Algemene relativiteitstheorie
|
|
|
- Martina van de Velde
- 10 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek [email protected], [email protected] / Kamer: T.69 Rooster informatie Hoorcollege: dinsdag 13:30 15:15, HG-0G30 (totaal 5 keer) Boek en website Dictaat: in ontwikkeling Zie website URL: Response op college 1
2 Inhoud Speciale relativiteitstheorie Inertiaalsystemen Bewegende waarnemers Relativiteitsprincipe Ruimtetijd Minkowski ruimtetijd Tensoren Gekromde ruimtetijd Algemene coördinaten Covariante afgeleide Algemene relativiteitstheorie Einsteinvergelijkingen Newton als limiet Toepassingen ART Zwarte gaten Kosmologie Gravitatiestraling Copyright (C) Vrije Universiteit 009 Relatieve beweging Einstein 1905: Alle natuurwetten blijven dezelfde (zijn invariant) voor alle waarnemers die eenparig rechtlijnig t.o.v. elkaar bewegen. De lichtsnelheid is invariant heeft voor alle waarnemers dezelfde waarde. Einstein 191 Inertiaalsysteem: objecten bewegen in rechte lijnen als er geen krachten op werken (Newtons eerste wet). Indien een systeem met constante snelheid t.o.v. een inertiaalsysteem beweegt, dan is het zelf ook een inertiaalsyteem. 4
3 Lorentztransformaties Transformaties laten lichtsnelheid invariant Lorentz 190 Waarnemers in O en O bewegen met snelheid v t.o.v. elkaar. Systemen vallen samen op t = t = 0. Waarnemer in S kent (x, y, z, t) toe aan het event. Waarnemer in S kent (x, y, z, t ) toe aan hetzelfde event Wat is het verband tussen de coördinaten voor dit zelfde event? Lorentztransformaties Lorentztransformatie Inverse transformatie (snelheid v verandert van teken) 3
4 Relativiteit van gelijktijdigheid Stel dat in systeem O twee events, A en B, op dezelfde tijd, t A = t B, gebeuren, maar op verschillende plaatsen, x A x B. Invullen levert Events vinden niet simultaan plaats in systeem O Waarnemers O en O hebben verschillend besef van wat het nu is In 1905 werkt Einstein nog met verschillende tijden en 3D ruimten voor beide waarnemers en gebruikt de Lorentztransformaties om de ervaringen (meetgegevens) van beide waarnemers te relateren Er bestaan oneindig veel van deze inertiale waarnemers en evenveel tijden en 3D ruimten Er is één enkele ruimtetijd in de SRT In 1908 introduceerde Minkowski het begrip ruimtetijd: een vierdimensionale wereld Het belang van fotonen m.b.t. structuur van ruimtetijd: empirisch vastgestelde universaliteit van de voortplanting in vacuum Onafhankelijk van bewegingstoestand van de bron golflengte intensiteit polarisatie van EM golven ct deeltje in rust deeltje met willekeurige snelheid deeltje naar rechts bewegend met constante snelheid deeltje met lichtsnelheid 45 o x 4
5 Minkowskiruimte inproduct O waarnemer We kennen de vector toe aan de geordende events en Definitie: (, ) c 1 Afspraak: tijden voor negatief tijden na positief 1 E Dankzij het bestaan van een metriek (inproduct) kunnen we nu afstanden bepalen. Ruimtetijd heeft een metriek c en gelijktijdig als Dat wil zeggen Volgens A: Volgens B: Er geldt Lorentzinvariantie Minkowski-metriek (, ) Definitie: (, ) c 1 Met afspraak over het teken! (, ) c is onafhankelijk van de inertiele waarnemer door 1 (, ) c 1' ' k k 1 1 A1 B1 1 1' k k A B ' A Waarnemer A ' B Waarnemer B 1 1' ' 1 Scalair product is Lorentzinvariant A 1 1' B 1 5
6 Lorentzcoördinaten Definieer basisvector e0 Er geldt ( e0, e0) 1 OE E is verzameling puntgebeurtenissen die gelijktijdig zijn met O (t.o.v. A) Dat is de 3-dim euclidische ruimte op 0 t.o.v. A E is verzameling puntgebeurtenissen die gelijktijdig zijn met Er geldt M OE, O 0 ( l A ) Orthonormaal stelsel vectoren in E met beginpunt O e, e, e 1 3 Er geldt ( e, e ) 1 en ( e, e ) 1 1 En ook ( e0, e i ) 0 i j ij s 1 s E e 0 0 s O 1 s s l A Waarnemer A (inertieel) e 1 Minkowski meetkunde Basisvectoren e met 0,1,,3 1 als 0 We hebben gevonden dat ( e, e) 1 als i 0 overige gevallen Nieuw symbool Minkowskimetriek ( e, e ) Het invariante lijnelement Notatie bevat metriek en coordinaten Voor cartesische coordinaten Inverse Lijnelement uitschrijven Dezelfde tijd: Ruimtelijke termen: Stelling van ythagoras Dezelfde plaats: het lijnelement is een maat voor de tijd verstreken tussen twee gebeurtenissen voor een waarnemer die in rust is ten opzichte van deze gebeurtenissen Dan geldt 6
7 Minkowskiruimte ct Ruimtetijd geometrie ( s) ( ct) x Welke zijde van driehoek ABC is het langst? Welk de kortste? Wat zijn de lengten? AB = 5, BC = 3, AC = wortel( ) = 4 A C C B A B x Wat is het kortste pad tussen punten A en C? De rechte lijn tussen A en C, of het pad ABC? Rechte pad AC is kortste pad tussen A en C Idem voor driehoek A B C A B = B C = wortel(-3 +3 ) = 0 en A C = 6 ad is A B C met lengte 0. ( s) ( ct) x 0 x c t Tweelingparadox ( s) ( ct) x ( c ) Tweelingparadox ct Smith en Jones zijn tweelingen, beiden 30 jaar oud. Jones vliegt naar Sirius en reist met 8/10 van de lichtsnelheid. Als hij Sirius bereikt, komt hij meteen terug. Jones, gaat snel, maar Sirius is ver. Jones is 0 jaar weg en als hij terugkeert is Smith 50. Hoe oud is Jones? C=(0,0) B=(10,8) S J A=(0,0) x ( s) ( ct) x ( c ) 7
8 Minkowskiruimte: causale structuur tijdachtig: ds negatief lichtachtig: ds = 0 toekomst ruimteachtig: ds positief verleden Binnen de lichtkegel kunnen gebeurtenissen causaal verbonden zijn met gebeurtenis. Er buiten kan geen causaal verband bestaan. Minkowskiruimte Bewegende waarnemers s c t x v ct' ( ct x) c x' ( x vt) Voor de x as: stel ct =0. Dan volgt ct = bx. Voor de schaal op de x as: stel x =1 en ct =0. Dan volgt x=. Voor de ct as: stel x =0. Dan volgt ct = x/b. Voor de schaal op de ct as: stel ct =1 en x =0. Dan volgt ct=. 8
9 Minkowski ruimtetijd Gebeurtenis (event) 1 heeft coöordinaten Waarnemer O: (ct 1, x 1 ) Waarnemer O : (ct 1, x 1 ) Lees (ct 1, x 1 ) in O af door lijnen // aan ct en x assen te trekken Voor waarnemer O gebeurt event 1 op dezelfde tijd als event en op dezelfde plaats als event 3 Voor waarnemer O is de volgorde van de events: 0,, 3, 1 event 0 op (0,0) Volgorde voor gebeurtenissen en 3 is verschillend voor beide waarnemers Dit lijkt schokkend: het kan ons begrip van causaliteit omver werpen ct event event 3 event 1 Voor waarnemer O is de volgorde van de events: 0 en 3 gelijktijdig, dan 1 en gelijktijdig De SRT respecteert causaliteit mits we geen signalen met snelheden > c toestaan! Lichtkegels zijn van groot belang: event in kegel van 0, en 1 in kegel van 3 ct 1 x 1 x 9
Algemene relativiteitstheorie
Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek Email: [email protected], [email protected]
Gravitatie en kosmologie
Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: september 015 Copyright (C) Vrije Universiteit 009 Inhoud Inleiding Overzicht Klassieke mechanica
Gravitatie en kosmologie
Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 30 september 013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme
Gravitatie en kosmologie
Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 29 September 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica
Deeltjes en velden. HOVO Cursus. Jo van den Brand 3 oktober
Deeltjes en velden HOVO Cursus Jo van den Brand 3 oktober 013 [email protected] Docent informatie Overzicht Jo van den Brand & Gideon Koekoek Email: [email protected] en [email protected] 060 539 484 / 00 59 000
Gravitatie en kosmologie
Gravitatie en kosmologie FEW Cursus Jo van den Brand & Jeroen Meidam Speciale relativiteitstheorie: 1 en 8 oktober 2012 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme
Gravitatie en kosmologie
Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 7 oktober 2013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme
Gravitatie en kosmologie
Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 8 oktober 013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme
Elementaire Deeltjesfysica
Elementaire Deeltjesfysica FEW Cursus Jo van den Brand 10 November, 2009 Structuur der Materie Inhoud Inleiding Deeltjes Interacties Relativistische kinematica Lorentz transformaties Viervectoren Energie
Gravitatie en kosmologie
Gravitatie en kosmologie FEW cursus Jo van den Brand & Laura van der Schaaf Differentiaaltopologie: 15 september 2014 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme
Gravitatie en kosmologie
Gravitatie en kosmologie FEW cursus Jo van den Brand Les 2: 8 september 2015 Copyright (C) Vrije Universiteit 2009 Overzicht Docent informatie Jo van den Brand, Joris van Heijningen Email: [email protected],
Algemene relativiteitstheorie
Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 2: 12 november 2015 Copyright (C) Vrije Universiteit 2015 Ruimte: verzameling met structuur 3D varieteit kan lokaal Euclidisch zijn 4D ruimtetijd
Algemene relativiteitstheorie
Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 2: 12 november 2015 Copyright (C) Vrije Universiteit 2015 Ruimte: verzameling met structuur 3D varieteit kan lokaal Euclidisch zijn 4D ruimtetijd
Speciale relativiteitstheorie
Speciale relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht Les 3 en 4: Lorentz Transformatie en Mechanica Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Programma 1 1.
Gravitatie en kosmologie
Gravitatie en kosmologie FEW cursus Jo van den Brand & Mark Beker Einsteinvergelijkingen: 7 oktober 009 Traagheid van gasdruk SRT: hoe hoger de gasdruk, des te moeilijker is het om het gas te versnellen
relativiteitstheorie
Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 3: 19 november 2015 Copyright (C) Vrije Universiteit 2015 Inhoud Speciale relativiteitstheorie Inertiaalsystemen Bewegende waarnemers Relativiteitsprincipe
Speciale relativiteitstheorie
Speciale relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht Les 5 en 6: Tensor Formulering Elektromagnetisme Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Programma 1 1.
Gravitatie en kosmologie
Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen ART: 3 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange
Gravitatie en kosmologie
Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Sferische oplossingen: 10 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica
Algemene relativiteitstheorie
Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 3 en 4: Covariant differentiëren en kromming Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Programma 1 1.
Algemene relativiteitstheorie
Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 1 en 2: Klassieke gravitatie, geodeten Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Programma 1 1. Kepler
Relativiteit. Relativistische Mechanica 1
Relativiteit University Physics Hoofdstuk 37 Relativistische Mechanica 1 Relativiteit beweging voorwerp in 2 verschillende inertiaal stelsels l relateren Galileo Galileïsche transformatie 2 Transformatie
Algemene relativiteitstheorie
Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 3 en 4: Covariant differentiëren en kromming Dr. Harm van der Lek [email protected] Natuurkunde hobbyist g 00 Programma
Gravitatie en kosmologie
Gravitatie en kosologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 6 oktober 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke echanica
Algemene relativiteitstheorie
Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 1 en 2: Klassieke gravitatie, geodeten Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Programma 1 1. Kepler
Tijd & causaliteit Relativiteitstheorie Pijl van de tijd Samenvatting. Tijd in de fysica. Paul Koerber
Tijd in de fysica Paul Koerber Postdoctoraal Onderzoeker FWO Instituut voor Theoretische Fysica, K.U.Leuven Kunsthumaniora Brussel, 2 maart 2011 1 / 16 Wat is tijd? Een coördinaat om de positie van een
Speciale relativiteitstheorie
Speciale relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht Les 1 en 2: Elektromagnetisme en licht Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Overzicht Les 1 en 2: Elektromagnetisme
Speciale relativiteitstheorie
Speciale relativiteitstheorie en hoe u die zelf had kunnen bedenken. Utrecht Les 1 en 2: Elektromagnetisme en licht Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Overzicht Les 1 en 2: Elektromagnetisme
Gravitatie en kosmologie
Gravitatie en kosmologie FEW cursus Jo van den Brand Relativistische inflatie: 3 december 2012 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme Quantumfenomenen Neutronensterren
Gravitatie en kosmologie
Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Kromlijnige coördinaten: 28 oktober 2013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme Quantumfenomenen
Een series colleges over de Speciale Relativiteit theorie van Einstein, uitgebreid met onderwerpen uit de Klassieke Mechanica Prof.dr. S.
Speciale relativiteit Een series colleges over de Speciale Relativiteit theorie van Einstein, uitgebreid met onderwerpen uit de Klassieke Mechanica Prof.dr. S. Bentvelsen 1 Even voorstellen S. Bentvelsen
HOVO: Gravitatie en kosmologie OPGAVEN WEEK 1
HOVO: Gravitatie en kosmologie OPGAVEN WEEK Opgave : Causaliteit In het jaar 300 wordt door de Aardse Federatie een ruimteschip naar een Aardse observatiepost op de planeet P47 gestuurd. Op de maan van
Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra
Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2
Cursus deeltjesfysica
Cursus deeltjesfysica Bijeenkomst 1 (5 maart 2014) de speciale relativiteitstheorie prof Stan Bentvelsen en prof Jo van den Brand Nikhef - Science Park 105-1098 XG Amsterdam [email protected] - [email protected]
Docentencursus relativiteitstheorie
Docentencursus relativiteitstheorie Uitwerkingen opgaven bijeenkomst 1, "Waarom relativiteit?" 18 september 2013 De opgaven die met een "L" zijn aangegeven, zijn op leerlingenniveau dit zijn dus opgaven
Gravitatie en kosmologie
Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Kromlijnige coördinaten: 13 oktober 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica
Relativiteitstheorie met de computer
Relativiteitstheorie met de computer Jan Mooij Mendelcollege Haarlem Met een serie eenvoudige grafiekjes wordt de (speciale) relativiteitstheorie verduidelijkt. In vijf stappen naar de tweelingparadox!
Gravitatie en kosmologie
1 Gravitatie en kosmologie door Prof.dr Johannes F.J. van den Brand Drs. Jeroen Meidam Afdeling Natuurkunde en Sterrenkunde Faculteit der Exacte Wetenschappen Vrije Universiteit Amsterdam en Nationaal
Einstein, Euclides van de Fysica Door Prof. Henri Verschelde
Einstein, Euclides van de Fysica Door Prof. Henri Verschelde Albert Einstein en Euclides Geboren te Ulm op 14 maart 1879 Als kind geinteresseerd in Wiskunde en wetenschappen:magneten,electromotoren, wiskundige
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: [email protected] studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 9 J.Keijsper (TUE)
Opgaven bij de cursus Relativiteitstheorie wiskunde voorkennis Najaar 2018 Docent: Dr. H. (Harm) van der Lek
Opgaven bij de cursus Relativiteitstheorie wiskunde voorkennis Najaar 2018 Docent: Dr. H. (Harm) van der Lek Uitwerkingen worden beschikbaar gesteld op de dinsdagavond voorafgaande aan het volgende college
Formule afleiding opgaven bij de cursus Speciale relativiteitstheorie Docent: Dr. H. (Harm) van der Lek
Formule afleiding opgaven bij de cursus Speciale relativiteitstheorie Docent: Dr. H. (Harm) van der Lek Dit document bevat aanwijzingen/aanmoedigingen voor het zelf doen van de afleidingen uit het cursusmateriaal.
2 SPECIALE RELATIVITEITSTHEORIE
2 SPECIALE RELATIVITEITSTHEORIE 35 2 SPECIALE RELATIVITEITSTHEORIE 2.1 Historishe introdutie en Einsteins postulaten De relativiteitstheorie is geboren in het prille begin van de twintigste eeuw. De negentiende
Speciale relativiteitstheorie: de basisconcepten in een notedop
Speciale relativiteitstheorie: de basisconcepten in een notedop Speciale relativiteitstheorie:... 1 de basisconcepten in een notedop... 1 1. Klassieke Relativiteit... 1 1.1 Twee waarnemers zien een verschillende
Speciale Relativiteitstheorie
NS106b/2014-2015 Versie 31/07/2014 Speciale Relativiteitstheorie Stefan Vandoren Instituut voor Theoretische Fysica Universiteit Utrecht Dictaat Dit is een collegedictaat in voorbereiding. De tekst is
Gravitatie en kosmologie
1 Gravitatie en kosmologie door Prof.dr Johannes F.J. van den Brand Afdeling Natuurkunde en Sterrenkunde Faculteit der Exacte Wetenschappen Vrije Universiteit Amsterdam en Nationaal instituut voor subatomaire
Ruimtewiskunde. college. Het inwendig- en het uitwendig product. Vandaag. Hoeken Orthogonaliteit en projecties. Toepassing: magnetische velden
college 2 - en het uitwendig collegejaar college build slides Vandaag : : : : 6-7 2 30 mei 207 30 2 3 4 5 Hoeken Orthogonaliteit en projecties Toepassing: magnetische velden.6-7[2] vandaag meetkundig Section
Gravitatie en Kosmologie
Gravitatie en Kosmologie FEW cursus Jo van den Brand & Jeroen Meidam Les 1: 3 september 2012 Parallax Meten van afstand Meet positie van object ten opzichte van achtergrond De parallaxhoek q, de afstand
Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden
Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:
De Speciale Relativiteits Theorie (SRT) en Klok- en Tweelingparadox. Metius Werkgroep Theoretische Weer- en Sterrenkunde
De Speciale Relativiteits Theorie (SRT) en Klok- en Tweelingparadox Metius Werkgroep Theoretische Weer- en Sterrenkunde Juli 2010 Inhoud Inleiding SRT postulaten en Lorentz transformatie Tijddilatatie
Speciale relativiteitstheorie
versie 13 februari 013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c 1 Lorentztransformaties In een inertiaalstelsel bewegen alle vrije deeltjes met een
Het Quantum Universum. Cygnus Gymnasium
Het Quantum Universum Cygnus Gymnasium 2014-2015 Wat gaan we doen? Fundamentele natuurkunde op de allerkleinste en de allergrootste schaal. Groepsproject als eindopdracht: 1) Bedenk een fundamentele wetenschappelijk
Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016
Kwantummechanica HOVO cursus Jo van den Brand Lecture 4: 13 oktober 2016 Copyright (C) VU University Amsterdam 2016 Overzicht Algemene informatie Jo van den Brand Email: [email protected] 0620 539 484 / 020
Gravitatie en kosmologie
Gravitatie en kosmologie FEW cursus Jo van den Brand & Mark Beker Relativistische kosmologie: 19 november 2009 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme Quantumfenomenen
Speciale relativiteitstheorie
versie 1 september 2013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c Hoofdstuk 1 Inleiding Natuurkunde is de wetenschap van de materie en haar wisselwerkingen.
Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde Andrré van der Hoeven Docent natuurkunde Emmauscollege Rotterdam
Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde André van der Hoeven Docent natuurkunde Emmauscollege Rotterdam Einstein s speciale relativiteitstheorie, maarr dan begrijpelijk
Lengte van een pad in de twee dimensionale Euclidische ruimte
Lengte van een pad in de twee dimensionale Euclidische ruimte Bekijk een willekeurig pad van naar. Verdeel het pad in kleine stukjes die elk voor zich als rechtlijnig beschouwd kunnen worden. De lengte
De speciale relativiteitstheorie. 1. Inleiding
De speciale relativiteitstheorie 1. Inleiding In de fysica zijn er waarschijnlijk weinig theorieën die de vorige eeuw zoveel tot de verbeelding van de mensen gesproken hebben als de relativiteitstheorie
ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.
ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: [email protected] http://www.win.tue.nl/wsk/onderwijs/2y650 1 Herhaling: opspansel De vectoren v 1,..., v k V spannen
Gravitatie en kosmologie
Gravitatie en kosmologie FEW cursus Jo van den Brand Sferische oplossingen: 10 november 2009 Ontsnappingssnelheid Mitchell (1787); Laplace (± 1800) Licht kan niet ontsnappen van een voldoend zwaar lichaam
Wiskunde voor relativiteitstheorie
Wiskunde voor relativiteitstheorie HOVO Utrecht Les 1: Goniometrie en vectoren Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Overzicht colleges 1. College 1 1. Goniometrie 2. Vectoren 2. College
RELATIVITEIT. 1. Inleiding. 2. Lorentz en Poincaré
RELATIVITEIT N.G. SCHULTHEISS. Inleiding In deze module wordt er uitgelegd hoe een natuurkundige gebeurtenis door vershillende waarnemers wordt waargenomen. Iedere waarnemer heeft een eigen assenstelsel
Speciale relativiteitstheorie
Speciale relativiteitstheorie De drie vragen van Einstein Wat is licht? Wat is massa? Wat is tijd? In 1905, Einstein was toen 26 jaar! Klassiek: wat is licht? Licht is een golf, die naar alle kanten door
Kwantummechanica HOVO cursus. Jo van den Brand Lecture 2: September 29, 2016
Kwantummechanica HOVO cursus Jo van den Brand Lecture 2: September 29, 2016 Copyright (C) VU University Amsterdam 2016 Overzicht Algemene informatie Jo van den Brand Email: [email protected] 0620 539 484 /
Gravitatie en kosmologie
Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Zwarte gaten: 17 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica Galileo,
4 Wiskunde I - Dierentiaaltopologie
4 WISKUNDE I - DIFFERENTIAALTOPOLOGIE 59 4 Wiskunde I - Dierentiaaltopologie In een ruimte zijn een punt, scalair en een vector voorbeelden van topologische objecten. Als de scalair of vector kan variëren
Gravitatie en kosmologie
Gravitatie en kosmologie FEW cursus Jo van den Brand Relativistische kosmologie: 24 november 2014 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme Quantumfenomenen Neutronensterren
Relativiteitstheorie. Wat zijn de eigenschappen van ruimte en tijd?
Relativiteitstheorie D. G.B.J. Dieks Wat zijn de eigenschappen van ruimte en tijd? In 1905 publiceerde Albert Einstein een artikel over `De elektrodynamica van bewegende lichamen'. De titel suggereert
Tentamen - uitwerkingen
Tentamen - uitwerkingen Mechanica en Relativiteitstheorie voor TW 5 april 06 Kennisvragen - 0 punten a) Geef de drie behoudswetten van de klassieke mechanica, en geef voor elk van de drie aan onder welke
Gravitatie en kosmologie
Gravitatie en kosmologie FEW cursus Jo van den Brand & Jeroen Meidam Les 1: 3 september 2012 Overzicht Docent informatie Jo van den Brand, Jeroen Meidam Email: [email protected], [email protected] 0620 539
Wiskunde voor relativiteitstheorie
Wiskunde voor relativiteitstheorie HOVO Utrecht Les 3: Integraalrekening en lineaire vormen Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Programma 3.1.1 Goniometrie Matrixen Integraal rekening
Wiskunde voor relativiteitstheorie
Wiskunde voor relativiteitstheorie Utrecht Les : Goniometrie en vectoren Dr. Harm van der Lek [email protected] Natuurkunde hobbyist verzicht colleges. College. Goniometrie 2. Vectoren 2. College 2. Matrixen
Prof.dr. A. Achterberg, IMAPP
Prof.dr. A. Achterberg, IMAPP www.astro.ru.nl/~achterb/ Waarnemingen die de basis vormen van het Oerknalmodel - Vluchtsnelheid verre sterrenstelsels - Kosmische Achtergrondstraling - Voorwereldlijke Nucleosynthese
KLASSIEKE MECHANICA 2 ANALYTISCHE MECHANICA 7 RELATIVISTISCHE MECHANICA 14 KWANTUMMECHANICA 26 THERMODYNAMICA 33 ELEKTROMAGNETISME 35
NATUURKUNDE 1 KLASSIEKE MECHANICA 2 De wetten van Newton Energie Gravitatie Rotatie ANALYTISCHE MECHANICA 7 Actie De Lagrangiaan Het principe van de stationaire actie Het formalisme van Euler en Lagrange
Bewijzen en toegiften
Bewijzen en toegiften 1 Het bewijs van Mermin voor het optellen van snelheden W op een perron ziet W in een treinwagon passeren met snelheid v. W schiet een kogel af met snelheid u en stuurt tegelijkertijd
experimenteren met Zwarte Gaten Eigenschappen van Zwarte Gaten tot nu HOVO2016, Utrecht 15 Juli 2016 Speciale RelativiteitsTheorie
experimenteren met Zwarte Gaten II Zwarte Gaten en de Algemene RelativiteitsTheorie Eigenschappen van Zwarte Gaten tot nu massa-concentratie, gekenmerkt vanaf afstand door een horizon waar ontsnappingsnelheid
Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen [email protected]
Speciale rela*viteit Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen [email protected] Albert Einstein (1879 1955) Einstein s grensverleggende papers (1905): De speciale
Zwaartekrachtsgolven. Johan Konter, Niels Pannevis, Sander Kupers. 24 juni 2006. Zwaartekrachtsgolven. Johan Konter, Niels Pannevis, Sander Kupers
24 juni 2006 Inleiding 1805 Laplace 1916 Einstein 1950 Bondi 1993 Nobelprijs: Hulse & Taylor voor meten aan PSR 1916+13. Figuur: De golvende ruimte Concept van Ruimtetijd gebogen door massa Eindige lichtsnelheid
Analytische Meetkunde. Lieve Houwaer, Unit informatie, team wiskunde
Analytische Meetkunde Lieve Houwaer, Unit informatie, team wiskunde . VECTOREN EN RECHTEN.. Vectoren... Het vectorbegrip De verzameling punten van het vlak noteren we door π. Kies in het vlak π een vast
Speciale Relativiteitstheorie
Speciale Relativiteitstheorie Prof. Dr J.J. Engelen NIKHEF/Onderzoekinstituut HEF met medewerking van Drs. B. Mooij, Dr E. de Wolf, Drs. A. Heijboer Inhoudsopgave 1 Inleiding 3 2 De Galileitransformatie
Lineaire Algebra Een Samenvatting
Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle
Matrixalgebra (het rekenen met matrices)
Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: [email protected] studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 8 J.Keijsper (TUE)
De lichtsnelheid kromt de ruimte. Mogelijke verklaring voor de grens van het heelal
1 De lichtsnelheid kromt de ruimte Mogelijke verklaring voor de grens van het heelal Inleiding 2 De lichtsnelheid, zo snel als 300.000.000 meter per seconde, heeft wellicht grote gevolgen voor de omvang
Ruimte, Ether, Lichtsnelheid en de Speciale Relativiteitstheorie. Een korte inleiding:
1 Ruimte, Ether, Lichtsnelheid en de Speciale Relativiteitstheorie. 23-09-2015 -------------------------------------------- ( [email protected]) Een korte inleiding: Is Ruimte zoiets als Leegte, een
Formule afleiding opgaven bij de cursus Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek
Formule afleiding opgaven bij de cursus Algemene relativiteitstheorie Docent: Dr. H. (Harm) van der Lek Dit document bevat aanwijzingen/aanmoedigingen voor het zelf doen van de afleidingen uit het curusmateriaal.
Vectormeetkunde in R 3
Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie
