4. Het uiteindelijke wedstrijdverloop bij de damesfinale uit de vorige opgave was als volgt: Novotna won de eerste set.

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "4. Het uiteindelijke wedstrijdverloop bij de damesfinale uit de vorige opgave was als volgt: Novotna won de eerste set."

Transcriptie

1 1. Op een grote scholengemeenschap volgen 500 leerlingen één of meer van de vakken biologie, scheikunde en natuurkunde gedurende het eerste semester. Het afdelingshoofd heeft de de gegevens in een diagram gezet. Je ziet het diagram hieronder. (a) Hoeveel leerlingen volgen alle drie de vakken? (b) Hoeveel leerlingen volgen zowel biologie als scheikunde? (c) Welke betekenis heeft het getal 93 in het diagram? (d) Er wordt één leerling aselect uit de 500 leerlingen getrokken. Hoe groot is de kans dat deze leerling geen natuurkunde heeft? 2. Een leerling gooit met twee dobbelstenen. Een manier om de som van het aantal ogen systematisch weer te geven staat in de tabel hiernaast. (a) Bereken de kans dat het aantal ogen gelijk is aan 7. (b) Waarom is de kans op een som van 11 kleiner dan een som van 7? (c) Bereken de kans dat de som van de ogen 7 of 11 is? som In een damesfinale tennis wordt gespeeld om the best of three sets. Dat wil zeggen dat degene die het eerst twee sets gewonnen heeft de kampioen is. Tijdens de kampioenschappen van Wimbledon in 1993 stonden Steffi Graf en Jana Novotna in de finale. De mogelijkheden voor het wedstrijdverloop staan hieronder in een boomdiagram. 1

2 Daarin is eerst aangegeven welke mogelijkheden er zijn voor de eerste set, daarna voor de tweede set, en tenslotte voor de derde set. (a) Waarom bestaat het bovenste wedstrijdverloop maar uit twee sets? (b) Hoeveel wedstrijdverlopen zijn er mogelijk? (c) In hoeveel daarvan wint Graf? (d) Betekent dit dat ze 50 % kans had de finale te winnen? 4. Het uiteindelijke wedstrijdverloop bij de damesfinale uit de vorige opgave was als volgt: Novotna won de eerste set. Graf won de tweede en de derde set. (a) Neem uit het boomdiagram van de vorige opgave de route over die bij dit wedstrijdverloop hoort. (b) Schrijf ook op welk ander wedstrijdverloop had kunnem leiden tot een 2-1 overwinning voor Graf. 5. Bij een groot opgezet medisch onderzoek naar de gevolgen voor luchtverontreiniging voor de volksgezondheid werden verschillende vragen gesteld. Enkele van die vragen staan hieronder. (a) Bedenk een manier om te onderzoeken hoeveel verschillende groepen je op basis van deze vragen kunt onderscheiden. Hoeveel verschillende groepen kun je onderscheiden? (b) Stel dat je op een school wilt onderzoeken hoe vaak leerlingen per jaar naar de tandarts gaan. Je wilt daarbij 24 groepen onderscheiden naar geslacht, leeftijd en aantal bezoeken aan de tandarts. Welke vragen zou je dan kunnen stellen? 6. Ruud, Harry en Frank hebben samen gegeten en ze hebben geen van drieën zin om af te wassen. Ruud stelt voor om te loten. Ze gooien twee keer met een munt en spreken daarbij het volgende af. Als er twee keer kruis gegooid wordt, wast Ruud af. Bij twee keer munt moet Harry afwassen. En als het één keer kruis en één keer munt wordt, wast Frank af. Frank zegt dat hij in het nadeel is. Toon met het boomdiagram hieronder aan dat hij gelijk heeft. 2

3 Een boomdiagram is een manier om alle mogelijkheden bij een telprobleem overzichtelijk weer te geven. Bij elke keuze hoort een aantal takken. Bij elke tak wordt de betreffende keuze genoteerd. Elke route van het beginpunt naar een eindpunt beschrijft een mogelijke volgorde, ook wel rangschikking genoemd, bij een telprobleem. Bij een telprobleem hoeven de routes niet altijd even lang te zijn. 7. Op de menukaart van bistro de Holterberg staat een aantal gerechten. De eigenaar wil weten op hoeveel verschillende manieren hij een menu van drie gangen kan samenstellen. Hij tekent eerst een boomdiagram Hieronder staat het begin. (a) Neem het boomdiagram over. wat moet er boven het boomdiagram komen te staan? (b) Hoeveel takken heb je bij de eerste keuze? Wat moer er bij de takken komen te staan? Schrijf het erbij. (c) Doe dit ook voor de volgende twee gangen. (d) Op hoeveel verschillende manieren kun je in dit restaurant een maaltijd van drie gangen samenstellen? 8. Ter afsluiting van het schooljaar organiseert de gymnastiek-sectie een sportdag. Op deze sportdag moet iedereen aan twee sportwedstrijden deelnemen. Je hebt de keuze uit basketbal, volleybal, tafeltennis en handbal. Je mag niet twee keer dezelfde sport kiezen. (a) Geef alle verschillende volgorden aan in een boomdiagram. (b) Hoeveel verschillende volgorden zijn er? (c) Hoeveel verschillende volgorden zijn er als je wel twee keer aan dezelfde sport mag meedoen? 9. Door het uit-of aanzetten van een vijftal lampjes kan men verschillende signalen (de aan-uitvolgorden) geven. Eén van de signalen,aan -uit-uit-aan-uit, staat hieronder. 3

4 (a) Teken een boomdiagram bij dit telprobleem. (b) Hoeveel verschillende signalen zijn er mogelijk? (c) Bereken de kans dat er bij een willekeurig signaal meer dan twee lampjes aan zijn. 10. Leo gaat verschillende vlaggen maken die uit twee horizontale banen bestaan. Leo heeft de keuze uit drie kleuren, namelijk : rood, wit en blauw. De twee banen mogen dezelfsde kleur hebben. Volgens Leo kan hij acht verschillende vlaggen maken. Jochem, zijn broer, denkt dat hij negen verschillende vlaggen kan maken. Op de volgende pagina zie je hoe ze aan hun aantal zijn gekomen. Leg uit wie goed heeft geredeneerd. 11. Bij een gokspelletje wordt twee keer een munt opgegooid. De inleg bedraagt 1 euro. De uitkering is het aantal keren kop in euro s. (a) Teken het boomdiagram dat hier bij hoort. (b) Welke volgorde geeft winst voor de speler? (c) Nu wordt er drie keer met een munt gegooid. Hoeveel routes kun je in het boomdiagram vinden? (d) Vind je dat de inleg van 1 euro nog steeds verstandig is? Geef een toelichting. (e) Neem de tabel over en vul hem in. aantal keren gooien aantal routes in het boomdiagram 12. Bij het invullen van een totoformulier moeten de uitslagen van tien voetbalwedstrijden, in één kolom, worden voorspeld. 1 = de thuisclub wint 2 = de uitspelende club wint 3 = de wedstrijd eindigt in een gelijk spel (a) Teken het boomdiagram dat alle volgorden weergeeft. (b) Hoeveel verschillende mogelijkheden van invullen zijn er voor de eerste twee wedstrijden? (c) En hoeveel voor de eerste drie? (d) En hoeveel voor de eerste zes? (e) Hoeveel kolommen moet je invullen om er zeker van te zijn dat je ook een keer alle tien de uitslagen goed hebt? 4

5 (f) Het invullen van twee kolommen kost 2,50. Hoeveel kost het om er zeker van te zijn alle tien de uitslagen goed te hebben? Een machtsboom is een boomdiagram waarbij uit elk punt evenveel takken vertrekken. Elke keer moet je een keuze maken uit dezelfde mogelijkheden. Het totale aantal mogelijkheden kun je berekenen met een macht. 13. In computerapparatuur zitten vaak kleine schakelaartjes, dipswitches, waarmee het apparaat op de gewenste manier ingesteld kan worden.elk schakelaartje kan in twee standen gezet worden. (a) Hoeveel verschillende instellingen zijn er mogelijk met drie dipswitches? (b) En hoeveel met zes dipswitches? (c) Hoeveel verschillende dipswitches heb je nodig om meer dan duizend verschillende instellingen te maken? 14. Sylvia en Peter spelen een spel. (a) Maak een boomdiagram bij dit spel. (b) Hoeveel mogelijke spelverlopen zijn er bij dit spel? (c) Hoeveel spelverlopen eindigen in gelijk spel? (d) Hoeveel mogelijke spelverlopen zijn er als ieder zes keer mag gooien? (e) Beredeneer dat bij zes keer gooien 141 keer van een gelijk spel sprake is. 15. In een tv-spel moet Hennie vier bordjes met songtitels naast het juiste jaartal ophangen. Hennie weet niets af van populaire muziek en hangt de bordjes lukraak op. (a) Maak een boomdiagram waarin je het totale aantal manieren waarop Hennie de bordjes kan ophangen kunt aflezen. (b) Hoeveel verschilende volgorden zijn er? (c) Hoe groot is de kans dat Hennie de juiste volgorde kiest? 5

6 16. Sander moet vijf songtitels naast het juiste jaartal zetten. Ook hij weet niets af van populaire muziek. (a) Een boomdiagram tekenen met alle volgordes erin neemt erg veel tijd in beslag. Toch kun je uitrekenen hoeveel verschillende volgordes er zijn door met een stukje van de boom te redeneren. Hoeveel verschillende mogelijkheden zijn er? (b) Hoe groot is de kans dat Sander vier van de vijf songtitels op de goede plek zet? (c) Hoe groot is de kans dat Sander minstens één songtitel op de verkeerde plek zet? 17. Sander moet vijf songtitels naast het juiste jaartal zetten. Ook hij weet niets af van populaire muziek. (a) Een boomdiagram tekenen met alle volgordes erin neemt erg veel tijd in beslag. Toch kun je uitrekenen hoeveel verschillende volgordes er zijn door met een stukje van de boom te redeneren. Hoeveel verschillende mogelijkheden zijn er? (b) Hoe groot is de kans dat Sander vier van de vijf songtitels op de goede plek zet? (c) Hoe groot is de kans dat Sander minstens één songtitel op de verkeerde plek zet? Als je 7 cd s op volgorde wil zetten dan zijn er = 5040 verschillende manieren om dit te doen. Het product heet 7-faculteit en wordt genoteerd als 7!. We zeggen dat er 7! permutaties zijn van 7 cd s. 18. Een tv-kijker maakt er een sport van elke avond in een andere volgorde één keer te zappen langs de zenders Ned1, Ned2, Ned3, RTL4, RTL5, BRT!, BRT2, BBC1, BBC2. Na hoeveel jaren heeft hij alle mogelijke volgorden gehad? Een faculteitsboom is een boomdiagram waarbij na elke keuze het aantal mogelijkheden, dus ook het aantal takken, één minder is. Het totale aantal volgorden is een faculteit. In een volgorde kan elke mogelijkheid maar één keer voorkomen. 19. Bij een vereniging worden drie mensen A, B en C in het bestuur gekozen. Ze moeten de functie vervullen van voorzitter, penningmeester en secretaris en mogen deze functies onderling verdelen. (a) Vul onderstaand boomdiagram verder in om alle mogelijkheden te krijgen waarop deze personen de functies kunnen krijgen. (b) Hoeveel volgorden zijn er mogelijk? 6

7 (c) En hoeveel volgorden zijn er mogelijk als er zes mensen zijn waaruit het drietallig bestuur gekozen moet worden? 20. Ramira wil alle permutaties van de letters waaruit haar naam bestaat opschrijven. Het opschrijven van één permutatie kost haar 1,5 seconde. (a) Hoeveel minuten doet ze er over om alle permutaties op te schrijven? (b) Hoeveel permutaties beginnen met RAM? 21. Het woord wiskunde telt acht verschillende letters. (a) laat zien dat je met drie van deze acht letters 336 verschillende woorden kunt maken. (b) Hoeveel verschillende drietallen zijn er mogelijk? 22. Je hebt tien verschillende letters, je kiest er vier uit. (a) Hoeveel verschillende viertallen zijn er mogelijk? (b) Hoeveel verschillende zestallen uit die tien zijn er mogelijk? Een selectie van drie dingen die je uit tien verschillende dingen kunt kiezen heet een combinatie van 3 uit 10. In een combinatie is de volgorde niet van belang. ( 10 Het aantal combinaties wordt genoteerd als en kun je als volgt berekenen: Boven en onder de breukstreep staan drie getallen. Op veel rekenmachines wordt een combinatie van r dingen uit n dingen met ncr aangegeven. ) 23. Het brailleschrift gebruikt tastbare lettertekens. Voor elk teken een groep van 6 puntjes in reliëf. In het voorbeeld hiernaast betekent een dicht rondje een verhoging in het papier. (a) Hoeveel tekens zijn er mogelijk als één puntje hoger is? (b) En als er twee hoger zijn? (c) Hoeveel tekens zijn er in totaal mogelijk? ( ) ( ) ( ) (a) Bereken,, ( ) ( ) (b) Verklaar waarom = De berekening van het aantal combinaties van drie uit tien kun je herleiden tot : ( ) 10 = (3 2 1)( ) = 10! 3! 7!. (a) Verklaar deze herleiding. ( ) ( ) 8 8 (b) Herleid op dezelfde manier en

8 (c) Er is afgesproken dat 0! = 1. Leg uit waarom dat voor de hand ligt. Voor het aantal combinaties van k uit n geldt ( ) n n! de formule = k k! (n k)!. Er is afgesproken dat 0! = 1. Voorbeeld ( ) 10 = 10! 0 0! 10! ( ) ( ) = 20! 12! 8!. = 10! 20! 0! = 1. = Een klas van vijfentwintig leerlingen moet verdeeld worden over twee busjes. In het ene busje kunnen tien leerlingen in het andere vijftien. (a) Op hoeveel manieren kan dit? (b) Jan en Frans zitten bij elkaar in de klas. Hoeveel verdelingen zijn er waarbij Jan en Frans bij elkaar in de bus van vijftien leerlingen zitten? (c) De leerlingen worden willekeurig verdeeld. Bereken de kans dat Jan en Frans in dezelfde bus komen. ( ) Hoe groot is 21 ( )? Geef een redenering, geen berekening. 28. Een byte is een getal dat bestaat uit acht bits. Een bit is een 0 of een 1. (a) Hoeveel bytes met twee nullen en zes enen zijn er mogelijk? (b) Hoeveel van die bytes beginnen met een nul en eindigen met een één? (c) Hoeveel bytes met tenminste één nul zijn er mogelijk? (d) Hoe kun je een byte met behulp van randomgetallen maken? Hoe groot is de kans dat de rij uit vier nullen en vier enen bestaat? 29. Een voetbalwedstrijd eindigde in een verlies van 2-3 voor de thuis spelende club. Elk scoreverloop dat tot deze uitslag leidt kun je als een route van S naar P in het rooster hiernaast weergeven. Je start bij de stand 0-0 dus in het punt S(0,0). Bij elk doelpunt van de thuis spelende club (T) ga je een stap naar rechts. Scoort de uitspelende club (U) dan ga je een stap omhoog. De routes eindigen in het punt P(2,3). (a) Is UUTTU een route van punt S naar punt P? (b) Waarom bestaat elke route uit drie U s en twee T s? (c) Hoeveel scoreverlopen zijn er mogelijk met 2-3 als eindstand? (d) Waarom is het antwoord gelijk aan ( 5 2 )? 8

som 1 2 3 4 5 6 4. Het uiteindelijke wedstrijdverloop bij de damesfinale uit de vorige opgave was als volgt: Novotna won de eerste set.

som 1 2 3 4 5 6 4. Het uiteindelijke wedstrijdverloop bij de damesfinale uit de vorige opgave was als volgt: Novotna won de eerste set. 1. Op een grote scholengemeenschap volgen 500 leerlingen één of meer van de vakken biologie, scheikunde en natuurkunde gedurende het eerste semester. Het afdelingshoofd heeft de de gegevens in een diagram

Nadere informatie

wiskundeleraar.nl

wiskundeleraar.nl 2015-2016 wiskundeleraar.nl 1. voorkennis Volgorde bij bewerkingen 1. haakjes 2. machtsverheffen. vermenigvuldigen en delen van links naar rechts 4. optellen en aftrekken van links naar rechts Voorbeeld

Nadere informatie

Bovenstaand schema kan je helpen bij het bepalen van het soort telprobleem en de berekening van het aantal mogelijkheden 2.

Bovenstaand schema kan je helpen bij het bepalen van het soort telprobleem en de berekening van het aantal mogelijkheden 2. Telproblemen voor 4 HAVO wiskunde A In het schoolexamen 2 van 4 HAVO wiskunde A zijn de opgaven over de telproblemen (hoofdstuk 4) erg slecht gemaakt. Dat moet beter kunnen, zou ik denken Ik bespreek hier

Nadere informatie

Hieronder zie je hoe dat gaat. Opgave 3. Tel het aantal routes in de volgende onvolledige roosters van linksboven naar rechtsonder.

Hieronder zie je hoe dat gaat. Opgave 3. Tel het aantal routes in de volgende onvolledige roosters van linksboven naar rechtsonder. Groepsopdracht 1: Volledige en onvolledige roosters Voor een volledig rooster kun je de driehoek van Pascal gebruiken om te weten te komen hoeveel routes er van A naar B zijn. Bij onvolledige roosters

Nadere informatie

6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen?

6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen? 1. Iemand heeft thuis 12 CD s in een rekje waar er precies 12 inpassen. a. Op hoeveel manieren kan hij ze in het rekje leggen. b. Hij wil er 2 weggeven aan zijn vriendin, hoeveel mogelijkheden? c. Hij

Nadere informatie

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang?

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang? 4. tellen & kansen 4.1 Tellen Herkennen Je kunt een vraag over telproblemen herkennen aan signaalwoorden: - hoeveel mogelijkheden, manieren, routes, volgordes etc. zijn er?, - bereken het aantal mogelijkheden/manieren

Nadere informatie

Wiskunde D Online uitwerking oefenopgaven 4 VWO blok 1 les 1

Wiskunde D Online uitwerking oefenopgaven 4 VWO blok 1 les 1 Paragraaf 1 Wegendiagrammen en bomen Opgave 1 a) Een mogelijkheid is om 6 stukjes papier te nemen en daar de cijfers 1 tot en met 6 op te zetten. Schudt de papiertjes door elkaar. Pak één voor één de papiertjes

Nadere informatie

9.1 Gemiddelde, modus en mediaan [1]

9.1 Gemiddelde, modus en mediaan [1] 9.1 Gemiddelde, modus en mediaan [1] De onderstaande frequentietabel geeft aan hoeveel auto s er in een bepaald uur in een straat geteld zijn. Aantal auto s per uur 15 16 17 18 19 20 21 frequentie 2 7

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 3: Het vaasmodel (deze les sluit aan bij de paragrafen 5, 6 en 7 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Paragraaf 2.1 : Telproblemen visualiseren

Paragraaf 2.1 : Telproblemen visualiseren Hoofdstuk 2 Combinatoriek (V4 Wis A) Pagina 1 van 13 Paragraaf 2.1 : Telproblemen visualiseren Les 1 Verschillende diagrammen Jan gaat eten bij de Merode. Hij kan kiezen uit 2 voorgerechten : soep of cocktail

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 3: Het vaasmodel (deze les sluit aan bij de paragrafen 5, 6 en 7 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Tellen vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74263

Tellen vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74263 Auteur VO-content Laatst gewijzigd Licentie Webadres 12 april 2016 CC Naamsvermelding 3.0 Nederland licentie https://maken.wikiwijs.nl/74263 Dit lesmateriaal is gemaakt met Wikiwijs van Kennisnet. Wikiwijs

Nadere informatie

bijlagen groep 7 en 8

bijlagen groep 7 en 8 bijlagen groep 7 en 8 bijlage 1 roosterloopdiagram tips met 5 eindpunten Is ook beschikbaar als PowerPoint-slide. Zet bij elke splitsing twee kleine pijltjes die de looprichting aangeven om te voorkomen

Nadere informatie

Paragraaf 4.1 : Vermenigvuldig- en Somregel

Paragraaf 4.1 : Vermenigvuldig- en Somregel Hoofdstuk 4 Handig Tellen (H4 Wis A) Pagina 1 van 11 Paragraaf 4.1 : Vermenigvuldig- en Somregel Jan gaat eten bij de Merode. Hij kan kiezen uit 2 voorgerechten : soep of cocktail 3 hoofdgerechten : vis

Nadere informatie

Thema: Tellen vmbo-b34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74198

Thema: Tellen vmbo-b34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74198 Auteur VO-content Laatst gewijzigd Licentie Webadres 28 oktober 2016 CC Naamsvermelding 3.0 Nederland licentie https://maken.wikiwijs.nl/74198 Dit lesmateriaal is gemaakt met Wikiwijs van Kennisnet. Wikiwijs

Nadere informatie

5 T-shirts. (niet de tweede)

5 T-shirts. (niet de tweede) G&R Havo A deel Handig tellen C. von Schwartzenberg /0 a b a b c Neem GR - practicum door. (zie aan het eind van deze uitwerkingen) Tellen (van de eindpunten) geeft keuzemogelijkheden. Berekening: =. Voordeel

Nadere informatie

Wiskunde D Online uitwerking oefenopgaven 4 VWO blok 3 les 1

Wiskunde D Online uitwerking oefenopgaven 4 VWO blok 3 les 1 Paragraaf De kansdefinitie Opgave a) Als de kikker verspringt, gaat hij van zwart naar wit, of andersom Hij zit dus afwisselend op een zwart en een wit veld Op een willekeurig moment is de kans even groot

Nadere informatie

Faculteit, Binomium van Newton en Driehoek van Pascal

Faculteit, Binomium van Newton en Driehoek van Pascal Faculteit, Binomium van Newton en Driehoek van Pascal 1 Faculteit Definitie van de faculteit Wisnet-hbo update aug. 2007 (spreek uit k-faculteit) is: k Dit geldt voor elk geheel getal k groter dan 0 en

Nadere informatie

extra sommen Statistiek en Kans

extra sommen Statistiek en Kans extra sommen Statistiek en Kans 1. Bepaal bij de volgende rijen de modus, de mediaan en het gemiddelde a. 1, 4, 2, 3, 5, 3, 6, 3 b. 12, 11, 13, 11, 12, 11, 12, 13, 11, 14, 75, 15 c. 1, 43, 12, 32, 43,

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 2: Roosters en ongeordende grepen (deze les sluit aan bij de paragrafen 3 en 4 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

4 20 maar dan speelt 4v1 thuis tegen 4v2 maar 4v1 speelt ook uit tegen 4v2 want deze wedstrijd tel je bij 4v2. wedstrijden, dus totaal 1 n ( n 1)

4 20 maar dan speelt 4v1 thuis tegen 4v2 maar 4v1 speelt ook uit tegen 4v2 want deze wedstrijd tel je bij 4v2. wedstrijden, dus totaal 1 n ( n 1) Hoofdstuk : Combinatoriek.. Telproblemen visualiseren Opgave : 3 voordeel: een wegendiagram is compacter nadeel: bij een wegendiagram moet je weten dat je moet vermenigvuldigen terwijl je bij een boomdiagram

Nadere informatie

META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t

META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t Welk verband zie ik tussen de gegeven informatie en wat er gevraagd wordt? Wat heb ik nodig? Heb ik de gegevens uit de tekst gehaald? Welke

Nadere informatie

Checklist Wiskunde A HAVO 4 2014-2015 HML

Checklist Wiskunde A HAVO 4 2014-2015 HML Checklist Wiskunde A HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Ik weet hoe je met procenten moet rekenen: procenten en breuken, percentage berekenen, toename en afname in procenten, rekenen met groeifactoren.

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

b) Teken op de bijlage welke lampjes van het klokje branden om 19:45:52. Schrijf eronder hoe je dit bepaald/berekend hebt. (3p)

b) Teken op de bijlage welke lampjes van het klokje branden om 19:45:52. Schrijf eronder hoe je dit bepaald/berekend hebt. (3p) NATUURKUNDE KLAS 4 PW HOOFDSTUK PW HOOFDSTUK 3-23/03/2011 Totaal: 3 opgaven, 29 punten. Gebruik eigen BINAS toegestaan. Opgave 1: binair klokje Er bestaan klokjes die de tijd binair weergeven. Zie figuur

Nadere informatie

groep 8 blok 7 antwoorden Malmberg s-hertogenbosch

groep 8 blok 7 antwoorden Malmberg s-hertogenbosch blok 7 groep 8 antwoorden Malmberg s-hertogenbosch blok 7 les 3 3 Reken de omtrek en de oppervlakte van de figuren uit. Gebruik m en m 2. 1 m C Omtrek figuur C 20 m Oppervlakte figuur C 22 m 2 A B Omtrek

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 2: Roosters en ongeordende grepen (deze les sluit aan bij de paragrafen 3 en 4 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Examen VBO-MAVO-C. Wiskunde

Examen VBO-MAVO-C. Wiskunde Wiskunde Examen VBO-MAVO-C Voorbereidend Beroeps Onderwijs Middelbaar Algemeen Voortgezet Onderwijs Tijdvak 1 Dinsdag 18 mei 13.30 15.30 uur 19 99 Dit examen bestaat uit 27 vragen. Voor elk vraagnummer

Nadere informatie

extra sommen Statistiek en Kans

extra sommen Statistiek en Kans extra sommen Statistiek en Kans 1. Bepaal bij de volgende rijen de modus, de mediaan en het gemiddelde a. 1, 4, 2, 3, 5, 3, 6, 3 b. 12, 11, 13, 11, 12, 11, 12, 13, 11, 14, 75, 15 c. 1, 43, 12, 32, 43,

Nadere informatie

Deel A. Breuken vergelijken

Deel A. Breuken vergelijken Deel A Breuken vergelijken - - 0 Breuken en brokken (). Kleur van elke figuur deel. Doe het zo nauwkeurig mogelijk.. Kleur van elke figuur deel. Doe het telkens anders.. Kleur steeds het deel dat is aangegeven.

Nadere informatie

In de Theorie worden de begrippen toevalsvariabele, kansverdeling en verwachtingswaarde toegelicht.

In de Theorie worden de begrippen toevalsvariabele, kansverdeling en verwachtingswaarde toegelicht. Toevalsvariabelen Verkennen www.mathall.nl MAThADORE-basic HAVO/VWO /5/6 VWO wi-a Kansrekening Toevalsvariabelen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.mathall.nl MAThADORE-basic

Nadere informatie

Havo 4, Handig tellen en Kansrekenen.

Havo 4, Handig tellen en Kansrekenen. Havo, Handig tellen en Kansrekenen. Getal en ruimte boek, hoofdstuk. Handig tellen. Paragraaf, de vermenigvuldig regel: Als je EN hoort, doe je en de plusregel: Als je OF hoort, doe je + a. Er zijn mogelijkheden,

Nadere informatie

Getallen 1F Doelen Voorbeelden 2F Doelen Voorbeelden

Getallen 1F Doelen Voorbeelden 2F Doelen Voorbeelden A Notatie en betekenis - Uitspraak, schrijfwijze en betekenis van, symbolen en relaties - Wiskundetaal gebruiken - de relaties groter/kleiner dan - breuknotatie met horizontale streep - teller, noemer,

Nadere informatie

VWO Wiskunde D Combinatoriek en Rekenregels

VWO Wiskunde D Combinatoriek en Rekenregels VWO Wiskunde D Combinatoriek en Rekenregels Combinatoriek en rekenregels Inhoudsopgave Wegendiagrammen en bomen Geordende grepen 7 3 Roosters 4 Ongeordende grepen 6 5 Het vaasmodel 6 Combinatorische vraagstukken

Nadere informatie

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen....

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken de rekenregel breuk Ik kan

Nadere informatie

METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen

METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen Beschrijf in eigen woorden: Waar gaat de opdracht over? Welke signaalwoorden staan in de tekst? Wijst een signaalwoord naar een strategie? Welke

Nadere informatie

Eindexamen wiskunde A 1-2 havo 2005-I

Eindexamen wiskunde A 1-2 havo 2005-I Er zijn nog drie wachtenden voor u Een callcenter verleent telefonische diensten voor bedrijven, zoals het opnemen van bestellingen of het afhandelen van vragen. Het telefoontjes en de gespreksduur per

Nadere informatie

Examenopgaven VMBO-GL en TL 2004

Examenopgaven VMBO-GL en TL 2004 Examenopgaven VMBO-GL en TL 2004 1 tijdvak 1 vrijdag 28 mei 13:30 15:30 uur WISKUNDE CSE GL EN TL WISKUNDE VBO-MAVO-D Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 26 vragen. Voor dit

Nadere informatie

Examen HAVO. tijdvak 2 dinsdagdinsdag uur

Examen HAVO. tijdvak 2 dinsdagdinsdag uur Examen HAVO 2017 tijdvak 2 dinsdagdinsdag 20 juni 13.30-16.30 uur oud programma wiskunde A Dit examen bestaat uit 22 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

4.0 Voorkennis. Bereken het aantal manieren om de functies te verdelen:

4.0 Voorkennis. Bereken het aantal manieren om de functies te verdelen: 4.0 Voorkennis Voorbeeld 1: Een bestuur bestaat uit 6 personen. Uit deze 6 personen wordt eerst een voorzitter, dan een secretaris en tot slot een penningmeester gekozen. Bereken het aantal manieren om

Nadere informatie

Toets combinatoriek en kansrekening

Toets combinatoriek en kansrekening Deze toets bestaat uit 16 opgaven. Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Er zijn maximaal 31 punten te behalen. Antwoorden moeten altijd zijn voorzien van een berekening,

Nadere informatie

Roy kan op vier verschillende manieren in één worp bij elkaar vijf gooien. Schrijf deze vier manieren op.

Roy kan op vier verschillende manieren in één worp bij elkaar vijf gooien. Schrijf deze vier manieren op. ACHTVLAKDOBBELSTENEN Roy gooit één keer met twee achtvlakdobbelstenen, een rode en een blauwe. Dit noemt hij een worp. Daarna telt hij de getallen van de bovenliggende vlakken bij elkaar op. In de situatie

Nadere informatie

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625.

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. 3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. Absolute verandering = Aantal 2004 Aantal 1994 = 1625 3070 = -1445 Relatieve verandering = Nieuw Oud Aantal

Nadere informatie

Zwijsen. jaargroep 4. naam: reken-wiskundemethode voor het basisonderwijs. rekentrainer. jij. Bezoek alle leuke dingen. Teken de weg.

Zwijsen. jaargroep 4. naam: reken-wiskundemethode voor het basisonderwijs. rekentrainer. jij. Bezoek alle leuke dingen. Teken de weg. Zwijsen jaargroep naam: reken-wiskundemethode voor het basisonderwijs! jij rekentrainer Bezoek alle leuke dingen. Teken de weg. Groep blad 1 Hoe komt de hond bij het bot? Teken. Kleur de tegels. Kleur

Nadere informatie

Tentamenset A. 2. Welke van de volgende beweringen is waar? c. N R N d. R Z R

Tentamenset A. 2. Welke van de volgende beweringen is waar? c. N R N d. R Z R Tentamenset A. Gegeven de volgende verzamelingen A en B. A is de verzameling van alle gehele getallen tussen de 0 en 0 die deelbaar zijn door, en B is de verzameling gehele positieve getallen deelbaar

Nadere informatie

Hoofdstuk 1. Afspraken en notaties

Hoofdstuk 1. Afspraken en notaties Hoofdstuk 1 Afspraken en notaties In deze tekst onderzoeken we een eenvoudig dobbelspel: twee spelers hebben een dobbelsteen, gooien deze, en wie het hoogst aantal ogen gooit wint. Er blijken setjes dobbelstenen

Nadere informatie

Je kunt de kansen met wiskunde technieken berekenen (bijvoorbeeld boomdiagramman), maar je kunt ook deze door simulaties achterhalen.

Je kunt de kansen met wiskunde technieken berekenen (bijvoorbeeld boomdiagramman), maar je kunt ook deze door simulaties achterhalen. Spelen met Kansen Bij wiskunde A, havo en vwo In een heleboel gezelschapsspellen speelt het toeval een grote rol, bijvoorbeeld Patience, Ganzenbord, Thodi, Black Jack, Risk, Poker, Bridge. Deze spellen

Nadere informatie

Examen VWO. wiskunde A1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur

Examen VWO. wiskunde A1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur Examen VWO 2008 tijdvak 2 woensdag 18 juni 13.30-16.30 uur wiskunde A1,2 Dit examen bestaat uit 21 vragen. Voor dit examen zijn maximaal 82 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Examen HAVO. Wiskunde A (oude stijl)

Examen HAVO. Wiskunde A (oude stijl) Wiskunde (oude stijl) Examen HVO Hoger lgemeen Voortgezet Onderwijs Tijdvak Donderdag 23 mei 3.3 6.3 uur 2 2 Voor dit examen zijn maximaal 9 punten te behalen; het examen bestaat uit 2 vragen. Voor elk

Nadere informatie

Gokautomaten (voor iedereen)

Gokautomaten (voor iedereen) Gokautomaten (voor iedereen) In een fruitautomaat draaien de schijven I, II en III onafhankelijk van elkaar. Door een hendel kan elke schijf tot stilstand worden gebracht. In de tabel zie je wat op elke

Nadere informatie

In de 4som-puzzel kun je de gegeven sommen variëren. Nog zo eentje.

In de 4som-puzzel kun je de gegeven sommen variëren. Nog zo eentje. 4som kaart a In een 4som-puzzel moeten in vier hokjes getallen worden geschreven. Van de (horizontale) rijen en van de (verticale) kolommen is de som gegeven en ook van de diagonalen. Welke getallen moeten

Nadere informatie

Opmerking Als is afgerond op duizendtallen, hiervoor geen punten aftrekken.

Opmerking Als is afgerond op duizendtallen, hiervoor geen punten aftrekken. Antwoordmodel HAVO wiskunde A 000-II (oude stijl) Antwoorden Opgave Hypotheken Maximumscore 00 000 komt overeen met, maal de koopsom bij een bestaand huis koopsom bestaand huis = 00000 :, = 67 857 gulden

Nadere informatie

Examen HAVO. wiskunde A1,2

Examen HAVO. wiskunde A1,2 wiskunde A1,2 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Donderdag 2 juni 13.30 16.30 uur 20 05 Voor dit examen zijn maximaal 83 punten te behalen; het examen bestaat uit 21 vragen. Voor

Nadere informatie

Lesbrief Hypergeometrische verdeling

Lesbrief Hypergeometrische verdeling Lesbrief Hypergeometrische verdeling 010 Willem van Ravenstein If I am given a formula, and I am ignorant of its meaning, it cannot teach me anything, but if I already know it what does the formula teach

Nadere informatie

inhoudsopgave inhoudsopgave 2 de grote lijn 3 bespreking per paragraaf 4

inhoudsopgave inhoudsopgave 2 de grote lijn 3 bespreking per paragraaf 4 handleiding tellen inhoudsopgave inhoudsopgave 2 de grote lijn 3 bespreking per paragraaf 4 Applets 4 1 turven en superturven 4 2 tellen en formules 4 3 tellen en plaatjes 4 4 veelvouden en delers Error!

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 4 Donderdag 23 September 1 / 22 1 Kansrekening Indeling: Permutaties en combinaties 2 / 22 Vragen: verjaardag Wat is de kans dat minstens twee van jullie op dezelfde

Nadere informatie

Notatieafspraken Grafische Rekenmachine, wiskunde A

Notatieafspraken Grafische Rekenmachine, wiskunde A Notatieafspraken Grafische Rekenmachine, wiskunde A Bij deze verstrek ik jullie de afspraken voor de correcte notatie bij het gebruik van de grafische rekenmachine. Verder krijg je een woordenlijst met

Nadere informatie

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken.

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken. Rood-wit-blauw werkblad 1 Bij het hele werkblad: Alle rode getallen zijn deelbaar door hetzelfde getal. Elk wit getal is gelijk aan een rood getal + 1, elk blauw getal aan een rood getal + 2 Russisch vermenigvuldigen

Nadere informatie

BREEK DE MACHT KORTE OMSCHRIJVING SPEL SPELDOELEN LEERDOELEN AANTAL DEELNEMERS

BREEK DE MACHT KORTE OMSCHRIJVING SPEL SPELDOELEN LEERDOELEN AANTAL DEELNEMERS BREEK DE MACHT KORTE OMSCHRIJVING SPEL Breek de Macht is een spel waarin leerlingen ervaren wat het betekent als er geen rechtsstaat is. Breek de Macht speel je met een hele klas. Aan het begin van elke

Nadere informatie

Paracetamol in het bloed

Paracetamol in het bloed Paracetamol in het bloed Paracetamol is een veelgebruikte pijnstiller, die in tabletvorm te koop is. Voor volwassenen zijn er tabletten die 500 mg paracetamol bevatten. Na het innemen van een tablet wordt

Nadere informatie

Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo

Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Bijlage 7 Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Deze vragen kunnen gebruikt worden om aan het eind van klas 3 havo/vwo na te gaan in hoeverre leerlingen in staat zijn te

Nadere informatie

Netwerkdiagram voor een project. AOA: Activities On Arrows - activiteiten op de pijlen.

Netwerkdiagram voor een project. AOA: Activities On Arrows - activiteiten op de pijlen. Netwerkdiagram voor een project. AOA: Activities On Arrows - activiteiten op de pijlen. Opmerking vooraf. Een netwerk is een structuur die is opgebouwd met pijlen en knooppunten. Bij het opstellen van

Nadere informatie

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456 Formules, grafieken en tabellen Procenten - altijd afronden op 1 decimaal tenzij anders vermeld VB: Een hoeveelheid neemt met 12% toe to 1456. Hoeveel was de oorspronkelijke hoeveelheid? Oud =? Nieuw =

Nadere informatie

Examen VWO. wiskunde C (pilot) tijdvak 2 woensdag 17 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde C (pilot) tijdvak 2 woensdag 17 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2015 tijdvak 2 woensdag 17 juni 13.30-16.30 uur wiskunde C (pilot) Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 21 vragen. Voor dit examen zijn maximaal 76 punten te behalen.

Nadere informatie

rekentrainer jaargroep 5 Timo loopt steeds verder weg. Teken Timo bij de kruisjes op de weg en maak de tekening af. Zwijsen naam:

rekentrainer jaargroep 5 Timo loopt steeds verder weg. Teken Timo bij de kruisjes op de weg en maak de tekening af. Zwijsen naam: Zwijsen jaargroep naam: reken-wiskundemethode voor het basisonderwijs rekentrainer Timo loopt steeds verder weg. Teken Timo bij de kruisjes op de weg en maak de tekening af. Vul in. Groep blad 1 0 + 10

Nadere informatie

8. Complexiteit van algoritmen:

8. Complexiteit van algoritmen: 8. Complexiteit van algoritmen: Voorbeeld: Een gevaarlijk spel 1 Spelboom voor het wespenspel 2 8.1 Complexiteit 4 8.2 NP-problemen 6 8.3 De oplossing 7 8.4 Een vuistregel 8 In dit hoofdstuk wordt het

Nadere informatie

D-day Lights Out

D-day Lights Out D-day 2015 donderdag 19 februari, 12:30 16:30 uur Lights Out D-day 2015 Warming up: speel het spel! De opdracht gaat over het spelletje Lights Out' dat al sinds 1995 overal ter wereld wordt gespeeld. Het

Nadere informatie

Examen HAVO. wiskunde A1,2. Hoger Algemeen Voortgezet Onderwijs. Tijdvak 2 Woensdag 21 juni uur

Examen HAVO. wiskunde A1,2. Hoger Algemeen Voortgezet Onderwijs. Tijdvak 2 Woensdag 21 juni uur wiskunde A1,2 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 21 juni 13.3 16.3 uur 2 6 Voor dit examen zijn maximaal 8 punten te behalen; het examen bestaat uit 22 vragen. Voor elk

Nadere informatie

H10: Allerlei functies H11: Kansverdelingen..6-7

H10: Allerlei functies H11: Kansverdelingen..6-7 Oefenmateriaal V5 wiskunde A Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-3 H10: Allerlei functies....4-5 H11: Kansverdelingen..6-7 Hoofdstuk 9: Rijen & Reeksen Recursieve

Nadere informatie

Examen VWO 2015. wiskunde C. tijdvak 2 woensdag 17 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2015. wiskunde C. tijdvak 2 woensdag 17 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2015 tijdvak 2 woensdag 17 juni 13.30-16.30 uur wiskunde C Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 22 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor

Nadere informatie

7.0 Voorkennis , ,

7.0 Voorkennis , , 7.0 Voorkennis Een gokkast bestaat uit een drietal schijven die ronddraaien. Op schijf 1 staan: 5 bananen, 4 appels, 3 citroenen en 3 kersen; Op schijf 2 staan: 7 bananen, 3 appels, 2 citroenen en 3 kersen;

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Populatie: een intuïtieve definitie.... Een

Nadere informatie

Examen HAVO. wiskunde A. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde A. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2013 tijdvak 1 vrijdag 17 mei 13.30-16.30 uur wiskunde A Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 21 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor

Nadere informatie

Een gooi naar de winst. Wiskunde B-dag 2016, vrijdag 18 november, 9:00u-16:00u

Een gooi naar de winst. Wiskunde B-dag 2016, vrijdag 18 november, 9:00u-16:00u Een gooi naar de winst Wiskunde B-dag 2016, vrijdag 18 november, 9:00u-16:00u Inleiding Over de opdracht In een voetbalcompetitie is het vaak tot het eind spannend. Onderweg kunnen vreemde uitslagen voorkomen.

Nadere informatie

WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Gekleurde sokken Op de planeet Swift B6 wonen de Houyhnhnms. Ze lijken sprekend op paarden;

Nadere informatie

H9: Rijen & Reeksen..1-2. H10: Kansverdelingen..3-4. H11: Allerlei functies.5-6

H9: Rijen & Reeksen..1-2. H10: Kansverdelingen..3-4. H11: Allerlei functies.5-6 Oefenmateriaal V5 wiskunde C Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-2 H10: Kansverdelingen..3-4 H11: Allerlei functies.5- Hoofdstuk 9: Rijen & Reeksen Recursieve formule

Nadere informatie

rekentrainer jaargroep 5 Timo loopt steeds verder weg. Teken Timo bij de kruisjes op de weg en maak de tekening af. Zwijsen naam:

rekentrainer jaargroep 5 Timo loopt steeds verder weg. Teken Timo bij de kruisjes op de weg en maak de tekening af. Zwijsen naam: Zwijsen jaargroep naam: reken-wiskundemethode voor het basisonderwijs rekentrainer Timo loopt steeds verder weg. Teken Timo bij de kruisjes op de weg en maak de tekening af. Groep blad Vul in. 0 0 7 70

Nadere informatie

5. C De routes langs A en C zijn even lang, dus is de route langs C ook 215 meter langer.

5. C De routes langs A en C zijn even lang, dus is de route langs C ook 215 meter langer. ANTWOORDEN KANGOEROE 2001 BRUGKLAS en KLAS 2 1. E 2. E 18 doosjes voor de rode, 13 voor de blauwe: totaal 31 doosjes 3. C De ringen A, B en D zitten allemaal alleen door ring C. 4. B De twee getallen moeten

Nadere informatie

Rekentijger - Groep 7 Tips bij werkboekje A

Rekentijger - Groep 7 Tips bij werkboekje A Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk

Nadere informatie

Extra oefeningen hoofdstuk 2: Natuurlijke getallen

Extra oefeningen hoofdstuk 2: Natuurlijke getallen Extra oefeningen hoofdstuk 2: Natuurlijke getallen 2.1 Natuurlijke getallen 1 Rangschik de volgende natuurlijke getallen van klein naar groot. 45 54 56 78 23 25 77 89 2 050 2 505 2 055 2 500 2 005 879

Nadere informatie

2003 De Wageningse Methode. Foto s De Wageningse Methode. Druk/Verkoop Tamminga bv, Postbus 176, 6920 AD Duiven

2003 De Wageningse Methode. Foto s De Wageningse Methode. Druk/Verkoop Tamminga bv, Postbus 176, 6920 AD Duiven INHOUDSOPGAVE Routes in Vakhorst 1 Oppervlakte 6 Formules 9 Roosterkwartier 11 Test 15 Op de grens van Roosterkwartier en Vakhorst 16 Met negatieve getallen 18 Formules uit plaatjes 0 Zonder plaatjes Terugblik

Nadere informatie

Combinatoriek. Wisnet-hbo. update aug. 2007

Combinatoriek. Wisnet-hbo. update aug. 2007 Combinatoriek 1 Permutaties Wisnet-hbo update aug. 2007 Op hoeveel manieren kun je de volgorde van de vier verschillende letters van het woord BOEK op een rijtje zetten? De verschillende volgorden (permutaties)

Nadere informatie

Examen VBO-MAVO-D. Wiskunde

Examen VBO-MAVO-D. Wiskunde Wiskunde Examen VBO-MAVO-D Voorbereidend Beroeps Onderwijs Middelbaar Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 19 juni 13.30 15.30 uur 20 02 Voor dit examen zijn maximaal 90 te behalen; het examen

Nadere informatie

blok 11 groep 4 Malmberg s-hertogenbosch

blok 11 groep 4 Malmberg s-hertogenbosch blok 11 groep 4 naam:... Malmberg s-hertogenbosch blok 11 les 6 0 Kleur de antwoorden van de tafel van 2 geel en de tafel van 5 rood. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Nadere informatie

Thema: Statistiek en kans vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie.

Thema: Statistiek en kans vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. Auteur VO-content Laatst gewijzigd 21 October 2016 Licentie CC Naamsvermelding 3.0 Nederland licentie Webadres http://maken.wikiwijs.nl/74262 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet.

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

Routeboekje. bij Rekenrijk. Groep 7 Blok 6. Van...

Routeboekje. bij Rekenrijk. Groep 7 Blok 6. Van... Routeboekje bij Rekenrijk Groep 7 Blok 6 Van... Groep 7 Blok 6 Les 1 Leerkrachtgebonden LB 7a 142 1 Hoeveel bussen? meedoen LB 7a 142 2 Reken uit - LB 7a 142 3 Reken uit maken LB 7a 143 4 Schat eerst,

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 1: Wegendiagrammen, bomen en geordende grepen (deze les sluit aan bij de paragrafen 1 en 2 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Examen HAVO. wiskunde B1. tijdvak 2 woensdag 18 juni 13.30-16.30. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B1. tijdvak 2 woensdag 18 juni 13.30-16.30. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 008 tijdvak woensdag 18 juni 13.30-16.30 wiskunde B1 Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

In de handel is het gebruikelijk om korting te geven als een klant veel exemplaren van een bepaald product bestelt.

In de handel is het gebruikelijk om korting te geven als een klant veel exemplaren van een bepaald product bestelt. Korting In de handel is het gebruikelijk om korting te geven als een klant veel exemplaren van een bepaald product bestelt. Kwantumkorting Een manier om klanten korting te geven, is de kwantumkorting.

Nadere informatie

Examen VWO. wiskunde C (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde C (pilot) tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2014 tijdvak 2 woensdag 18 juni 13.30-16.30 uur wiskunde C (pilot) Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 82 punten te behalen.

Nadere informatie

Hoi boer. De speler links van de gever begint het spel door een kaart open op tafel te draaien. Daarna doet de volgende speler hetzelfde; enzovoort.

Hoi boer. De speler links van de gever begint het spel door een kaart open op tafel te draaien. Daarna doet de volgende speler hetzelfde; enzovoort. Een kaartspel voor 4 personen Hoi boer De speelkaarten worden gelijkelijk verdeeld, zodanig dat iedere speler een gelijk aantal kaarten heeft. Deze kaarten liggen omgekeerd voor de speler op tafel. De

Nadere informatie

Eindexamen wiskunde B1 havo 2008-II

Eindexamen wiskunde B1 havo 2008-II Golfhoogte Bij de beoordeling van de veiligheid van de figuur 1 Nederlandse kust wordt onder andere de golfhoogte onderzocht. De golfhoogte is het hoogteverschil tussen een golftop en het daarop volgende

Nadere informatie

Toets Combinatoriek en kansrekening

Toets Combinatoriek en kansrekening Deze toets bestaat uit 20 opgaven. Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Er zijn maximaal 76 punten te behalen. Antwoorden moeten altijd zijn voorzien van een berekening,

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 16 januari 2014 Tijd: 14.00-17.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel

Nadere informatie

Rekenen aan wortels Werkblad =

Rekenen aan wortels Werkblad = Rekenen aan wortels Werkblad 546121 = Vooraf De vragen en opdrachten in dit werkblad die vooraf gegaan worden door, moeten schriftelijk worden beantwoord. Daarbij moet altijd duidelijk zijn hoe de antwoorden

Nadere informatie

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag Practicum algemeen 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag 1 Diagrammen maken Onafhankelijke grootheid en afhankelijke grootheid In veel experimenten wordt

Nadere informatie

Het opstellen van een lineaire formule.

Het opstellen van een lineaire formule. Het opstellen van een lineaire formule. Gegeven is onderstaande lineaire grafiek (lijn b). Van deze grafiek willen wij de lineaire formule weten. Met deze formule kunnen we gaan rekenen. Je kan geen lineaire

Nadere informatie