relativiteitstheorie

Vergelijkbare documenten
Gravitatie en kosmologie

Gravitatie en kosmologie

Gravitatie en kosmologie

Algemene relativiteitstheorie

Gravitatie en kosmologie

Algemene relativiteitstheorie

Algemene relativiteitstheorie

Gravitatie en kosmologie

Algemene relativiteitstheorie

Algemene relativiteitstheorie

Gravitatie en kosmologie

Gravitatie en kosmologie

Gravitatie en kosmologie

Algemene relativiteitstheorie

Speciale relativiteitstheorie

Elementaire Deeltjesfysica

Gravitatie en kosmologie

Gravitatie en kosmologie

Gravitatie en kosmologie

Gravitatie en kosmologie

Gravitatie en kosmologie

Deeltjes en velden. HOVO Cursus. Jo van den Brand 3 oktober

Gravitatie en kosmologie

Opgaven voor Tensoren en Toepassingen. 1 Metrieken en transformatiegedrag

Formule afleiding opgaven bij de cursus Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek

Algemene relativiteitstheorie

Gravitatie en kosmologie

Algemene relativiteitstheorie

Gravitatie en kosmologie

Tentamen: Gravitatie en kosmologie

8 Relativistische sterren

Gravitatie en kosmologie

Wiskunde voor relativiteitstheorie

Een Nieuwe Wereld uit het Niets

Vectoranalyse voor TG

compact weer te geven (ken ook een waarde toe aan n).

Einstein, Euclides van de Fysica Door Prof. Henri Verschelde

Wiskunde voor relativiteitstheorie

Speciale relativiteitstheorie

Wiskunde voor relativiteitstheorie

2 Kromming van een geparametriseerde kromme in het vlak. Veronderstel dat een kromme in het vlak gegeven is door een parametervoorstelling

Tentamen: Gravitatie en kosmologie

Speciale relativiteitstheorie

Het vermoeden van Poincaré

7 De algemene relativiteitstheorie

Niet-euclidische meetkunde. Les 3 Meetkunde op de bol

Indicatie van voorkennis per les Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek

Topologie in R n 10.1

Vectoranalyse voor TG

Vectoranalyse voor TG

Speciale relativiteitstheorie

Wiskunde voor relativiteitstheorie

Gravitatie en kosmologie

Opgaven bij de cursus Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek

Relativiteitstheorie van Einstein: Differentiaal Meetkunde

Eerste orde partiële differentiaalvergelijkingen

Modulen voor Calculus- en Analysevakken

Hoofdstuk 23 Electrische Potentiaal. Copyright 2009 Pearson Education, Inc.

Gravitatie en kosmologie

WI1708TH Analyse 3. College 5 23 februari Challenge the future

Wiskunde voor relativiteitstheorie

Gravitatie en kosmologie

Formule afleiding opgaven bij de cursus Speciale relativiteitstheorie Docent: Dr. H. (Harm) van der Lek

Kromming van ruimtetijd vereist een verdubbeling van het aantal vrijheidsgraden.

2 Kromming van een geparametriseerde kromme in het vlak

Vectoranalyse voor TG

Opgaven bij het college Kwantummechanica 3 Week 14

Definitie van raaklijn aan cirkel: Stelling van raaklijn aan cirkel:

Opgaven voor ART. collegejaar Laat T een of andere matrix voorstellen. Vorm nu het object

Paragraaf 10.1 : Vectoren en lijnen

Laatste nieuws 2DN60 Lineaire algebra en vectorcalculus

TRILLINGEN EN GOLVEN HANDOUT FOURIER

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016

Escher in Het Paleis. Wiskundepakket. Oneindigheid

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse met infinitesimalen

Vectoranalyse voor TG

Vectoranalyse voor TG

Uitwerkingen van de opgaven bij het vormen van ruimte: van Poincaré tot Perelman

7 College 01/12: Electrische velden, Wet van Gauss

Opgaven bij het vormen van ruimte: van Poincaré tot Perelman

Ruimte en tijd: overzicht

Lineaire Algebra voor W 2Y650

Analytische en andere soorten meetkunde van Mavo tot Maple. Utrecht, 9 januari 2016 Wintersymposium KWG Jeroen Spandaw j.g.spandaw@tudelft.

Vectoren en Tensoren; Algemene relativiteitstheorie HOVO Utrecht Docent: Dr. H. (Harm) van der Lek. 1 Inleiding 3

Inleiding tot de dynamica van atmosferen Krachten

Mysteries van de Oerknal, deel 2 Heelalmodellen. samenvatting tot nu: Zwaartekracht afwijking v/d gewone (euclidische, vlakke) meetkunde

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE

De ruimte in de loop van de tijd

Het uitwendig product van twee vectoren

Thermodynamica. Inleiding tot de rol van thermodynamica in de moderne fysica. door. Prof.dr Johannes F.J. van den Brand

Thermodynamica rol in de moderne fysica Jo van den Brand HOVO: 13 november 2014

Hoofdstuk 22 De Wet van Gauss

Paragraaf 14.1 : Vergelijkingen in de meetkunde

Didactische aanpak en motivatie voor de massa impuls tensor

Meetkunde en Fysica. Henk Broer. Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen. Meetkunde en Fysica p.1/22

Zwaartekrachtsgolven. Johan Konter, Niels Pannevis, Sander Kupers. 24 juni Zwaartekrachtsgolven. Johan Konter, Niels Pannevis, Sander Kupers

Het brachistochroonprobleem van een magneet in een niet-uniform magneetveld

Hertentamen WISN102 Wiskundige Technieken 2 Di 17 april 13:30 16:30

Vectoranalyse voor TG

Transcriptie:

Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 3: 19 november 2015 Copyright (C) Vrije Universiteit 2015 Inhoud Speciale relativiteitstheorie Inertiaalsystemen Bewegende waarnemers Relativiteitsprincipe Ruimtetijd Minkowski ruimtetijd Tensoren Gekromde ruimtetijd Algemene coördinaten Covariante afgeleide Algemene relativiteitstheorie Einsteinvergelijkingen Newton als limiet Toepassingen ART Zwarte gaten Kosmologie Gravitatiestraling Copyright (C) Vrije Universiteit 2009 1

Energie-impuls tensor De energie-impuls tensor beschrijft de distributie en stroming van energie- en impulsdichtheid (met eenheid J / m 3 ) in een klein gebiedje van ruimtetijd Definitie Er geldt met is de lokale energiedichtheid inclusief rustmassa is de energiestroom per m 2 loodrecht op i gedeeld door c is de impulsstroom van component i per m 2 loodrecht op j Voorbeeld: deeltjes met massa m en snelheid Impuls Totale energie Deeltjesdichtheid n zonder interactie Energiedichtheid Snelheid (i = 1) Stroom door A in tijd t Voorbeeld van energie-impuls tensor Evenzo En Er geldt is de lokale energiedichtheid inclusief rustmassa is de energiestroom per m 2 loodrecht op i gedeeld door c is de impulsstroom van component i per m 2 loodrecht op j Op tijd t gaan deeltjes met y-component impuls op de x richting met een flow van door oppervlak A loodrecht De impulsstroom van component y per oppervlakte-eenheid door een oppervlak loodrecht op de x richting is Aldus vinden we Dit soort materie noemen we stof, of ook wel dust In de uitdrukking herken je de dichtheid r = nm en het product van snelheden 2

Energie-impuls tensor: `stof Beschouw `stof (engels: dust) Verzameling deeltjes in rust ten opzichte van elkaar Constant viersnelheidsveld U (x) Flux viervector N nu Rustsysteem n en m zijn 0-componenten van viervectoren deeltjesdichtheid in rustsysteem massadichtheid in rustsysteem energiedichtheid in rustsysteem r nm 2 rc 2 rc Bewegend systeem is de N 0 is deeltjesdichtheid N i deeltjesflux in x i richting 0, 0 component van de tensor p N N n 0 0 0 p mu mc 0 0 0 T stof p N mnu U ru U Er is geen gasdruk! Energie-impuls tensor: perfecte vloeistof Perfecte vloeistof (in rustsysteem) r Energiedichtheid Isotrope druk P In rustsysteem T diagonaal, met T 11 T 22 T 33 In tensorvorm (geldig in elke systeem) We hadden Probeer T T stof ru U stof r 2 P U c U We vinden T stof r 2 P U c U Pg Verder geldt 3

Meetkunde Meetkunde is de studie van vormen en ruimtelijke relaties Euclidische meetkunde - som van interne hoeken van een driehoek is 180 o - omtrek van een cirkel met straal R heeft lengte 2pR - een bol met straal R heeft oppervlak A = 4pR 2 Euclidische meetkunde is niet de enige soort meetkunde - Bolyai, Lobachevsky, Gauss vonden andere geometrien Met name Carl Friedrich Gauss (1777 1855) en Bernhard Riemann (1826 1866) hebben belangrijke bijdragen tot de ontwikkeling van meetkunde geleverd. Ze hebben differentiaalmeetkunde gedefinieerd Het bepalen van de geometrische eigenschappen van de ruimte om eens heen is een experimentele onderneming en geen kwestie van wiskunde Differentiaalmeetkunde en lijnelement Lengte van een kromme Euclidisch vlakke meetkunde in 2D - Cartesische coördinaten - deel de kromme op in segmenten - gebruik Pythagoras voor elk segment - sommeer om de hele lengte van de kromme te vinden Neem de limiet naar infinitesimale elementen - dat levert het lijnelement We moeten nu enkel nog weten hoe we een dergelijke integraal moeten berekenen. Als we de lijnelementen optellen moeten we rekening houden met de richting van het lijnelement, want dat geeft verschillende bijdragen dx en dy 4

Differentiaalmeetkunde en lijnelement Lengte van een kromme in Euclidisch 2D vlak De meest eenvoudige oplossing is door gebruik te maken van een geparametriseerde kromme. De coördinaten worden functies van een continu varierende parameter u We hebben dan x(u) en y(u) Voorbeeld: de functie Voorbeeld: de functie Er geldt geeft geeft Gekromde oppervlakken Beschouw 3D Euclidische ruimte Cartesische coördinaten Sferische coördinaten Met dit lijnelement kunnen we weer de lengte van een kromme bepalen in de 3D vlakke ruimte. Hiermee kunnen we de hele 3D Euclidische meetkunde opbouwen. Gauss besefte dat het lijnelement hierbij de sleutel is Wat we nu ook kunnen doen is kijken naar de meetkunde van 2D gekromde vlakken in de 3D vlakke ruimte. Hiertoe stellen we r = R en vinden lijnelement 5

Gekromde oppervlakken Beschouw 2D gekromd oppervlak van een bol Lijnelement Coördinaten zijn en Voorbeeld: reken de omtrek van cirkel C uit Antwoord: is constant, dus Als we dus de straal en omtrek in hetzelfde gekromde oppervlak meten, dan is de omtrek anders dan het Euclidische resultaat De som van de interne hoeken van een driehoek zijn groter dan 180 o De korste weg tussen twee punten is het segment van een cirkel door deze punten, waarvan het middelpunt van de cirkel samenvalt met het middelpunt van de bol. Dat is een grootcirkel Ook zien we dat kromming een intrinsieke eigenschap van het oppervlak is Metriek en Riemannse geometrie We hebben diverse lijnelementen gezien We hebben deze lijnelementen afgeleid uit de ons bekende eigenschappen van deze ruimten Lijnelement wordt uitgedrukt als de som van kwadraten van coördinatenverschillen, in analogie met de Stelling van Pythagoras Met het lijnelement kunnen we de lengten van curven en korste paden bepalen, en daarmee eigenschappen van cirkels en driehoeken, en uiteindelijk de hele meetkunde in een (gekromde) ruimte afleiden Riemann besefte dat je het lijnelement ook als startpunt van een geometrie kunt beschouwen (en dus niet enkel als samenvatting) Een n-dimensionale Riemannse ruimte is een ruimte waarvoor geldt De functies heten de metrische coefficienten en dienen symmetrisch te zijn en er zijn dus n(n+1)/2 onafhankelijke coefficienten De set metrische coefficienten wordt de metriek genoemd, ook wel metrische tensor, en bepaalt de volledige geometrie van de ruimte 6

Connecties en parallel transport Stel: je wilt vectoren op posities P en Q vergelijken Transporteer v P naar Q langs een gekozen pad C zodanig dat je de richting van deze vector behoudt Als de ruimte Euclidisch is en de coördinaten Cartesisch, dan is parallel transporteren eenvoudig, omdat de coördinaten basisvectoren i, j en k globaal zijn Met sferische coördinaten wordt het al lastig, omdat hun basisvectoren van punt tot punt van richting veranderen Connecties en parallel transport We parametriseren het pad met parameter u en beschouwen een 3D Riemannse ruimte Voor de vector v(u) geldt De afgeleide naar u is Kettingregel De term is een vector (voor gekozen j en k) en geeft de verandering van naar en heeft componenten in de richting van elke basisvector We schrijven deze term als De grootheid is de component in de richting van basisvector van de afgeleide van naar. Er zijn n 3 van dergelijke connectiecoefficienten We vinden 7

Connecties en parallel transport Voor parallel transporteren eisen we Voor elke component dient te gelden Als we de componenten van een vector op een bepaald punt op de kromme kennen, dan kunnen deze componenten parallel transporteren naar een naburig punt Het enige dat we nog nodig hebben is een uitdrukking van de connectiecoefficienten in termen van de metriek Voor twee nabij gelegen punten geldt Vergelijk met Connecties en parallel transport Differentieer Vergelijk met Dat levert Hieruit volgt na enige algebra We gebruiken hierbij de contravariante vorm van de metriek. Er geldt Parallel transport van een vector langs een gesloten kromme geeft ons een mogelijkheid om te testen of een geometrie intrinsiek vlak of gekromd is 8

Covariante afgeleide Afgeleide van een vector a is 0-3 stel b is 0 Notatie Covariante afgeleide met componenten Lokaal lorentzframe LLF We bespreken in het volgende de gekromde ruimtetijd Op elke gebeurtenis P in ruimtetijd kunnen we een LLF kiezen: - we zijn vrij-vallend (geen effecten van gravitatie volgens equivalentieprincipe) - in LLF geldt de minkowskimetriek Lokaal euclidisch LLF in gekromde ruimtetijd Op elk punt is raakruimte vlak 9

Kromming en parallel transport Parallelle lijnen snijden in een gekromde ruimte (Euclides vijfde postulaat geldt niet) Parallel transporteren van een vector - projecteer raakvector na elke stap op het lokale raakvlak - rotatie hangt af van kromming en grootte van de lus Wiskundige beschrijving - interval PQ is curve met parameter - vectorveld bestaat op deze curve - raakvector aan de curve is - we eisen dat in een LLF de componenten van constant moeten zijn Parallel transporteren Parallel transporteren Geodeet: lijn, die zo recht als mogelijk is Geodeten Componenten van de viersnelheid Geodetenvergelijking Vier gewone tweede-orde differentiaalvergelijkingen voor de coördinaten en Gekoppeld via de connectiecoëfficiënten Twee randvoorwaarden Ruimtetijd bepaalt de beweging van materie 10

Riemanntensor Beschouw vectorvelden en Transporteer langs Vector verandert met Transporteer langs Beschouw de commutator Commutator is een maat voor het niet sluiten Krommingstensor van Riemann meet het niet sluiten van dubbele gradiënten Beschouw vectorveld Riemanntensor: eigenschappen Metrische tensor bevat de informatie over intrinsieke kromming Eigenschappen Riemanntensor Antisymmetrie Symmetrie Bianchi identiteiten Onafhankelijke componenten: 20 Krommingstensor van Ricci Riccikromming (scalar) Huiswerkopgave om dit alles te demonstreren Beschrijving van het oppervlak van een bol 11

Getijdenkrachten Laat een testdeeltje vallen. Waarnemer in LLF: geen teken van gravitatie Laat twee testdeeltjes vallen. Waarnemer in LLF: differentiële gravitatieversnelling: getijdenkracht Volgens Newton Definieer Gravitationele getijdentensor Einsteinvergelijkingen Twee testdeeltjes zijn initieel parallel t Door kromming van ruimtetijd bewegen ze naar elkaar toe Initieel in rust Op geldt 1 U Tweede-orde afgeleide aan nul vanwege kromming ongelijk 0 P Q x Er geldt Beschrijft relatieve versnelling Volgt uit Newton 12

Einsteinvergelijkingen Wellicht verwachten we dat geldt Echter geen tensorvergelijking (geldig in LLF) Wellicht dient te gelden Einstein 1912 fout tensor scalar Stelsel van 10 p.d.v. voor 10 componenten van Probleem: Vrije keuze: Einsteintensor Energie impuls tensor Bianchi identiteiten Einsteinvergelijkingen Materie vertelt ruimtetijd hoe te krommen 13