Algemene relativiteitstheorie

Maat: px
Weergave met pagina beginnen:

Download "Algemene relativiteitstheorie"

Transcriptie

1 Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek [email protected], [email protected] / Kamer: T.69 Rooster informatie Hoorcollege: dinsdag 13:30 15:15, HG-0G30 (totaal 5 keer) Boek en website Dictaat: in ontwikkeling Zie website URL: Response op college 1

2 Inhoud Speciale relativiteitstheorie Inertiaalsystemen Bewegende waarnemers Relativiteitsprincipe Ruimtetijd Minkowski ruimtetijd Tensoren Gekromde ruimtetijd Algemene coördinaten Covariante afgeleide Algemene relativiteitstheorie Einsteinvergelijkingen Newton als limiet Toepassingen ART Zwarte gaten Kosmologie Gravitatiestraling Copyright (C) Vrije Universiteit 009 Relatieve beweging Einstein 1905: Alle natuurwetten blijven dezelfde (zijn invariant) voor alle waarnemers die eenparig rechtlijnig t.o.v. elkaar bewegen. De lichtsnelheid is invariant heeft voor alle waarnemers dezelfde waarde. Einstein 191 Inertiaalsysteem: objecten bewegen in rechte lijnen als er geen krachten op werken (Newtons eerste wet). Indien een systeem met constante snelheid t.o.v. een inertiaalsysteem beweegt, dan is het zelf ook een inertiaalsyteem. 4

3 Lorentztransformaties Transformaties laten lichtsnelheid invariant Lorentz 190 Waarnemers in O en O bewegen met snelheid v t.o.v. elkaar. Systemen vallen samen op t = t = 0. Waarnemer in S kent (x, y, z, t) toe aan het event. Waarnemer in S kent (x, y, z, t ) toe aan hetzelfde event Wat is het verband tussen de coördinaten voor dit zelfde event? Lorentztransformaties Lorentztransformatie Inverse transformatie (snelheid v verandert van teken) 3

4 Relativiteit van gelijktijdigheid Stel dat in systeem O twee events, A en B, op dezelfde tijd, t A = t B, gebeuren, maar op verschillende plaatsen, x A x B. Invullen levert Events vinden niet simultaan plaats in systeem O Waarnemers O en O hebben verschillend besef van wat het nu is In 1905 werkt Einstein nog met verschillende tijden en 3D ruimten voor beide waarnemers en gebruikt de Lorentztransformaties om de ervaringen (meetgegevens) van beide waarnemers te relateren Er bestaan oneindig veel van deze inertiale waarnemers en evenveel tijden en 3D ruimten Er is één enkele ruimtetijd in de SRT In 1908 introduceerde Minkowski het begrip ruimtetijd: een vierdimensionale wereld Het belang van fotonen m.b.t. structuur van ruimtetijd: empirisch vastgestelde universaliteit van de voortplanting in vacuum Onafhankelijk van bewegingstoestand van de bron golflengte intensiteit polarisatie van EM golven ct deeltje in rust deeltje met willekeurige snelheid deeltje naar rechts bewegend met constante snelheid deeltje met lichtsnelheid 45 o x 4

5 Minkowskiruimte inproduct O waarnemer We kennen de vector toe aan de geordende events en Definitie: (, ) c 1 Afspraak: tijden voor negatief tijden na positief 1 E Dankzij het bestaan van een metriek (inproduct) kunnen we nu afstanden bepalen. Ruimtetijd heeft een metriek c en gelijktijdig als Dat wil zeggen Volgens A: Volgens B: Er geldt Lorentzinvariantie Minkowski-metriek (, ) Definitie: (, ) c 1 Met afspraak over het teken! (, ) c is onafhankelijk van de inertiele waarnemer door 1 (, ) c 1' ' k k 1 1 A1 B1 1 1' k k A B ' A Waarnemer A ' B Waarnemer B 1 1' ' 1 Scalair product is Lorentzinvariant A 1 1' B 1 5

6 Lorentzcoördinaten Definieer basisvector e0 Er geldt ( e0, e0) 1 OE E is verzameling puntgebeurtenissen die gelijktijdig zijn met O (t.o.v. A) Dat is de 3-dim euclidische ruimte op 0 t.o.v. A E is verzameling puntgebeurtenissen die gelijktijdig zijn met Er geldt M OE, O 0 ( l A ) Orthonormaal stelsel vectoren in E met beginpunt O e, e, e 1 3 Er geldt ( e, e ) 1 en ( e, e ) 1 1 En ook ( e0, e i ) 0 i j ij s 1 s E e 0 0 s O 1 s s l A Waarnemer A (inertieel) e 1 Minkowski meetkunde Basisvectoren e met 0,1,,3 1 als 0 We hebben gevonden dat ( e, e) 1 als i 0 overige gevallen Nieuw symbool Minkowskimetriek ( e, e ) Het invariante lijnelement Notatie bevat metriek en coordinaten Voor cartesische coordinaten Inverse Lijnelement uitschrijven Dezelfde tijd: Ruimtelijke termen: Stelling van ythagoras Dezelfde plaats: het lijnelement is een maat voor de tijd verstreken tussen twee gebeurtenissen voor een waarnemer die in rust is ten opzichte van deze gebeurtenissen Dan geldt 6

7 Minkowskiruimte ct Ruimtetijd geometrie ( s) ( ct) x Welke zijde van driehoek ABC is het langst? Welk de kortste? Wat zijn de lengten? AB = 5, BC = 3, AC = wortel( ) = 4 A C C B A B x Wat is het kortste pad tussen punten A en C? De rechte lijn tussen A en C, of het pad ABC? Rechte pad AC is kortste pad tussen A en C Idem voor driehoek A B C A B = B C = wortel(-3 +3 ) = 0 en A C = 6 ad is A B C met lengte 0. ( s) ( ct) x 0 x c t Tweelingparadox ( s) ( ct) x ( c ) Tweelingparadox ct Smith en Jones zijn tweelingen, beiden 30 jaar oud. Jones vliegt naar Sirius en reist met 8/10 van de lichtsnelheid. Als hij Sirius bereikt, komt hij meteen terug. Jones, gaat snel, maar Sirius is ver. Jones is 0 jaar weg en als hij terugkeert is Smith 50. Hoe oud is Jones? C=(0,0) B=(10,8) S J A=(0,0) x ( s) ( ct) x ( c ) 7

8 Minkowskiruimte: causale structuur tijdachtig: ds negatief lichtachtig: ds = 0 toekomst ruimteachtig: ds positief verleden Binnen de lichtkegel kunnen gebeurtenissen causaal verbonden zijn met gebeurtenis. Er buiten kan geen causaal verband bestaan. Minkowskiruimte Bewegende waarnemers s c t x v ct' ( ct x) c x' ( x vt) Voor de x as: stel ct =0. Dan volgt ct = bx. Voor de schaal op de x as: stel x =1 en ct =0. Dan volgt x=. Voor de ct as: stel x =0. Dan volgt ct = x/b. Voor de schaal op de ct as: stel ct =1 en x =0. Dan volgt ct=. 8

9 Minkowski ruimtetijd Gebeurtenis (event) 1 heeft coöordinaten Waarnemer O: (ct 1, x 1 ) Waarnemer O : (ct 1, x 1 ) Lees (ct 1, x 1 ) in O af door lijnen // aan ct en x assen te trekken Voor waarnemer O gebeurt event 1 op dezelfde tijd als event en op dezelfde plaats als event 3 Voor waarnemer O is de volgorde van de events: 0,, 3, 1 event 0 op (0,0) Volgorde voor gebeurtenissen en 3 is verschillend voor beide waarnemers Dit lijkt schokkend: het kan ons begrip van causaliteit omver werpen ct event event 3 event 1 Voor waarnemer O is de volgorde van de events: 0 en 3 gelijktijdig, dan 1 en gelijktijdig De SRT respecteert causaliteit mits we geen signalen met snelheden > c toestaan! Lichtkegels zijn van groot belang: event in kegel van 0, en 1 in kegel van 3 ct 1 x 1 x 9

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek Email: [email protected], [email protected]

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: september 015 Copyright (C) Vrije Universiteit 009 Inhoud Inleiding Overzicht Klassieke mechanica

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 30 september 013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 29 September 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica

Nadere informatie

Deeltjes en velden. HOVO Cursus. Jo van den Brand 3 oktober

Deeltjes en velden. HOVO Cursus. Jo van den Brand 3 oktober Deeltjes en velden HOVO Cursus Jo van den Brand 3 oktober 013 [email protected] Docent informatie Overzicht Jo van den Brand & Gideon Koekoek Email: [email protected] en [email protected] 060 539 484 / 00 59 000

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Jeroen Meidam Speciale relativiteitstheorie: 1 en 8 oktober 2012 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 7 oktober 2013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 8 oktober 013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Elementaire Deeltjesfysica

Elementaire Deeltjesfysica Elementaire Deeltjesfysica FEW Cursus Jo van den Brand 10 November, 2009 Structuur der Materie Inhoud Inleiding Deeltjes Interacties Relativistische kinematica Lorentz transformaties Viervectoren Energie

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Laura van der Schaaf Differentiaaltopologie: 15 september 2014 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand Les 2: 8 september 2015 Copyright (C) Vrije Universiteit 2009 Overzicht Docent informatie Jo van den Brand, Joris van Heijningen Email: [email protected],

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 2: 12 november 2015 Copyright (C) Vrije Universiteit 2015 Ruimte: verzameling met structuur 3D varieteit kan lokaal Euclidisch zijn 4D ruimtetijd

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 2: 12 november 2015 Copyright (C) Vrije Universiteit 2015 Ruimte: verzameling met structuur 3D varieteit kan lokaal Euclidisch zijn 4D ruimtetijd

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie Speciale relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht Les 3 en 4: Lorentz Transformatie en Mechanica Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Programma 1 1.

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Mark Beker Einsteinvergelijkingen: 7 oktober 009 Traagheid van gasdruk SRT: hoe hoger de gasdruk, des te moeilijker is het om het gas te versnellen

Nadere informatie

relativiteitstheorie

relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 3: 19 november 2015 Copyright (C) Vrije Universiteit 2015 Inhoud Speciale relativiteitstheorie Inertiaalsystemen Bewegende waarnemers Relativiteitsprincipe

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie Speciale relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht Les 5 en 6: Tensor Formulering Elektromagnetisme Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Programma 1 1.

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen ART: 3 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Sferische oplossingen: 10 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 3 en 4: Covariant differentiëren en kromming Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Programma 1 1.

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 1 en 2: Klassieke gravitatie, geodeten Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Programma 1 1. Kepler

Nadere informatie

Relativiteit. Relativistische Mechanica 1

Relativiteit. Relativistische Mechanica 1 Relativiteit University Physics Hoofdstuk 37 Relativistische Mechanica 1 Relativiteit beweging voorwerp in 2 verschillende inertiaal stelsels l relateren Galileo Galileïsche transformatie 2 Transformatie

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 3 en 4: Covariant differentiëren en kromming Dr. Harm van der Lek [email protected] Natuurkunde hobbyist g 00 Programma

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 6 oktober 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke echanica

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 1 en 2: Klassieke gravitatie, geodeten Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Programma 1 1. Kepler

Nadere informatie

Tijd & causaliteit Relativiteitstheorie Pijl van de tijd Samenvatting. Tijd in de fysica. Paul Koerber

Tijd & causaliteit Relativiteitstheorie Pijl van de tijd Samenvatting. Tijd in de fysica. Paul Koerber Tijd in de fysica Paul Koerber Postdoctoraal Onderzoeker FWO Instituut voor Theoretische Fysica, K.U.Leuven Kunsthumaniora Brussel, 2 maart 2011 1 / 16 Wat is tijd? Een coördinaat om de positie van een

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie Speciale relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht Les 1 en 2: Elektromagnetisme en licht Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Overzicht Les 1 en 2: Elektromagnetisme

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie Speciale relativiteitstheorie en hoe u die zelf had kunnen bedenken. Utrecht Les 1 en 2: Elektromagnetisme en licht Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Overzicht Les 1 en 2: Elektromagnetisme

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand Relativistische inflatie: 3 december 2012 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme Quantumfenomenen Neutronensterren

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Kromlijnige coördinaten: 28 oktober 2013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme Quantumfenomenen

Nadere informatie

Een series colleges over de Speciale Relativiteit theorie van Einstein, uitgebreid met onderwerpen uit de Klassieke Mechanica Prof.dr. S.

Een series colleges over de Speciale Relativiteit theorie van Einstein, uitgebreid met onderwerpen uit de Klassieke Mechanica Prof.dr. S. Speciale relativiteit Een series colleges over de Speciale Relativiteit theorie van Einstein, uitgebreid met onderwerpen uit de Klassieke Mechanica Prof.dr. S. Bentvelsen 1 Even voorstellen S. Bentvelsen

Nadere informatie

HOVO: Gravitatie en kosmologie OPGAVEN WEEK 1

HOVO: Gravitatie en kosmologie OPGAVEN WEEK 1 HOVO: Gravitatie en kosmologie OPGAVEN WEEK Opgave : Causaliteit In het jaar 300 wordt door de Aardse Federatie een ruimteschip naar een Aardse observatiepost op de planeet P47 gestuurd. Op de maan van

Nadere informatie

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2

Nadere informatie

Cursus deeltjesfysica

Cursus deeltjesfysica Cursus deeltjesfysica Bijeenkomst 1 (5 maart 2014) de speciale relativiteitstheorie prof Stan Bentvelsen en prof Jo van den Brand Nikhef - Science Park 105-1098 XG Amsterdam [email protected] - [email protected]

Nadere informatie

Docentencursus relativiteitstheorie

Docentencursus relativiteitstheorie Docentencursus relativiteitstheorie Uitwerkingen opgaven bijeenkomst 1, "Waarom relativiteit?" 18 september 2013 De opgaven die met een "L" zijn aangegeven, zijn op leerlingenniveau dit zijn dus opgaven

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Kromlijnige coördinaten: 13 oktober 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica

Nadere informatie

Relativiteitstheorie met de computer

Relativiteitstheorie met de computer Relativiteitstheorie met de computer Jan Mooij Mendelcollege Haarlem Met een serie eenvoudige grafiekjes wordt de (speciale) relativiteitstheorie verduidelijkt. In vijf stappen naar de tweelingparadox!

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie 1 Gravitatie en kosmologie door Prof.dr Johannes F.J. van den Brand Drs. Jeroen Meidam Afdeling Natuurkunde en Sterrenkunde Faculteit der Exacte Wetenschappen Vrije Universiteit Amsterdam en Nationaal

Nadere informatie

Einstein, Euclides van de Fysica Door Prof. Henri Verschelde

Einstein, Euclides van de Fysica Door Prof. Henri Verschelde Einstein, Euclides van de Fysica Door Prof. Henri Verschelde Albert Einstein en Euclides Geboren te Ulm op 14 maart 1879 Als kind geinteresseerd in Wiskunde en wetenschappen:magneten,electromotoren, wiskundige

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: [email protected] studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 9 J.Keijsper (TUE)

Nadere informatie

Opgaven bij de cursus Relativiteitstheorie wiskunde voorkennis Najaar 2018 Docent: Dr. H. (Harm) van der Lek

Opgaven bij de cursus Relativiteitstheorie wiskunde voorkennis Najaar 2018 Docent: Dr. H. (Harm) van der Lek Opgaven bij de cursus Relativiteitstheorie wiskunde voorkennis Najaar 2018 Docent: Dr. H. (Harm) van der Lek Uitwerkingen worden beschikbaar gesteld op de dinsdagavond voorafgaande aan het volgende college

Nadere informatie

Formule afleiding opgaven bij de cursus Speciale relativiteitstheorie Docent: Dr. H. (Harm) van der Lek

Formule afleiding opgaven bij de cursus Speciale relativiteitstheorie Docent: Dr. H. (Harm) van der Lek Formule afleiding opgaven bij de cursus Speciale relativiteitstheorie Docent: Dr. H. (Harm) van der Lek Dit document bevat aanwijzingen/aanmoedigingen voor het zelf doen van de afleidingen uit het cursusmateriaal.

Nadere informatie

2 SPECIALE RELATIVITEITSTHEORIE

2 SPECIALE RELATIVITEITSTHEORIE 2 SPECIALE RELATIVITEITSTHEORIE 35 2 SPECIALE RELATIVITEITSTHEORIE 2.1 Historishe introdutie en Einsteins postulaten De relativiteitstheorie is geboren in het prille begin van de twintigste eeuw. De negentiende

Nadere informatie

Speciale relativiteitstheorie: de basisconcepten in een notedop

Speciale relativiteitstheorie: de basisconcepten in een notedop Speciale relativiteitstheorie: de basisconcepten in een notedop Speciale relativiteitstheorie:... 1 de basisconcepten in een notedop... 1 1. Klassieke Relativiteit... 1 1.1 Twee waarnemers zien een verschillende

Nadere informatie

Speciale Relativiteitstheorie

Speciale Relativiteitstheorie NS106b/2014-2015 Versie 31/07/2014 Speciale Relativiteitstheorie Stefan Vandoren Instituut voor Theoretische Fysica Universiteit Utrecht Dictaat Dit is een collegedictaat in voorbereiding. De tekst is

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie 1 Gravitatie en kosmologie door Prof.dr Johannes F.J. van den Brand Afdeling Natuurkunde en Sterrenkunde Faculteit der Exacte Wetenschappen Vrije Universiteit Amsterdam en Nationaal instituut voor subatomaire

Nadere informatie

Ruimtewiskunde. college. Het inwendig- en het uitwendig product. Vandaag. Hoeken Orthogonaliteit en projecties. Toepassing: magnetische velden

Ruimtewiskunde. college. Het inwendig- en het uitwendig product. Vandaag. Hoeken Orthogonaliteit en projecties. Toepassing: magnetische velden college 2 - en het uitwendig collegejaar college build slides Vandaag : : : : 6-7 2 30 mei 207 30 2 3 4 5 Hoeken Orthogonaliteit en projecties Toepassing: magnetische velden.6-7[2] vandaag meetkundig Section

Nadere informatie

Gravitatie en Kosmologie

Gravitatie en Kosmologie Gravitatie en Kosmologie FEW cursus Jo van den Brand & Jeroen Meidam Les 1: 3 september 2012 Parallax Meten van afstand Meet positie van object ten opzichte van achtergrond De parallaxhoek q, de afstand

Nadere informatie

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:

Nadere informatie

De Speciale Relativiteits Theorie (SRT) en Klok- en Tweelingparadox. Metius Werkgroep Theoretische Weer- en Sterrenkunde

De Speciale Relativiteits Theorie (SRT) en Klok- en Tweelingparadox. Metius Werkgroep Theoretische Weer- en Sterrenkunde De Speciale Relativiteits Theorie (SRT) en Klok- en Tweelingparadox Metius Werkgroep Theoretische Weer- en Sterrenkunde Juli 2010 Inhoud Inleiding SRT postulaten en Lorentz transformatie Tijddilatatie

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie versie 13 februari 013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c 1 Lorentztransformaties In een inertiaalstelsel bewegen alle vrije deeltjes met een

Nadere informatie

Het Quantum Universum. Cygnus Gymnasium

Het Quantum Universum. Cygnus Gymnasium Het Quantum Universum Cygnus Gymnasium 2014-2015 Wat gaan we doen? Fundamentele natuurkunde op de allerkleinste en de allergrootste schaal. Groepsproject als eindopdracht: 1) Bedenk een fundamentele wetenschappelijk

Nadere informatie

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016 Kwantummechanica HOVO cursus Jo van den Brand Lecture 4: 13 oktober 2016 Copyright (C) VU University Amsterdam 2016 Overzicht Algemene informatie Jo van den Brand Email: [email protected] 0620 539 484 / 020

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Mark Beker Relativistische kosmologie: 19 november 2009 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme Quantumfenomenen

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie versie 1 september 2013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c Hoofdstuk 1 Inleiding Natuurkunde is de wetenschap van de materie en haar wisselwerkingen.

Nadere informatie

Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde Andrré van der Hoeven Docent natuurkunde Emmauscollege Rotterdam

Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde Andrré van der Hoeven Docent natuurkunde Emmauscollege Rotterdam Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde André van der Hoeven Docent natuurkunde Emmauscollege Rotterdam Einstein s speciale relativiteitstheorie, maarr dan begrijpelijk

Nadere informatie

Lengte van een pad in de twee dimensionale Euclidische ruimte

Lengte van een pad in de twee dimensionale Euclidische ruimte Lengte van een pad in de twee dimensionale Euclidische ruimte Bekijk een willekeurig pad van naar. Verdeel het pad in kleine stukjes die elk voor zich als rechtlijnig beschouwd kunnen worden. De lengte

Nadere informatie

De speciale relativiteitstheorie. 1. Inleiding

De speciale relativiteitstheorie. 1. Inleiding De speciale relativiteitstheorie 1. Inleiding In de fysica zijn er waarschijnlijk weinig theorieën die de vorige eeuw zoveel tot de verbeelding van de mensen gesproken hebben als de relativiteitstheorie

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: [email protected] http://www.win.tue.nl/wsk/onderwijs/2y650 1 Herhaling: opspansel De vectoren v 1,..., v k V spannen

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand Sferische oplossingen: 10 november 2009 Ontsnappingssnelheid Mitchell (1787); Laplace (± 1800) Licht kan niet ontsnappen van een voldoend zwaar lichaam

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie HOVO Utrecht Les 1: Goniometrie en vectoren Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Overzicht colleges 1. College 1 1. Goniometrie 2. Vectoren 2. College

Nadere informatie

RELATIVITEIT. 1. Inleiding. 2. Lorentz en Poincaré

RELATIVITEIT. 1. Inleiding. 2. Lorentz en Poincaré RELATIVITEIT N.G. SCHULTHEISS. Inleiding In deze module wordt er uitgelegd hoe een natuurkundige gebeurtenis door vershillende waarnemers wordt waargenomen. Iedere waarnemer heeft een eigen assenstelsel

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie Speciale relativiteitstheorie De drie vragen van Einstein Wat is licht? Wat is massa? Wat is tijd? In 1905, Einstein was toen 26 jaar! Klassiek: wat is licht? Licht is een golf, die naar alle kanten door

Nadere informatie

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 2: September 29, 2016

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 2: September 29, 2016 Kwantummechanica HOVO cursus Jo van den Brand Lecture 2: September 29, 2016 Copyright (C) VU University Amsterdam 2016 Overzicht Algemene informatie Jo van den Brand Email: [email protected] 0620 539 484 /

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Zwarte gaten: 17 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica Galileo,

Nadere informatie

4 Wiskunde I - Dierentiaaltopologie

4 Wiskunde I - Dierentiaaltopologie 4 WISKUNDE I - DIFFERENTIAALTOPOLOGIE 59 4 Wiskunde I - Dierentiaaltopologie In een ruimte zijn een punt, scalair en een vector voorbeelden van topologische objecten. Als de scalair of vector kan variëren

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand Relativistische kosmologie: 24 november 2014 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme Quantumfenomenen Neutronensterren

Nadere informatie

Relativiteitstheorie. Wat zijn de eigenschappen van ruimte en tijd?

Relativiteitstheorie. Wat zijn de eigenschappen van ruimte en tijd? Relativiteitstheorie D. G.B.J. Dieks Wat zijn de eigenschappen van ruimte en tijd? In 1905 publiceerde Albert Einstein een artikel over `De elektrodynamica van bewegende lichamen'. De titel suggereert

Nadere informatie

Tentamen - uitwerkingen

Tentamen - uitwerkingen Tentamen - uitwerkingen Mechanica en Relativiteitstheorie voor TW 5 april 06 Kennisvragen - 0 punten a) Geef de drie behoudswetten van de klassieke mechanica, en geef voor elk van de drie aan onder welke

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Jeroen Meidam Les 1: 3 september 2012 Overzicht Docent informatie Jo van den Brand, Jeroen Meidam Email: [email protected], [email protected] 0620 539

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie HOVO Utrecht Les 3: Integraalrekening en lineaire vormen Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Programma 3.1.1 Goniometrie Matrixen Integraal rekening

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie Utrecht Les : Goniometrie en vectoren Dr. Harm van der Lek [email protected] Natuurkunde hobbyist verzicht colleges. College. Goniometrie 2. Vectoren 2. College 2. Matrixen

Nadere informatie

Prof.dr. A. Achterberg, IMAPP

Prof.dr. A. Achterberg, IMAPP Prof.dr. A. Achterberg, IMAPP www.astro.ru.nl/~achterb/ Waarnemingen die de basis vormen van het Oerknalmodel - Vluchtsnelheid verre sterrenstelsels - Kosmische Achtergrondstraling - Voorwereldlijke Nucleosynthese

Nadere informatie

KLASSIEKE MECHANICA 2 ANALYTISCHE MECHANICA 7 RELATIVISTISCHE MECHANICA 14 KWANTUMMECHANICA 26 THERMODYNAMICA 33 ELEKTROMAGNETISME 35

KLASSIEKE MECHANICA 2 ANALYTISCHE MECHANICA 7 RELATIVISTISCHE MECHANICA 14 KWANTUMMECHANICA 26 THERMODYNAMICA 33 ELEKTROMAGNETISME 35 NATUURKUNDE 1 KLASSIEKE MECHANICA 2 De wetten van Newton Energie Gravitatie Rotatie ANALYTISCHE MECHANICA 7 Actie De Lagrangiaan Het principe van de stationaire actie Het formalisme van Euler en Lagrange

Nadere informatie

Bewijzen en toegiften

Bewijzen en toegiften Bewijzen en toegiften 1 Het bewijs van Mermin voor het optellen van snelheden W op een perron ziet W in een treinwagon passeren met snelheid v. W schiet een kogel af met snelheid u en stuurt tegelijkertijd

Nadere informatie

experimenteren met Zwarte Gaten Eigenschappen van Zwarte Gaten tot nu HOVO2016, Utrecht 15 Juli 2016 Speciale RelativiteitsTheorie

experimenteren met Zwarte Gaten Eigenschappen van Zwarte Gaten tot nu HOVO2016, Utrecht 15 Juli 2016 Speciale RelativiteitsTheorie experimenteren met Zwarte Gaten II Zwarte Gaten en de Algemene RelativiteitsTheorie Eigenschappen van Zwarte Gaten tot nu massa-concentratie, gekenmerkt vanaf afstand door een horizon waar ontsnappingsnelheid

Nadere informatie

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen [email protected]

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Speciale rela*viteit Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen [email protected] Albert Einstein (1879 1955) Einstein s grensverleggende papers (1905): De speciale

Nadere informatie

Zwaartekrachtsgolven. Johan Konter, Niels Pannevis, Sander Kupers. 24 juni 2006. Zwaartekrachtsgolven. Johan Konter, Niels Pannevis, Sander Kupers

Zwaartekrachtsgolven. Johan Konter, Niels Pannevis, Sander Kupers. 24 juni 2006. Zwaartekrachtsgolven. Johan Konter, Niels Pannevis, Sander Kupers 24 juni 2006 Inleiding 1805 Laplace 1916 Einstein 1950 Bondi 1993 Nobelprijs: Hulse & Taylor voor meten aan PSR 1916+13. Figuur: De golvende ruimte Concept van Ruimtetijd gebogen door massa Eindige lichtsnelheid

Nadere informatie

Analytische Meetkunde. Lieve Houwaer, Unit informatie, team wiskunde

Analytische Meetkunde. Lieve Houwaer, Unit informatie, team wiskunde Analytische Meetkunde Lieve Houwaer, Unit informatie, team wiskunde . VECTOREN EN RECHTEN.. Vectoren... Het vectorbegrip De verzameling punten van het vlak noteren we door π. Kies in het vlak π een vast

Nadere informatie

Speciale Relativiteitstheorie

Speciale Relativiteitstheorie Speciale Relativiteitstheorie Prof. Dr J.J. Engelen NIKHEF/Onderzoekinstituut HEF met medewerking van Drs. B. Mooij, Dr E. de Wolf, Drs. A. Heijboer Inhoudsopgave 1 Inleiding 3 2 De Galileitransformatie

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: [email protected] studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 8 J.Keijsper (TUE)

Nadere informatie

De lichtsnelheid kromt de ruimte. Mogelijke verklaring voor de grens van het heelal

De lichtsnelheid kromt de ruimte. Mogelijke verklaring voor de grens van het heelal 1 De lichtsnelheid kromt de ruimte Mogelijke verklaring voor de grens van het heelal Inleiding 2 De lichtsnelheid, zo snel als 300.000.000 meter per seconde, heeft wellicht grote gevolgen voor de omvang

Nadere informatie

Ruimte, Ether, Lichtsnelheid en de Speciale Relativiteitstheorie. Een korte inleiding:

Ruimte, Ether, Lichtsnelheid en de Speciale Relativiteitstheorie. Een korte inleiding: 1 Ruimte, Ether, Lichtsnelheid en de Speciale Relativiteitstheorie. 23-09-2015 -------------------------------------------- ( [email protected]) Een korte inleiding: Is Ruimte zoiets als Leegte, een

Nadere informatie

Formule afleiding opgaven bij de cursus Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek

Formule afleiding opgaven bij de cursus Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek Formule afleiding opgaven bij de cursus Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek Dit document bevat aanwijzingen/aanmoedigingen voor het zelf doen van de afleidingen uit het curusmateriaal.

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie