Bewijzen en toegiften
|
|
|
- Raphaël Meyer
- 8 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Bewijzen en toegiften 1 Het bewijs van Mermin voor het optellen van snelheden W op een perron ziet W in een treinwagon passeren met snelheid v. W schiet een kogel af met snelheid u en stuurt tegelijkertijd een lichtflits die aan de voorkant weerkaatst en de kogel even later treft. W en W zijn het alleen eens over de plaats in de trein waar kogel en lichtstraal elkaar treffen. De afstand tussen de voorkant en die trefplaats is een fractie, f, van de lengte L. Over de waarde van f zijn ze het eens. Over alle afstanden en tijden zijn ze het vanwege tijdrek en lengtekrimp oneens, maar omdat die aan het eind allemaal zullen wegvallen geven we daar geen verschillende namen aan. Het gaat om f. W ziet een kogel met onbekende snelheid w en een ruimteschip met bekende snelheid v. Hij wil weten hoe groot w is. Volgens W geldt voor de trefplaats: via de kogel: x = w (t 1 + t ) en via het licht: x = c (t 1 t ) Combineren leidt tot: t c w (c + w) t = (c w) t 1 t1 c w Voor het licht geldt volgens hem ook: L + v t 1 = c t 1 L = (c v) t 1 en f L v t = c t f L = (c + v) t Delen leidt tot: c v t c v c w f c v t c v c w 1 Volgens W geldt voor de trefplaats: via de kogel: x = u (t 1 + t ) en via het licht: x = c (t 1 t ) Combineren leidt tot: t c u (c + u) t = (c u) t 1 t1 c u Voor het licht geldt volgens hem ook: L = c t 1 en f L = c t Delen leidt tot: t c u f t c u 1 Stel de twee formules voor f aan elkaar gelijk c v c w c u ( c v)( c w)( c u) ( c v)( c w)( c u) c v c w c u Werk alle haken weg w(c + uv) = c u v (u + v) w 1 uv c Bewijzen en toegiften 1 / 9
2 De ct -as en de ct(x)-grafiek van de raket. We kunnen de stelsels S voor W en S voor W combineren door de lijnen voor een lichtstraal op elkaar te leggen. We moeten dan wel de richting van de ct -as gelijk maken aan die van de ct(x)-grafiek van de raket. De ct-as is de lijn met x = 0. Op dezelfde manier is de ct -as is de lijn met x = 0. Combineer je dat laatste met de lorentz-transformatie, dan krijg je vanzelf de vergelijking van de raket in stelsel S: x = 0 en x = (x ct) x ct = 0 x = ct Beide rode assen maken dezelfde hoek met de zwarte assen; tan =. Bewijzen en toegiften / 9
3 3 De afleiding van Einstein voor de lorentz-transformatie De manier waarop Einstein de lorentz-transformatie afleidt gaat zo. In beide stelsels geldt voor het licht: in positieve richting: x ct = 0 en x ct = 0 in negatieve richting: x + ct = 0 en x + ct = 0 0 = 0 dus ook 0 = 0 en 0 = 0 Pas dat toe op de regels hierboven: x ct = (x ct) x ct = x ct x + ct = (x + ct) x + ct = x + ct) Via optellen en aftrekken van de regels en met ( + )/ = a en ( )/ = b krijg je: x = a x b ct en ct = a ct b x xʹ = p (x q ct) en ctʹ = p (ct q x) Dit lijkt al op de formule die in het katern genoemd wordt. Nu moet alleen nog bewezen worden dat p = en q =. Vul xʹ = 0 in 0 = p (x q ct) x q ct = 0 ofwel: x = q ct xʹ = 0 is de oorsprong van stelsel Sʹ. Dit punt beweegt in stelsel S volgens: x = ct Maar dat betekent dat q =. We hebben nu gevonden: xʹ = p (x ct) en ctʹ = p (ct x) (1) Om p te pakken te krijgen maak je gebruik van de eis dat voor de inverse transformatie geldt: x = p (xʹ + ctʹ) en ct = p (ctʹ + xʹ) () Deze eis volgt direct uit het eerste postulaat: voor verschillende inertiaalstelsels moeten dezelfde soort formules gelden; wordt vervangen door omdat stelsel S voor de reizigers in S naar links beweegt. Vul x en ct van (1) in bij de formule van x bij (): x = p {p (x ct)} + {p (ct x)} x = p x p ct + p ct p x x = x (p p ) + 0 p (1 ) = 1 p 1 Bewijzen en toegiften 3 / 9
4 4 De eenheden op de assen Als je bij wikipedia Minkowski intikt, vind je daar dat de lengtes van de eenheden op de assen als volgt in elkaar kunnen worden omgerekend: e e Het bewijs gaat met behulp van de lorentz-transformatie erg makkelijk. De afstand [0 1] op de x-as heeft de lengte e 1 ; de verticale afstand [1 A] heeft daarom de lengte e 1. De blauw omcirkelde waarden zijn dus lengtes die je in cm kunt meten waarop je Pythagoras mag toepassen. Pas de lorentz-transformatie toe om de rode coördinaten van A te berekenen: x = (1 ) = (1 ) = 1/ = ct = ( 1) = 0 Voor de lengte [0 A] op de x -as kunnen we dus schrijven: OA e e 1 Hiermee is het bewijs voor de formule geleverd. Bewijzen en toegiften 4 / 9
5 5 Het dopplereffect bij licht Een astronaut zendt radio(licht!)signalen uit met een periode T. Op t = 0 de signalen 1 en en op t = T de signalen 3 en 4. Op t = 0 bevindt hij zich bij waarnemer W 1 en op t = T bij waarnemer W. W 1 ontvangt (met periode T 1 ) signalen vanuit een bron die zich verwijdert en W ontvangt (met periode T ) signalen vanuit een bron die nadert. In grafiek zit dat er zo uit: Bij de berekeningen hierna heb je nodig: 1 1 en γ (1 ) (1 ) Uit de figuur volgt voor W 1 : ct 1 = ct + ct T 1 = (1 + ) T (1 ) 1 T1 T T en voor W : T 1 > T en f 1 < f ct = ct ct T = (1 ) T (1 ) 1 T T T T < T en f > f Bewijzen en toegiften 5 / 9
6 6 Boeiende plaatjes Deze plaatjes vond Ruud op internet. Dit zijn klokken in stelsel S; ze lopen allemaal gelijk. De verticale lijnen evenwijdig aan de ct-as zijn de wereldlijnen van de klokken die in stelsel S gelijk lopen. De x-as betekent: ct = 0. Bewijzen en toegiften 6 / 9
7 Dit zijn klokken in stelsel S ; ook die lopen allemaal gelijk. De scheve lijnen evenwijdig aan de ct -as zijn de wereldlijnen van de klokken die in stelsel S gelijk lopen. De x -as betekent: ct = 0. Bewijzen en toegiften 7 / 9
8 Tijdrek Leuk plaatje, maar wel dubieus, want er worden twee soorten klokken door elkaar gehaald: de zwarte van S en de rode van S. Daarom heb ik het plaatje aangepast. Het tweede zwarte mannetje links kan niet op de rode klok naast hem kijken. Het kleine zwarte mannetje naast het kleine zwarte klokje kan dat wel. Maar die kijkt naar een rode klok op een vroeger tijdstip. Het rode mannetje in de grote auto bovenaan kan niet op de zwarte klok links onder hem kijken. Het kleine rode mannetje in het kleine autootje naast het kleine rode klokje kan dat wel. Dat kleine mannetje zit achterin de auto. Hij kijkt naar een zwarte klok op een vroeger tijdstip. Bewijzen en toegiften 8 / 9
9 Lengtekrimp Pas op: je mag niet zomaar de lengtes L en L vergelijken. Houd rekening met de eenheidslengtes e 1 en e op de assen. Zie 4 hierboven.. Bewijzen en toegiften 9 / 9
Bewijzen en toegiften
Bewijzen en toegiften Het bewijs van Mermin voor het optellen van snelheden W op een perron ziet W in een treinwagon passeren met snelheid v. W shiet een kogel af met snelheid u en stuurt tegelijkertijd
Relativiteitstheorie met de computer
Relativiteitstheorie met de computer Jan Mooij Mendelcollege Haarlem Met een serie eenvoudige grafiekjes wordt de (speciale) relativiteitstheorie verduidelijkt. In vijf stappen naar de tweelingparadox!
Speciale relativiteitstheorie
Speciale relativiteitstheorie Uitwerking van mijn powerpoint tijdens de WND-conferentie 2017 Hubert Biezeveld [email protected] Links staan de dia s van de powerpoint. Rechts staan de toelichtingen. Subtiel
Speciale relativiteitstheorie
Speciale relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht Les 3 en 4: Lorentz Transformatie en Mechanica Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Programma 1 1.
Docentencursus relativiteitstheorie
Docentencursus relativiteitstheorie Uitwerkingen opgaven bijeenkomst 1, "Waarom relativiteit?" 18 september 2013 De opgaven die met een "L" zijn aangegeven, zijn op leerlingenniveau dit zijn dus opgaven
Speciale Relativiteitstheorie. Oefeningen. Prof. Dr J.J. Engelen, Drs. B. Mooij, Dr E. de Wolf, Drs. A. Heijboer
Speciale Relativiteitstheorie Oefeningen Prof. Dr J.J. Engelen, Drs. B. Mooij, Dr E. de Wolf, Drs. A. Heijboer Inhoudsopgave 1 Galileitransformatie 2 1.1 Een paraboolbaan...................................
MODULE GLIESE 667 RELATIVITEIT GLIESE 667. Naam: Klas: Datum:
GLIESE 667 RELATIVITEIT GLIESE 667 Naam: Klas: Datum: GLIESE 667 GLIESE 667 WE GAAN OP REIS De invloed van de mensheid reikt steeds verder. In de oertijd kon een mens zich maar enkele kilometers van zijn
Gravitatie en kosmologie
Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 29 September 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica
Oefeningen. Speciale Relativiteitstheorie
Oefeningen bij het college Speciale Relativiteitstheorie Prof. Dr J.J. Engelen, Drs. B. Mooij, Dr. E. de Wolf NIKHEF /Onderzoeksinstituut HEF /UvA versie 1.3, januari 2003 2 Inhoudsopgave 1 Galileitransformatie
Stevin vwo Uitwerkingen Speciale relativiteitstheorie ( ) Pagina 1 van 8
Stevin vwo Uitwerkingen Speiale relativiteitstheorie (14-09-015) Pagina 1 van 8 Opgaven 1 Het is maar hoe je het ekijkt 1 a Een inertiaalsysteem is een omgeving waarin de eerste wet van Newton geldt. a
1.1 Lineaire vergelijkingen [1]
1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg
3.1 Negatieve getallen vermenigvuldigen [1]
3.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5-3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 3 = -15 Voorbeeld 4: -5 3 9 2
Formuleblad relativiteit (deel 1)
Formuleblad relativiteit (deel 1), www.roelhendriks.eu 1 Formuleblad relativiteit (deel 1) c v β en 1 1 β γ 1 c v t t o 1 c v L L o ) ( ct β x γ x ) ( x β ct γ ct ) ( ct β x γ x + ) ( x β ct γ ct + Δx
Elementaire Deeltjesfysica
Elementaire Deeltjesfysica FEW Cursus Jo van den Brand 10 November, 2009 Structuur der Materie Inhoud Inleiding Deeltjes Interacties Relativistische kinematica Lorentz transformaties Viervectoren Energie
4.1 Negatieve getallen vermenigvuldigen [1]
4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats
wiskunde B pilot vwo 2017-II
wiskunde B pilot vwo 017-II Formules Goniometrie sin( tu) sin( t)cos( u) cos( t)sin( u) sin( tu) sin( t)cos( u) cos( t)sin( u) cos( tu) cos( t)cos( u) sin( t)sin( u) cos( tu) cos( t)cos( u) sin( t)sin(
opdrachten bij hoofdstuk 7 Lijnen cirkels als PDF
lijnen en cirkels opdrachten bij hoofdstuk 7 Lijnen cirkels als PDF 0. voorkennis De vergelijking ax+by=c Stelsels lineaire vergelijkingen De algemene vorm van een lineaire vergelijkingen met de variabele
5.1 Lineaire formules [1]
5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire
De Speciale Relativiteits Theorie (SRT) en Klok- en Tweelingparadox. Metius Werkgroep Theoretische Weer- en Sterrenkunde
De Speciale Relativiteits Theorie (SRT) en Klok- en Tweelingparadox Metius Werkgroep Theoretische Weer- en Sterrenkunde Juli 2010 Inhoud Inleiding SRT postulaten en Lorentz transformatie Tijddilatatie
Gravitatie en kosmologie
Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 7 oktober 2013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme
Tentamen - uitwerkingen
Tentamen - uitwerkingen Mechanica en Relativiteitstheorie voor TW 5 april 06 Kennisvragen - 0 punten a) Geef de drie behoudswetten van de klassieke mechanica, en geef voor elk van de drie aan onder welke
Examen VWO. Wiskunde B Profi
Wiskunde B Profi Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Donderdag 25 mei 3.30 6.30 uur 20 00 Dit eamen bestaat uit 7 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een
Opgave 1 Een inertiaalstelsel is een referentiestelsel waarin de eerste wet van Newton geldt.
Uitwerkingen 1 Opgae 1 Een inertiaalstelsel is een referentiestelsel waarin de eerste wet an Newton geldt. Opgae Een gebeurtenis is een fysishe situatie of ooral op één bepaalde plaats en op één bepaald
Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde Andrré van der Hoeven Docent natuurkunde Emmauscollege Rotterdam
Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde André van der Hoeven Docent natuurkunde Emmauscollege Rotterdam Einstein s speciale relativiteitstheorie, maarr dan begrijpelijk
Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 21 juni uur
Eamen VW 017 tijdvak woensdag 1 juni 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 74 punten te behalen. Voor elk vraagnummer staat hoeveel punten met
Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van
Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Stelling van Kan alleen bij rechthoekige driehoeken pythagoras a 2 + b 2 =
Naam: Klas: Repetitie Relativiteit (versie A)
Naam: Klas: Repetitie Relativiteit (versie A) Opgave 1 Jack is verliefd op Jennifer (18) en wil graag een relatie met haar, liefst een seksuele! Het probleem is echter dat Jennifer hem te dik en te oud
Oefeningen Speciale Relativiteitstheorie
Faculteit der Natuurwetenschappen, Wiskunde en Informatica Oefeningen Speciale Relativiteitstheorie Prof S. Bentvelsen UvA / NIKHEF Onderzoeksinstituut Hoge Energie Fysica (IHEF) Oefeningen Speciale Relativiteitstheorie
Per nieuwe hoofdvraag een nieuwe bladzijde gebruiken. De vragen hoeven niet in de juiste volgorde te worden opgelost.
SBC AMDG Ma 13/12/04 klas : 5WEWI8 5GRWI8 Van Hijfte D. toegelaten : grafisch rekentoestel Examen Wiskunde deel I (90p) Per nieuwe hoofdvraag een nieuwe bladzijde gebruiken. De vragen hoeven niet in de
Eindexamen wiskunde B1-2 havo 2004-I
Eindexamen wiskunde - havo 004-I 4 eoordelingsmodel Kogelstoten De score van André is,8 De score van ernard is,55 De conclusie dat voor k = 0, ernard niet de hoogste score heeft de vergelijking die hoort
Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni uur
Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde B (pilot) Dit eamen bestaat uit 6 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed
K4 Relativiteitstheorie
K4 Relativiteitstheorie Ruimtetijd vwo Uitwerkingen basisboek K4. INTRODUCTIE 2 3 a De golflengte van radiostraling is groter dan die van licht. b Uit c λ f volgt dat de frequentie van de fotonen van radiostraling
Paragraaf 7.1 : Lijnen en Hoeken
Hoofdstuk 7 Lijnen en cirkels (V5 Wis B) Pagina 1 van 11 Paragraaf 7.1 : Lijnen en Hoeken Les 1 Lijnen Definities Je kunt een lijn op verschillende manieren bepalen / opschrijven : (1) RC - manier y =
Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 18 mei uur
Eamen VW 016 tijdvak 1 woensdag 18 mei 13.30-16.30 uur wiskunde (pilot) it eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 79 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een
De speciale relativiteitstheorie. 1. Inleiding
De speciale relativiteitstheorie 1. Inleiding In de fysica zijn er waarschijnlijk weinig theorieën die de vorige eeuw zoveel tot de verbeelding van de mensen gesproken hebben als de relativiteitstheorie
Opgave 1 Een inertiaalstelsel is een referentiestelsel waarin de eerste wet van Newton geldt.
Uitwerkingen 1 Opgae 1 Een inertiaalstelsel is een referentiestelsel waarin de eerste wet an Newton geldt. Een gebeurtenis is een fysishe situatie of ooral op één bepaalde plaats en op één bepaald tijdstip.
Docentencursus relativiteitstheorie
Docentencursus relativiteitstheorie Opgaven bijeenkomst 2, "Rekenen en tekenen" 8 september 203 De opgaven die met een "L" zijn aangegeven, zijn op leerlingenniveau dit zijn dus opgaven die in de les of
Examen VWO. wiskunde B (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Achter dit examen is een erratum opgenomen.
Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde B (pilot) Achter dit eamen is een erratum opgenomen. Dit eamen bestaat uit 6 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer
Oefentoets Versie A. Vak: Wiskunde Onderwerp: Meetkunde Leerjaar: 1 (2017/2018) Periode: 3
Oefentoets Versie A Vak: Wiskunde Onderwerp: Meetkunde Leerjaar: 1 (017/018) Periode: 3 Opmerkingen vooraf: Het gebruik van een rekenmachine en een tabellenboekje is toegestaan. Geef je antwoord alljd
PROBLEEMOPLOSSEND DENKEN MET
PROBLEEMOPLOSSEND DENKEN MET Van onderzoekend leren naar leren onderzoeken in de tweede en derde graad Luc Gheysens DPB-Brugge 2012 PROBLEEM 1 Stelling van Pythagoras en gelijkvormige driehoeken Hieronder
META-kaart vwo3 - domein Getallen en variabelen
META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek
Speciale relativiteitstheorie
Speciale relativiteitstheorie De drie vragen van Einstein Wat is licht? Wat is massa? Wat is tijd? In 1905, Einstein was toen 26 jaar! Klassiek: wat is licht? Licht is een golf, die naar alle kanten door
1 Leerlingproject: Relativiteit 28 februari 2002
1 Leerlingproject: Relativiteit 28 februari 2002 1 Relativiteit Als je aan relativiteit denkt, dan denk je waarschijnlijk als eerste aan Albert Einstein. En dat is dan ook de bedenker van de relativiteitstheorie.
Speciale relativiteitstheorie
Speciale relativiteitstheorie en hoe u die zelf had kunnen bedenken. Utrecht Les 1 en 2: Elektromagnetisme en licht Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Overzicht Les 1 en 2: Elektromagnetisme
2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax
00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten
Speciale relativiteitstheorie
Speciale relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht Les 1 en 2: Elektromagnetisme en licht Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Overzicht Les 1 en 2: Elektromagnetisme
Lengte van een pad in de twee dimensionale Euclidische ruimte
Lengte van een pad in de twee dimensionale Euclidische ruimte Bekijk een willekeurig pad van naar. Verdeel het pad in kleine stukjes die elk voor zich als rechtlijnig beschouwd kunnen worden. De lengte
Einstein (6) v(=3/4c) + u(=1/2c) = 5/4c en... dat kan niet!
Einstein (6) n de voorafgaande artikelen hebben we het gehad over tijdsdilatatie en Lorenzcontractie (tijd en lengte zijn niet absoluut maar hangen af van de snelheid tussen waarnemer en waargenomene).
De grafiek van een lineair verband is altijd een rechte lijn.
2. Verbanden Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband
Antwoorden Tekscvragen T.1 T.4. - lijd. T.2 A is een gebeurtenis. B geeft een tijdsduur aan die op één plaats verlopen is. T.5
Antwoorden Tekscvragen T.1 T.4 - lijd T.2 A is een gebeurtenis. B geeft een tijdsduur aan die op één plaats verlopen is. T.3 T.5 a. Lijn B - die beschrijft stilstand. b. A beschrijft een beweging vanuit
Examen VWO. wiskunde B. tijdvak 2 woensdag 19 juni uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 2019 tijdvak 2 woensdag 19 juni 13.30-16.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer
Relativiteit. Bijlagen
Relativiteit 1 Referentiestelsels; Galileï-transformatie Postulaten van de speciale relativiteitstheorie 3 Tijdsduurrek 4 Lengtekrimp 5 Minkowskidiagram 6 Lorentztransformatie 7 Ruimtetijdinterval 8 Relativistisch
Algemene relativiteitstheorie
Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek Email: [email protected], [email protected]
wiskunde B vwo 2016-I
wiskunde vwo 06-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte
Speciale relativiteitstheorie
versie 13 februari 013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c 1 Lorentztransformaties In een inertiaalstelsel bewegen alle vrije deeltjes met een
Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen [email protected]
Speciale rela*viteit Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen [email protected] Albert Einstein (1879 1955) Einstein s grensverleggende papers (1905): De speciale
1 Cartesische coördinaten
Cartesische coördinaten Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-d Analytische Meetkunde Cartesische coördinaten Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er
Relativiteit (deel 1)
Relativiteit (deel 1) 1 Referentiestelsels, tijd-plaats-diagram Galileï-transformatie 3 Postulaten van de speciale relativiteitstheorie 4 Tijdsduurrek 5 Lengtekrimp 6 Minkowskidiagram 7 Lorentztransformatie
Verbanden en functies
Verbanden en functies 0. voorkennis Stelsels vergelijkingen Je kunt een stelsel van twee lineaire vergelijkingen met twee variabelen oplossen. De oplossing van het stelsel is het snijpunt van twee lijnen.
vwo wiskunde b Baanversnelling de Wageningse Methode
1 1 vwo wiskunde b Baanversnelling de Wageningse Methode 1 1 2 2 Copyright 2018 Stichting de Wageningse Methode Auteurs Leon van den Broek, Ton Geurtz, Maris van Haandel, Erik van Haren, Dolf van den Hombergh,
Formule afleiding opgaven bij de cursus Speciale relativiteitstheorie Docent: Dr. H. (Harm) van der Lek
Formule afleiding opgaven bij de cursus Speciale relativiteitstheorie Docent: Dr. H. (Harm) van der Lek Dit document bevat aanwijzingen/aanmoedigingen voor het zelf doen van de afleidingen uit het cursusmateriaal.
wiskunde B pilot havo 2016-I
De rechte van Euler Gegeven is cirkel c met middelpunt ( 1, 1 ) 3p 1 Stel een vergelijking op van c. De punten B( 3, 0) en ( 4, 0) M die door het punt A( 0, 4) 2 2 C liggen op c. Punt Q is het midden van
wiskunde B havo 2015-II
Veilig vliegen De minimale en de maximale snelheid waarmee een vliegtuig veilig kan vliegen, zijn onder andere afhankelijk van de vlieghoogte. Deze hoogte wordt vaak weergegeven in de Amerikaanse eenheid
Eindexamen vwo wiskunde B pilot 2014-I
Eindeamen vwo wiskunde B pilot 04-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos
sin( α + π) = sin( α) O (sin( x ) cos( x )) = sin ( x ) 2sin( x )cos( x ) + cos ( x ) = sin ( x ) + cos ( x ) 2sin( x )cos( x ) = 1 2sin( x )cos( x )
G&R vwo B deel Goniometrie en beweging C. von Schwartzenberg / spiegelen in de y -as y = sin( x f ( x = sin( x f ( x = sin( x heeft dezelfde grafiek als y = sin( x. spiegelen in de y -as y = cos( x g(
Bewerkingen met krachten
21 Bewerkingen met krachten Opgeloste Vraagstukken 2.1. Bepaal het moment van de kracht van 2N uir Fig. 2-3 rond het punt O. Laat de loodrechte OD neer vanuit O op de rechte waarlangs de kracht van 2N
Opgaven bij de cursus Relativiteitstheorie wiskunde voorkennis Najaar 2018 Docent: Dr. H. (Harm) van der Lek
Opgaven bij de cursus Relativiteitstheorie wiskunde voorkennis Najaar 2018 Docent: Dr. H. (Harm) van der Lek Uitwerkingen worden beschikbaar gesteld op de dinsdagavond voorafgaande aan het volgende college
Uitwerkingen voorbeeldtentamen 1 Wiskunde B 2018
Uitwerkingen voorbeeldtentamen 1 Wiskunde B 2018 Vraag 1a 4 punten geeft ; geeft dus in punt A geldt ;, dus en Dit geeft Vraag 1b 4 punten ( ) ( ) ( ) Vraag 1c 4 punten ( ). Dit is de normaalvector van
Algemene relativiteitstheorie
Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek Email: [email protected], [email protected]
Examen HAVO. wiskunde B (pilot) tijdvak 1 maandag 23 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen HAV 2016 tijdvak 1 maandag 23 mei 13:30-16:30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor
m 2. De berekening terug uitvoeren met die P en r = 100 m i.p.v. 224 m levert L = 57 db.
Doppler A B PASSERENDE FLUIT Het vriest licht; de maan schijnt door de bomen. Ik sta op 100 m van de kruising van twee wegen. Op de kruisende weg rijdt een open auto. Een inzittende blaast op een fluitje
Massa. Energie. E = m c 2. (licht-) Snelheid. en hoe u het zelf had kunnen bedenken. Dr. Harm van der Lek. Natuurkunde hobbyist
Massa Energie E = m c 2 en hoe u het zelf had kunnen bedenken. (licht-) Snelheid Dr. Harm van der Lek [email protected] Natuurkunde hobbyist 2 Wetenschappers en denkers 1500 1600 1700 1800 1900 2000 Galileo
VIDEO 4 4. MODULUSVERGELIJKINGEN
VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4 4. MODULUSVERGELIJKINGEN De modulus (ook wel absolute waarde) is de afstand van een punt op de getallenlijn tot nul. De modulus van zowel -5 als 5 is dus 5, omdat -5 ook
Equivalentie en tijddilatatie bij plaatsbepaling met het Global Positioning System
Equivalentie en tijddilatatie bij plaatsbepaling met het Global Positioning System Jiri Oen (5814685) Jacinta Moons (5743206) 1 juli 2009 Samenvatting Om de positie van een ontvanger op aarde te bepalen
De n-dimensionale ruimte Arjen Stolk
De n-dimensionale ruimte Arjen Stolk In het vorige college hebben jullie gezien wat R 2 (het vlak) is. Een vector v R 2 is een paar v = (x,y) van reële getallen. Voor vectoren v = (a,b) en w = (c,d) in
Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat
Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat
Relativiteit. Bijlagen
Relativiteit 1 Referentiestelsels; Galileï-transformatie Postulaten van de speciale relativiteitstheorie 3 Tijdsduurrek 4 Lengtekrimp 5 Minkowskidiagram 6 Lorentztransformatie 7 Ruimtetijdinterval 8 Relativistisch
Correctievoorschrift HAVO. wiskunde B1,2
wiskunde B, Correctievoorschrift HAVO Hoger Algemeen Voortgezet Onderwijs 0 04 Tijdvak inzenden scores Verwerk de scores van de alfabetisch eerste vijf kandidaten per school in het programma Wolf of vul
Calculus I, 19/10/2015
Calculus I, 9/0/05. a Toon aan dat de rationale functie f = 3 + 3 + voor alle 0 bekomen wordt via volgende procedure: Start met een gelijkbenige rechthoekige driehoek OAB, met B het punt, 0 op de -as,
10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:
10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld
Opgave 1 Een inertiaalstelsel is een referentiestelsel waarin de eerste wet van Newton geldt.
Uitwerkingen 1 Opgae 1 Een inertiaalstelsel is een referentiestelsel waarin de eerste wet an Newton geldt. Opgae Een gebeurtenis is een fysishe situatie of ooral op één bepaalde plaats en op één bepaald
2 maximumscore 4 10 km komt overeen met cm cm heeft ( =) 6666,66 seconden nodig
Beoordelingsmodel Domino Day maximumscore snelheid = 9 snelheid = 3 = (cm/s) maximumscore 4 0 km komt overeen met 000 000 cm 000 000 000 000 cm heeft ( =) 6666,66 seconden nodig Dit zijn, minuten Het tijdstip
Bal in de sloot. Hierbij zijn x en f ( x ) in centimeters. Zie figuur 2.
Bal in de sloot Een bal met een straal van cm komt in een figuur sloot terecht en blijft drijven. Het laagste punt van de bal bevindt zich h cm onder het wateroppervlak. In figuur zie je een doorsnede
E = m c 2. Massa. Energie. (licht-) Snelheid. Wetenschappers en denkers. E=mc 2 HOVO. Hoe u het zelf had kunnen bedenken 1.
Energie Massa E = m c 2 en hoe u het zelf had kunnen bedenken. (licht) Snelheid Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Wetenschappers en denkers 1500 1600 1700 1800 1900 2000 Galileo
Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.
Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit examen
Afstanden en roodverschuiving in een Stabiel Heelal Inleiding.
Afstanden en roodverschuiving in een Stabiel Heelal ---------------------------------------------------------------------- Inleiding. Wanneer men nu aanneemt dat het heelal stabiel is, dus dat alles in
6. Toon aan dat voor alle 2]0; ß [ geldt dat sin <<tan Onderstel dat de functie f afleidbaar in ]a; +1[ is en dat Toon aan dat!+1 f ) = A.!+1 f
Afleiden en primitiveren Oefeningen Wiskundige Analyse I 1. Toon aan dat de functie f gedefinieerd op [ß; 3ß 2 ] door 1 p 1 + sin2 ) een inverse ffi bezit. Wat kan men besluiten omtrent de monotoniteit,
klas 3 havo Checklist HAVO klas 3.pdf
Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de
P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).
Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie
Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 13 mei uur. Bij dit examen hoort een uitwerkbijlage.
Eamen VW 015 tijdvak 1 woensdag 13 mei 13.30-16.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 80 punten te behalen. Voor
10.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x.
10.0 Voorkennis y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0, b) y = -4x + 8 kan
Speciale relativiteitstheorie: de basisconcepten in een notedop
Speciale relativiteitstheorie: de basisconcepten in een notedop Speciale relativiteitstheorie:... 1 de basisconcepten in een notedop... 1 1. Klassieke Relativiteit... 1 1.1 Twee waarnemers zien een verschillende
wiskunde B vwo 2015-II
Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande
AFSTANDEN IN PERSPECTIEF
ESECTIEFTEKENEN AFLEVEING 2 In de eerste aflevering over perspectieftekenen, afgelopen november in ythagoras, hebben we het tekenen van evenwijdige lijnen geïntroduceerd. In deze aflevering denken we na
V Kegelsneden en Kwadratische Vormen in R. IV.0 Inleiding
V Kegelsneden en Kwadratische Vormen in R IV.0 Inleiding V. Homogene kwadratische vormen Een vorm als H (, ) = 5 4 + 8 heet een homogene kwadratische vorm naar de twee variabelen en. Een vorm als K (,
