem controleert dat de opgeslagen waarde gelijk is aan w k modulo p. De systeembeheerder kent ook de waarde van k niet, en kan dus het wachtwoord wel controleren maar niet geven!
15 Nijmegen, 6 november sleutels delen Toepassing: geheime sleutels delen Doel: gebruikers A en B worden het eens over een geheime sleutel, zonder bij elkaar te komen en door uitsluitend over een openbaar netwerk te communiceren. Kies priemgetal p en primitieve wortel w, en maak die openbaar. gebruiker A kiest geheime sleutel a (getal tussen 0 en p) A stuurt w a modulo p naar B gebruiker B kiest geheime sleutel b (getal tussen 0 en p) B stuurt w b modulo p naar A A berekent (w b ) a w b a w a b modulo p, B berekent (w a ) b w a b modulo p. beiden kennen nu het geheime getal w a b modulo p.
16 Nijmegen, 6 november sleutels delen Een eventuele afluisteraar ziet w a en w b maar we weten niet hoe daar w a b modulo p uit te halen! In ieder geval lukt dat niet door te vermenigvuldigen: w a w b = w a+b en dat is vrijwel nooit hetzelfde als w a b.
17 Nijmegen, 6 november koffie analogie Deel het geheime recept van het perfecte kopje koffie Zowel koffiedrinker A als B maakt volgens openbaar recept zwarte koffie (p en w). Koffieliefhebber A voegt precies de juiste (geheime) hoeveelheid melk (a) toe en stuurt daar B een kopje van. En genieter B maakt een kopje met precies de juiste (geheime) hoeveelheid suiker (b) en stuurt dat naar A. Nu kunnen A en B aan het ontvangen kopje respectievelijk de juiste hoeveelheid melk en suiker toevoegen om beiden hetzelfde perfecte kopje koffie te krijgen! Een eventuele onderschepper C kan de hand leggen op koffie met precies de juiste hoeveelheid suiker, èn op koffie met precies de juiste hoeveelheid melk, maar hoe brouw je daar het perfecte kopje koffie uit? Niet door de twee kopjes bij elkaar te gooien...
niet: achterop een ansichtkaart schrijven postbode (en wie al niet meer) leest mee
Het geheim van goede koffie Benne de Weger oktober 2013 [email protected] http://www.win.tue.nl/~bdeweger versturen van geheimen hoe moet je een geheim opsturen als onderweg iemand kan afluisteren?
RSA. F.A. Grootjen. 8 maart 2002
RSA F.A. Grootjen 8 maart 2002 1 Delers Eerst wat terminologie over gehele getallen. We zeggen a deelt b (of a is een deler van b) als b = qa voor een of ander geheel getal q. In plaats van a deelt b schrijven
Hoe je het cryptosysteem RSA soms kunt kraken. Benne de Weger
Hoe je het cryptosysteem RSA soms kunt kraken Benne de Weger 28 aug. / 4 sept. RSA 1/38 asymmetrisch cryptosysteem versleutelen met de publieke sleutel ontsleutelen met de bijbehorende privé-sleutel gebaseerd
Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens
Algoritmes in ons dagelijks leven Leve de Wiskunde! 7 April 2017 Jacobien Carstens Wat is een algoritme? Een algoritme is een eindige reeks instructies die vanuit een gegeven begintoestand naar een beoogd
Cryptografie met krommen. Reinier Bröker. Universiteit Leiden
Cryptografie met krommen Reinier Bröker Universiteit Leiden Nationale Wiskundedagen Februari 2006 Cryptografie Cryptografie gaat over geheimschriften en het versleutelen van informatie. Voorbeelden. Klassieke
OPLOSSINGEN VAN DE OEFENINGEN
OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal
7.1 Het aantal inverteerbare restklassen
Hoofdstuk 7 Congruenties in actie 7.1 Het aantal inverteerbare restklassen We pakken hier de vraag op waarmee we in het vorige hoofdstuk geëindigd zijn, namelijk hoeveel inverteerbare restklassen modulo
Het RSA Algoritme. Erik Aarts - 1 -
Het RSA Algoritme Erik Aarts - 1 - 1 Wiskunde... 3 1.1 Het algoritme van Euclides... 3 1.1.1 Stelling 1... 4 1.2 Het uitgebreide algoritme van Euclides... 5 1.3 Modulo rekenen... 7 1.3.1 Optellen, aftrekken
FACTORISATIE EN CRYPTOGRAFIE
FACTORISATIE EN CRYPTOGRAFIE COMPUTERPRACTICUM UvA-MASTERCLASS WISKUNDE 1993 G.C.M. Ruitenburg Faculteit Wiskunde en Informatica Universiteit van Amsterdam 1993 INLEIDING In dit computer prakticum volgen
2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.
Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt
We beginnen met de eigenschappen van de gehele getallen.
II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;
1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden
Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs Uitwerkingen van de opgaven bij de basisvaardigheden 1 Hele getallen Peter Ale Martine van Schaik u i t g e v e r ij c o u t i
Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte
Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal
Getaltheorie I. c = c 1 = 1 c (1)
Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk
1.5.1 Natuurlijke, gehele en rationale getallen
46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:
Getaltheorie groep 3: Primitieve wortels
Getaltheorie groep 3: Primitieve wortels Trainingsweek juni 2008 Inleiding Voor a relatief priem met m hebben we de orde van a modulo m gedefinieerd als ord m (a) = min { n Z + a n 1 (mod m) }. De verzameling
Gehelen van Gauss. Hector Mommaerts
Gehelen van Gauss Hector Mommaerts 2 Hoofdstuk 1 Definities Gehelen van Gauss zijn complexe getallen van de vorm a + bi waarbij a, b Z. De verzameling van alle gehelen van Gauss noteren we met Z(i). Dus
Activiteit 18. Kid Krypto Publieke sleutel encryptie. Samenvatting. Vaardigheden. Leeftijd. Materialen
Activiteit 18 Kid Krypto Publieke sleutel encryptie Samenvatting Encryptie is de sleutel tot informatie veiligheid. En de sleutel tot moderne encryptie is, dat een zender door alleen publieke informatie
Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2
Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van
Oefening: Markeer de getallen die een priemgetal zijn.
Getallenkennis : Priemgetallen. Wat is een priemgetal? Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. (m.a.w. een priemgetal is een natuurlijk getal
1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12
Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal
Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002
Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 19.a) Laat zien dat 5 een voortbrenger is van F 37. b) In het sleuteldistributiesysteem van Diffie en Hellman (met G = F 37, α =
7 Deelbaarheid. 7.1 Deelbaarheid WIS7 1
WIS7 1 7 Deelbaarheid 7.1 Deelbaarheid Deelbaarheid Voor geheeltallige d en n met d > 0 zeggen we dat d een deler is van n, en ook dat n deelbaar is door d, als n d een geheel getal is. Notatie: d\n k
De cryptografie achter Bitcoin
De cryptografie achter Bitcoin Benne de Weger [email protected] augustus 2018 digitale handtekeningen 1 doel: authenticatie sterke verbinding aanleggen tussen een document en een identiteit wordt doorgaans
Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen
Worteltrekken modulo een priemgetal: van klok tot cutting edge Roland van der Veen Modulorekenen Twee getallen a en b zijn gelijk modulo p als ze een veelvoud van p verschillen. Notatie: a = b mod p Bijvoorbeeld:
??? Peter Stevenhagen. 7 augustus 2008 Vierkant voor wiskunde
1 ??? Peter Stevenhagen 7 augustus 2008 Vierkant voor wiskunde 2 Wiskunde en cryptografie Peter Stevenhagen 7 augustus 2008 Vierkant voor wiskunde 3 Crypto is voor iedereen Peter Stevenhagen 7 augustus
Cryptografie. 6 juni Voorstellen, programma-overzicht 2. 2 Inleiding: wat is cryptografie? 2
Cryptografie 6 juni 2008 Inhoudsopgave 1 Voorstellen, programma-overzicht 2 2 Inleiding: wat is cryptografie? 2 3 Schuifsysteem: E k (x) = x + k 4 3.1 Decryptiefunctie: terugrekenen..........................
slides10.pdf December 5,
Onderwerpen Inleiding Algemeen 10 Cryptografie Wat is cryptography? Waar wordt cryptografie voor gebruikt? Cryptographische algoritmen Cryptographische protocols Piet van Oostrum 5 dec 2001 INL/Alg-10
8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde
8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige
Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen
Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,
Opgeloste en onopgeloste mysteries in de getaltheorie
Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste
PG blok 4 werkboek bijeenkomst 4 en 5
2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene
Lessenserie Cryptografie
Een van de meest tot de verbeelding sprekende voorgestelde keuzeonderwerpen is cryptografie Onafhankelijk van elkaar gingen Monique Stienstra en Harm Bakker aan de slag om lesmateriaal te ontwikkelen en
Uitwerkingen toets 12 juni 2010
Uitwerkingen toets 12 juni 2010 Opgave 1. Bekijk rijen a 1, a 2, a 3,... van positieve gehele getallen. Bepaal de kleinst mogelijke waarde van a 2010 als gegeven is: (i) a n < a n+1 voor alle n 1, (ii)
BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN
BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen
Spookgetallen. Jan van de Craats en Janina Müttel
Spookgetallen Jan van de Craats en Janina Müttel leadtekst In de serie Open Problemen deze keer drie beroemde onopgeloste raadsels. Je kunt er geen miljoen dollar mee winnen, maar wel onsterfelijke roem.
OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl
OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare
De wiskunde achter de Bitcoin
De wiskunde achter de Bitcoin Bas Edixhoven Universiteit Leiden NWD, Noordwijkerhout, 2015/01/31 Deze aantekeningen zal ik op mijn homepage plaatsen. Bas Edixhoven (Universiteit Leiden) De wiskunde achter
Toepassingen van de Wiskunde in de Digitale Wereld
Toepassingen van de Wiskunde in de Digitale Wereld Eindhoven 17 juli 2010 Henk van Tilborg Technische Universiteit Eindhoven 1 Beschermen van digitale gegevens. Bijna alle informatie (muziek, video, foto's,
In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:
Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel
FACTORISATIE EN CRYPTOGRAFIE
FACTORISATIE EN CRYPTOGRAFIE UvA-MASTERCLASS WISKUNDE 1993 P. Stevenhagen Faculteit Wiskunde en Informatica Universiteit van Amsterdam 1993 INLEIDING In deze masterclass zullen we ons voornamelijk bezighouden
Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2. Omschrijving Rekenen en Wiskunde Getallen 2
Getallen 2 Getallen 2 bestrijkt de uitbreiding van de basisvaardigheden van het rekenen, regels en vaardigheden die in het vmbo en de onderbouw van havo/vwo worden aangeleerd, geoefend en toegepast. Doelgroep
Elliptische krommen en digitale handtekeningen in Bitcoin
Elliptische krommen en digitale handtekeningen in Bitcoin Bas Edixhoven Universiteit Leiden KNAW Bitcoin symposium Deze aantekeningen zal ik op mijn homepage plaatsen. Bas Edixhoven (Universiteit Leiden)
GETALTHEORIE 1. de Leuke En Uitdagende Wiskunde 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65,
GETALTHEORIE 1 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65, SAMENSTELLING: H. de Leuw - 1 - 1. NATUURLIJKE GETALLEN. Als kind hebben we allemaal leren tellen: 1,
Eigenschap (Principe van welordening) Elke niet-lege deelverzameling V N bevat een kleinste element.
Hoofdstuk 2 De regels van het spel 2.1 De gehele getallen Grof gezegd kunnen we de (elementaire) getaltheorie omschrijven als de wiskunde van de getallen 1, 2, 3, 4,... die we ook de natuurlijke getallen
Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015
Je hebt twee uur de tijd voor het oplossen van de vraagstukken. Elk vraagstuk is maximaal 10 punten waard. Begin elke opgave op een nieuw vel papier. µkw uitwerkingen 12 juni 2015 Vraagstuk 1. We kunnen
Wiskundige beweringen en hun bewijzen
Wiskundige beweringen en hun bewijzen Analyse (en feitelijk de gehele wiskunde) gaat over het bewijzen van beweringen (proposities), d.w.z. uitspraken waaraan de karakterisering waar of onwaar toegekend
1. Optellen en aftrekken
1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'
Instellingen van je e-mail account op binnenvaartonline.be voor Outlook Express
Instellingen van je e-mail account op binnenvaartonline.be voor Outlook Express 1. Inhoud 1. INHOUD...1 2. E-MAIL ACCOUNTS BEHEREN...1 3. WIZARD INTERNET-VERBINDING...2 3.1. Naam...2 3.2. Internet e-mailadres...3
Hoofdstuk 3. Equivalentierelaties. 3.1 Modulo Rekenen
Hoofdstuk 3 Equivalentierelaties SCHAUM 2.8: Equivalence Relations Twee belangrijke voorbeelden van equivalentierelaties in de informatica: resten (modulo rekenen) en cardinaliteit (aftelbaarheid). 3.1
1 Rekenen met gehele getallen
1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9
Priemgetallen. van nutteloos tot staatsgevaarlijk? Wieb Bosma. Nijmeegse Tweedaagse Radboud Universiteit
Priemgetallen van nutteloos tot staatsgevaarlijk? Wieb Bosma Nijmeegse Tweedaagse Radboud Universiteit Nijmegen oktober 2008 Priemgetallen 2 Voorwoord Dit zijn de aantekeningen bij één van de twee onderwerpen
Oplossing van opgave 6 en van de kerstbonusopgave.
Oplossing van opgave 6 en van de kerstbonusopgave. Opgave 6 Lesbrief, opgave 4.5 De getallen m en n zijn verschillende positieve gehele getallen zo, dat de laatste drie cijfers van 1978 m en 1978 n overeenstemmen.
Wanneer zijn veelvouden van proniks proniks?
1 Uitwerking puzzel 92-1 Wanneer zijn veelvouden van proniks proniks? Harm Bakker noemde het: pro-niks voor-niks De puzzel was voor een groot deel afkomstig van Frits Göbel. Een pronik is een getal dat
Universiteit Gent. Academiejaar Discrete Wiskunde. 1ste kandidatuur Informatica. Collegenota s. Prof. Dr.
Universiteit Gent Academiejaar 2001 2002 Discrete Wiskunde 1ste kandidatuur Informatica Collegenota s Prof. Dr. Frank De Clerck Herhalingsoefeningen 1. Bepaal het quotiënt en de rest van de deling van
BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN
40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen Uitsluitend te gebruiken
Inleiding tot de Problem Solving - deel 1: Combinatoriek en getaltheorie
Inleiding tot de Problem Solving - deel 1: Combinatoriek en getaltheorie Jan Vonk 1 oktober 2008 1 Combinatoriek Inleiding Een gebied dat vandaag de dag haast niet onderschat kan worden binnen de wiskunde
Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur
Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur Geef een goede onderbouwing van je antwoorden. Succes! 1. (a) (10 pt) Ontbindt het polynoom X 3 3X+3 in irreducibele factoren in Q[X] en in
WISKUNDE 1. Aansluitmodule wiskunde MBO-HBO
WISKUNDE 1 Aansluitmodule wiskunde MBO-HBO Wat moet je aanschaffen? Basisboek wiskunde tweede editie Jan van de Craats en Rob Bosch isbn:978-90-430-1673-5 Dit boek gebruikt men ook op de Hanze bij engineering.
Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008
Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.
Verzamelingen, Lijsten, Functioneel Programmeren
Verzamelingen, Lijsten, Functioneel Programmeren Jan van Eijck [email protected] Lezing 4e Gymnasium, 19 november 2015 Samenvatting In deze lezing gaan we in op de overeenkomsten en verschillen tussen verzamelingen
Verzamelingen, Lijsten, Functioneel Programmeren
Verzamelingen, Lijsten, Functioneel Programmeren Jan van Eijck [email protected] Stage Ignatiuscollege, 17 mei 2010 Samenvatting In deze lezing gaan we in op de overeenkomsten en verschillen tussen verzamelingen
Cryptografie: de wetenschap van geheimen
Cryptografie: de wetenschap van geheimen Benne de Weger [email protected] augustus 2018 Cryptografie als Informatiebeveiliging 1 beveiliging: doe iets tegen risico s informatie-risico s en eisen: informatie
Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.
4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen
8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde
8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige
Handleiding voor het verzenden van gepersonaliseerde mailings met ACT! 2011, ACTTranslator op Nederlands
Handleiding voor het verzenden van gepersonaliseerde mailings met ACT! 2011, ACTTranslator op Nederlands Voorbereiding: 1. Het maken van een sjabloon 2. Het maken van een selectie 3. Het toevoegen van
Tweede Huiswerk Security 26 of 28 oktober, 11.00, Nabespreken op Werkcollege.
Tweede Huiswerk Security 26 of 28 oktober, 11.00, Nabespreken op Werkcollege. Kijk het huiswerk van je collega s na en schrijf de namen van de nakijkers linksboven en het totaalcijfer rechts onder de namen
Getaltheorie II. ax + by = c, a, b, c Z (1)
Lesbrief 2 Getaltheorie II 1 Lineaire vergelijkingen Een vergelijking van de vorm ax + by = c, a, b, c Z (1) heet een lineaire vergelijking. In de getaltheorie gaat het er slechts om gehele oplossingen
Extra oefeningen hoofdstuk 4: Deelbaarheid
Extra oefeningen hoofdstuk 4: Deelbaarheid 4.1 Delers en veelvouden 1 Bepaal door opsomming. a) del 84 =... b) del 13 =... c) del 44 =... d) del 89 =... e) del 1 =... f) del 360 =... 2 Bepaal de eerste
Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA?
Algoritmes en Priemgetallen Hoe maak je een sleutelpaar voor RSA? Het recept van RSA Kies p q priemgetallen en bepaal N = pq Kies e Z N (publieke sleutel) Bepaal d e 1 mod φ N (privésleutel) x ed x kφ
Hoofdstuk 1. Inleiding. Lichamen
Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan
Hoofdstuk 1 - Drie manieren om een getal te schrijven
Hoofdstuk - Drie manieren om een getal te schrijven. Beginnen met een breuk Je kunt een breuk schrijven als decimaal getal en ook als percentage, kijk maar: = 0,5 = 50% 4 = 0,75 = 75% 5 = 0,4 = 40% Hoe
Het programma ELGAMAL
Het programma ELGAMAL Gerard Tel Universiteit Utrecht, Departement Informatica 21 oktober 2005 Dit boekje is een inhoudelijke beschrijving van het programma ELGAMAL dat door Gerard Tel is geschreven voor
Uitwerkingen toets 9 juni 2012
Uitwerkingen toets 9 juni 0 Opgave. Voor positieve gehele getallen a en b definiëren we a b = a b ggd(a, b). Bewijs dat voor elk geheel getal n > geldt: n is een priemmacht (d.w.z. dat n te schrijven is
Opgaven Discrete Logaritme en Cryptografie Security, 22 okt 2018, Werkgroep.
Opgaven Discrete Logaritme en Cryptografie Security, 22 okt 2018, Werkgroep. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal
opdrachten algoritmiek - antwoorden
opdrachten algoritmiek - antwoorden Dit zijn de voorbeelduitwerkingen behorende bij de oefeningen algoritmiek. Er zijn altijd veel mogelijke manieren om hetzelfde probleem op te lossen. De voorbeelduitwerking
De enveloppenparadox
De enveloppenparadox Mats Vermeeren Berlin Mathematical School) 6 april 013 1 Inleiding Een spel gaat als volgt. Je krijgt twee identiek uitziende enveloppen aangeboden, waarvan je er één moet kiezen.
Ga naar http://www.domeinnaam.nl/wp-admin en log in met de gebruikersnaam en wachtwoord verkregen via mail.
INLOGGEN Ga naar http://www.domeinnaam.nl/wp-admin en log in met de gebruikersnaam en wachtwoord verkregen via mail. Vul hier je gebruikersnaam en wachtwoord in en klik op Inloggen. Bij succesvolle login
ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999
ANTWOORDEN blz. 3 a. Zeer onwaarschijnlijk Zeer onwaarschijnlijk a. Dan heb je ergens een schuld uitstaan 86 Dan hadden beide een kopie van de kerfstok; om fraude te voorkomen a. MMXII, MCCCXXVII, DLXXXVI,
Cover Page. The handle holds various files of this Leiden University dissertation.
Cover Page The handle http://hdl.handle.net/1887/20310 holds various files of this Leiden University dissertation. Author: Jansen, Bas Title: Mersenne primes and class field theory Date: 2012-12-18 Samenvatting
Verder met Twitter - Hoe beantwoorden, retweeten + favorieten toevoegen
Verder met Twitter - Hoe beantwoorden, retweeten + favorieten toevoegen Op de startpagina zie je in chronologische volgorde tweets binnenkomen. Onder de tweet staat bij de ene tweet: Foto weergeven, bij
Cryptografie: ontwikkelingen en valkuilen bij gebruik. Eric Verheul Bart Jacobs 5 oktober 2011
Cryptografie: ontwikkelingen en valkuilen bij gebruik Eric Verheul Bart Jacobs 5 oktober 2011 1 Agenda Context Verbeter suggesties opzet binnen CSPs (langere termijn) Verbeter suggesties opzet binnen CSPs
Bewijs door inductie
Bewijs door inductie 1 Bewijs door inductie Vaak bestaat een probleem erin aan te tonen dat een bepaalde eigenschap geldt voor elk natuurlijk getal. Als je wilt weten of iets waar is voor alle natuurlijke
Viaa Online - OneDrive
Viaa Online - OneDrive Wat is OneDrive Onedrive maakt het mogelijk om je bestanden op te slaan in de cloud. Cloudopslag betekent dat je bestanden opgeslagen worden op het internet en je ze ook vanaf iedere
Zwakke sleutels voor RSA
Zwakke sleutels voor RSA Benne de Weger, Mike Boldy en Hans Sterk 23 juni 2008 Zwakke sleutels voor RSA Benne de Weger, Mike Boldy en Hans Sterk 23 juni 2008 RSA: beroemd cryptosysteem Genoemd naar Rivest,
3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat.
92 Algebra 3.2 Basiskennis Inhoofdstuk1zijnaandeordegeweest: 3.2.1 De getallenlijn... -5-4 -3-2 -1 0 1 2 3 4 5... 3.2.2 Symbolen, tekens en getallen Het=teken 5+2+3=10 = geeft aan dat wat links van = staat,
Dossier 3 PRIEMGETALLEN
Dossier 3 PRIEMGETALLEN atomen van de getallenleer Dr. Luc Gheysens Een priemgetal is een natuurlijk getal met twee verschillende delers, nl. 1 en het getal zelf. De priemgetallen zijn dus 2, 3, 5, 7,
DomJudge-Practicum. Open Dag UU
1 Introductie DomJudge-Practicum Open Dag UU Bij veel vakken die je volgt tijdens je studie informatica aan de UU, moet je programmeeropdrachten maken. Soms moet je die inleveren zodat ze door de docent
Opgeloste en onopgeloste mysteries in de getaltheorie
Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste
PRIME CLIMB. Speeltijd Ongeveer 10 minuten per speler.
PRIME CLIMB Het mooie, kleurrijke wiskundige spel Prime Climb is een strategisch bordspel voor 2-4 spelers van leeftijd 10. Speeltijd Ongeveer 10 minuten per speler. Inhoud Prime Climb spelbord Vermenigvuldigingstafel
Tweede Toets Security 9 november 2016, , Educ-α.
Tweede Toets Security 9 november 2016, 8.30 10.30, Educ-α. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe je
Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2
Getallen 2 Getallen 2 bestrijkt de uitbreiding van de basisvaardigheden van het rekenen, regels en vaardigheden die in het vmbo en de onderbouw van havo/vwo worden aangeleerd, geoefend en toegepast. Doelgroep
META-kaart vwo3 - domein Getallen en variabelen
META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek
Theorie & Opdrachten
Theorie & Opdrachten Inhoudsopgave INHOUDSOPGAVE 3 1. GEHEIMSCHRIFTEN 4 2. CRYPTOSYSTEMEN 5 3. DOOR ELKAAR SCHUDDEN 6 4. KOLOMMEN 7 5. SUBSTITUTIE ALFABET 8 6. DELERS EN PRIEMGETALLEN 9 7. ALGORITME VAN
Veilig e-mailen. Waarom e-mailen via een beveiligde verbinding? U vertrouwt de verbinding met de e-mailserver van InterNLnet niet
Veilig e-mailen E-mail heeft zich inmiddels ruimschoots bewezen als communicatiemiddel. Het is een snelle en goedkope manier om met anderen waar ook ter wereld te communiceren. Als gevolg hiervan vindt
Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag
Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken
