NUMERIEKE METHODEN VOOR DE VAN DER POL VERGELIJKING. Docent: Karel in t Hout. Studiepunten: 3

Maat: px
Weergave met pagina beginnen:

Download "NUMERIEKE METHODEN VOOR DE VAN DER POL VERGELIJKING. Docent: Karel in t Hout. Studiepunten: 3"

Transcriptie

1 NUMERIEKE METHODEN VOOR DE VAN DER POL VERGELIJKING Docent: Karel in t Hout Studiepunten: 3 Over deze opgave dien je een verslag te schrijven waarin de antwoorden op alle vragen zijn verwerkt. Richtlijnen bij het schrijven van een wiskunde verslag vind je achteraan deze opgave. Tezamen met de Matlabprogramma s die je hebt geschreven, stuur je je verslag in één zip-file naar: We beschouwen in dit project de Van der Pol vergelijking: U 1 (t) = U 2(t), U 2 (t) = ε ( 1 U 1 (t) 2) U 2 (t) U 1 (t) (1) voor t 0. Hierbij is ε een gegeven positieve reële parameter. De vergelijking (1) werd in 1920 opgesteld door Van der Pol en speelt een belangrijke rol in de beschrijving van elektrische circuits. De exacte oplossingen van deze vergelijking blijken interessante eigenschappen te bezitten, die in de huidige wiskundige literatuur nog niet zijn bewezen. Doel van deze opgave is om, door middel van implementaties in Matlab, diverse numerieke methoden te onderzoeken die nauwkeurige benaderingen van de exacte oplossingen van (1) opleveren. (a) Geef de formule voor de rechterlidfunctie f(t, x) behorend bij stelsel (1). (b) Schrijf een Matlabfunctie vdpol.m met als eerste regel function y=vdpol(t,x) die voor gegeven t R en kolomvector x R 2 de kolomvector y = f(t, x) oplevert. Test deze (nieuw gemaakte) Matlabfunctie met enige concrete invoerwaarden. We onderzoeken vier numerieke methoden ter oplossing van beginwaardeproblemen voor de Van der Pol vergelijking: de expliciete Euler methode, de expliciete trapeziumregel, de expliciete middelpuntsregel en de klassieke Runge Kutta methode. (c) Schrijf voor ieder van deze vier methoden een Matlabprogramma dat voor gegeven interval [0, T ], gegeven beginvector U(0) en gegeven aantal stapjes N, achtereenvolgens benaderingen u k van de exacte oplossing U(t) = (U 1 (t), U 2 (t)) T van (1) berekent op de roosterpunten t = kh voor k = 0, 1, 2,..., N met stapgrootte h = T/N. Gebruik hierbij de Matlabfunctie gemaakt in onderdeel (b). Sla alle roosterpunten op in een rijvector ter lengte N + 1 en alle benaderingen in een matrix met 2 rijen en N + 1 kolommen. Maak voor de berekening van de startwaarden bij de expliciete middelpuntsregel gebruik van de expliciete Euler methode. 1

2 Kies ε = 1, T = 5 en beginvector U(0) = (1, 1) T. (d) Maak één plaatje in Matlab waarin de benaderingen bekomen met ieder van de vier numerieke methoden, met N = 25, zijn weergegeven in het (x 1, x 2 ) vlak. Neem hierbij als domein 3 x 1, x 2 3. Verbind opeenvolgende benaderingen met lijnstukjes en maak in het plaatje duidelijk welke benaderingen met welke methode corresponderen. Wat is een betrouwbare, eerste schatting van de vector U(5)? Licht je antwoord toe. (e) Voer de klassieke Runge Kutta methode uit met N = Maak drie plaatjes in Matlab: één met de bekomen benaderingen uitgezet in het (x 1, x 2 ) vlak en twee met de eerste resp. tweede component uitgezet tegen t. Geef de bekomen benadering van U(5) tot op 12 significante cijfers (t.t.z. in decimale, drijvende punt representatie met 12 cijfers) en noem deze benadering u. In het volgende onderdeel onderzoeken we het convergentiegedrag van de vier numerieke methoden bij toepassing op (1). We richten ons op de benadering van U(5) en kiezen als zeer nauwkeurige referentiewaarde de u bekomen in onderdeel (e). (f) Pas de expliciete Euler methode toe met N = 25 2 i voor i = 0, 1, 2,..., 6 en bereken steeds de maximumnorm van de globale fout, u N u. Geef het resultaat weer in een tabel. Analyseer het gedrag van deze fouten als functie van N en ga na of dit gedrag goed overeenstemt met de theoretische orde van convergentie p = 1 van de methode. Verricht deze analyse vervolgens voor ieder van de andere drie numerieke methoden. Matlab beschikt ook zelf over diverse programma s om beginwaardeproblemen numeriek mee op te lossen. We bekijken een bekende ode-solver in Matlab, namelijk ode45. (g) Bestudeer met het commando doc ode45 het gebruik van deze solver. Pas ode45 toe met options=odeset( AbsTol,1e-10, RelTol,1e-10) voor de benadering van U(5). Bereken de maximumnorm van de globale fout op t = 5, gebruikmakend van de referentiewaarde u. Hoe verhoudt deze fout zich ten opzichte van de fouten bekomen met ieder van de zelf geïmplementeerde numerieke methoden? We onderzoeken vervolgens het gedrag van oplossingen van de Van der Pol vergelijking op grote tijdsintervallen en bij andere waarden ε. Er lijken interessante eigenschappen te gelden. (h) Kies T = 100 in plaats van T = 5. Benader de oplossing van het beginwaardeprobleem voor de Van der Pol vergelijking met je favoriete numerieke methode en maak plaatjes, als voorheen, in het (x 1, x 2 ) vlak en de (t, x j ) vlakken voor j = 1, 2. Kies daarna een aantal andere beginvectoren U(0) en maak wederom plaatjes. Wat lijkt er te gelden voor het gedrag van de oplossingen van de Van der Pol vergelijking op lange termijn? Maak evt. gebruik van de literatuur betreffende de analyse van gewone differentiaalvergelijkingen om je vermoedens te formuleren. (i) Kies wederom T = 100 en beschouw zowel kleinere als grotere waarden ε. Formuleer de vermoedens die je kunt afleiden omtrent het gedrag van oplossingen van de Van der Pol vergelijking in functie van de parameterwaarde ε. We beschouwen nu ε = 50, T = 100 en U(0) = (2, 0) T. Het blijkt dat met elk van de boven besproken numerieke methoden een groot aantal stapjes N nodig is om de exacte oplossing goed te benaderen. 2

3 (j) Voer ode45 uit met de default waarden voor de absolute en relatieve toleranties. Maak drie plaatjes in Matlab als voorheen: één met de bekomen benaderingen uitgezet in het (x 1, x 2 ) vlak en twee met de eerste resp. tweede component uitgezet tegen t. Kies hierbij 2.5 x en 80 x Hoeveel stapjes werden door ode45 gebruikt? (k) Pas de klassieke Runge Kutta methode toe met N = i voor i = 0, 1, 2,..., 6. Welke van deze waardes N geven een resultaat dat tenminste enigzins overeenkomt met dat bekomen in onderdeel (j)? Voor een meer efficiënte numerieke oplossing van de Van der Pol vergelijking in de huidige situatie onderzoeken we de impliciete trapeziumregel met variabele stapgrootte: u k = u k h kf(t k 1, u k 1 ) h kf(t k, u k ) (2) voor k = 1, 2, 3,... waarbij t k = t k 1 + h k. Omdat deze methode impliciet is, dient in iedere tijdstap een stelsel niet-lineaire vergelijkingen te worden opgelost. We gebruiken hiertoe de methode van Newton, die uitgaande van een gegeven startvector x (0) achtereenvolgende benaderingen x (1), x (2), x (3),... van u k bepaalt. (l) Beschouw h k, t k 1, u k 1 als gegeven. Definieer een functie F zodanig dat vergelijking (2) equivalent is met F (x) = 0, x = u k. Bereken de matrix van Jacobi bij F en formuleer de methode van Newton voor de numerieke oplossing van (2). Voor de startvector is x (0) = u k 1 een handige keuze, want u k zal hier normaliter niet ver vanaf liggen. De Newton iteratie wordt gestopt zodra F (x (l) ) < 10 8 of dat x (5) is bepaald. Bestudering van het resultaat uit onderdeel (j) geeft aan dat de oplossing op bepaalde momenten zeer sterk varieert. Het is daarom nuttig om een variabele stapgrootte toe te passen. Zij h > 0 gegeven. Een natuurlijke, eenvoudige strategie is als volgt: indien u k 1,2 < δ kies h k = h en anders h k = h/l. Hierbij zijn δ, L gegeven met δ > 0 klein en L 1 groot. (m) Waarom is deze stapgroottekeuze natuurlijk? Met een variabele stapgrootte zal t = T in het algemeen geen roosterpunt meer zijn. Een benadering van U(T ) kunnen we in dit geval echter makkelijk bepalen via lineaire interpolatie op het interval [t k 1, t k ] dat het punt t = T bevat. Kies in het vervolg δ = 0.1 en L = 10. (n) Schrijf een Matlabprogramma dat de impliciete trapeziumregel (2) met alle boven beschreven keuzes implementeert. Hierbij is h > 0 nog vrij te kiezen. (o) Voer het programma uit met h = 0.1. Maak een plaatje van de stapgroottes h k uitgezet tegen t k 1. Bespreek het resultaat. We onderzoeken de nauwkeurigheid en het convergentiegedrag van de zojuist geïmplementeerde trapeziumregel. (p) Voer ode45 uit met options=odeset( AbsTol,1e-10, RelTol,1e-10). Geef de bekomen benadering van U(T ) tot op 12 significante cijfers en noem deze u. 3

4 (q) Pas het programma uit onderdeel (n) toe met h = 0.1/2 i voor i = 0, 1, 2, 3 en bereken steeds de maximumnorm van de globale fout in t = T, gebruikmakend van de referentiewaarde u. Geef het resultaat in een tabel. Vermeld hierin ook het gebruikte aantal stapgroottes bij elke i. Bespreek het resultaat, in het bijzonder de nauwkeurigheid en het convergentiegedrag van de zelf geïmplementeerde methode. 4

5 Richtlijnen bij het schrijven van een wiskunde verslag 1. Geef op het voorblad in ieder geval: de titel van het verslag, het opleidingsonderdeel, je naam, en de datum. 2. Deel het verslag op een logische en overzichtelijke wijze in. Gebruik hoofdstukken en paragrafen. Geef in het bijzonder een inleiding in de probleemstelling, de belangrijkste conclusies en een referentielijst. Neem computerprogramma s op in een appendix. 3. Wees duidelijk, beknopt en volledig. Laat minder relevante zaken weg. 4. Zorg dat de tekst goedlopend en samenhangend is. Vermijd lange zinnen. 5. Gebruik de officiële Nederlandse spelling. 6. Kies een prettig leesbaar lettertype en grootte. Nummer de pagina s. Druk het verslag eenzijdig af op A4 papier. 7. Nummer definities, stellingen, lemma s en gevolgen. Nummer alle wiskundige formules waar je in de tekst naar verwijst. 8. Nummer figuren. Voorzie ze van een duidelijk onderschrift. Zorg dat de figuren en alle symbolen hierin voldoende groot en goed leesbaar zijn. Figuren bespreek je in de tekst. 9. Kies een natuurlijke, beknopte wiskundige notatie. Duid verschillende grootheden aan met verschillende symbolen. Alle symbolen in je verslag dienen te zijn uitgelegd. 10. Vermijd computertaal in wiskundige formuleringen of de gewone tekst, tenzij dit het onderwerp van een bespreking vormt. 11. Als een resultaat uit de wetenschappelijke literatuur wordt gebruikt, verwijs je naar de betreffende referentie. 12. Het is niet toegestaan om tekst (vrijwel) letterlijk uit de bestaande literatuur of van het internet over te nemen. Gebruik steeds je eigen woorden. 13. Alles wat je opschrijft dien je zelf te begrijpen. 14. Lees het verslag regelmatig nauwgezet en kritisch door. Vraag je in het bijzonder bij iedere zin af of deze correct is en begrijpelijk voor de lezer. Dit kost tijd! 15. Lever je verslag voor de opgegeven datum in. KH, januari

Tweede Programmeeropgave Numerieke Wiskunde 1 De golfplaat Uiterste inleverdatum : vrijdag 16 mei 2003

Tweede Programmeeropgave Numerieke Wiskunde 1 De golfplaat Uiterste inleverdatum : vrijdag 16 mei 2003 Tweede Programmeeropgave Numerieke Wiskunde 1 De golfplaat Uiterste inleverdatum : vrijdag 16 mei 2003 I Doelstelling en testcase In deze programmeeropgave zullen we een drietal numerieke integratiemethoden

Nadere informatie

Monte-Carlo simulatie voor financiële optieprijzen Studiepunten : 3

Monte-Carlo simulatie voor financiële optieprijzen Studiepunten : 3 1 INLEIDING 1 Monte-Carlo simulatie voor financiële optieprijzen Studiepunten : 3 Volg stap voor stap de tekst en los de vragen op. Bedoeling is dat je op het einde van de rit een verzorgd verslag afgeeft

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Numerieke Methoden voor Werktuigbouwkunde (2N46) op maandag 23 Deel 1: Van 14 uur tot uiterlijk 153 uur Het gebruik van het

Nadere informatie

Monte-Carlo simulatie voor financiële optieprijzen Studiepunten : 2

Monte-Carlo simulatie voor financiële optieprijzen Studiepunten : 2 1 INLEIDING 1 Monte-Carlo simulatie voor financiële optieprijzen Studiepunten : 2 Volg stap voor stap de tekst en los de vragen op. Bedoeling is dat je op het einde van de rit een verzorgd verslag afgeeft

Nadere informatie

Wetenschappelijk Rekenen

Wetenschappelijk Rekenen Wetenschappelijk Rekenen Examen - Derde bachelor informatica Oefeningen 0 mei 0. Gegeven is het beginwaardeprobleem y y 0, 04y + 0000y y y (0) = y = 0, 04y 0000y y 0 7 y y, y (0) = 0 0 7 y y (0) 0 Los

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Numerieke Methoden voor Werktuigbouwkunde N460 op donderdag 4 juni 010, 14.00-17.00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Analyse 1 Handout limieten en continuïteit

Analyse 1 Handout limieten en continuïteit Analyse Handout ieten en continuïteit Rogier Bos Inhoudsopgave Limieten 2. Intuïtief ieten bepalen........................ 2.2 Rekenen aan ieten........................... 4.3 Limieten als spel.............................

Nadere informatie

Airyfunctie. b + π 3 + xt dt. (2) cos

Airyfunctie. b + π 3 + xt dt. (2) cos LaTeX opdracht Bewijzen en Redeneren 1ste fase bachelor in Fysica, Wiskunde Werk de volgende opdracht individueel uit. U moet hier alleen aan werken. Geef ook geen files door aan anderen. Ingediende opdrachten

Nadere informatie

5. Vergelijkingen. 5.1. Vergelijkingen met één variabele. 5.1.1. Oplossen van een lineaire vergelijking

5. Vergelijkingen. 5.1. Vergelijkingen met één variabele. 5.1.1. Oplossen van een lineaire vergelijking 5. Vergelijkingen 5.1. Vergelijkingen met één variabele 5.1.1. Oplossen van een lineaire vergelijking Probleem : We willen x oplossen uit de lineaire vergelijking p x+q=r met p. Maxima biedt daartoe in

Nadere informatie

Praktische Numerieke Wiskunde

Praktische Numerieke Wiskunde Wiskunde, Utrecht Praktische Numerieke Wiskunde Gerard Sleijpen Paul Zegeling Department of Mathematics http://www.math.uu.nl/people/sleijpen Gerard Sleijpen Kamer 504, WG Tel: 030-2531732 sleijpen@math.uu.nl

Nadere informatie

7. Hamiltoniaanse systemen

7. Hamiltoniaanse systemen 7. Hamiltoniaanse systemen In de moleculaire dynamica, maar ook in andere gebieden zoals de hemelmechanica of klassieke mechanica, worden oplossingen gezocht van het Hamiltoniaanse systeem van differentiaalvergelijkingen

Nadere informatie

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig.

Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. 6 Totaalbeeld Samenvatten Je moet nu voor jezelf een overzicht zien te krijgen over het onderwerp Complexe getallen. Een eigen samenvatting maken is nuttig. Begrippenlijst: 21: complex getal reëel deel

Nadere informatie

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen Referentieniveaus uitgelegd De beschrijvingen zijn gebaseerd op het Referentiekader taal en rekenen'. In 'Referentieniveaus uitgelegd' zijn de niveaus voor de verschillende sectoren goed zichtbaar. Door

Nadere informatie

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag Practicum algemeen 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag 1 Diagrammen maken Onafhankelijke grootheid en afhankelijke grootheid In veel experimenten wordt

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS deel 2 LOTHAR PAPULA 2e druk > ACADEMIC 5 E R V I C Inhoud 1 Lineaire algebra 1 1.1 Vectoren I 1.2 Matrices 4 1.2.1 Een inleidend voorbeeld 4 1.2.2 Definitie

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Numerieke Methoden voor Werktuigbouwkunde (2N460) op donderdag 23 juni 2011, 1400-1700 uur Deel 1: Van 1400 uur tot uiterlijk

Nadere informatie

Wetenschappelijk Rekenen

Wetenschappelijk Rekenen Wetenschappelijk Rekenen Examen - Bacheloropleiding informatica Oefeningen 3 september 204. Beschouw de matrix A = 8 6 3 5 7 4 9 2 Deze matrix heeft 5 als dominante eigenwaarde. We proberen deze eigenwaarde

Nadere informatie

Overgangsverschijnselen

Overgangsverschijnselen Hoofdstuk 5 Overgangsverschijnselen Doelstellingen 1. Overgangsverschijnselen van RC en RL ketens kunnen uitleggen waarbij de wiskundige afleiding van ondergeschikt belang is Als we een condensator of

Nadere informatie

Beknopte handleiding voor Derive 5.0 for Windows

Beknopte handleiding voor Derive 5.0 for Windows - Lesbrief Beknopte handleiding voor Derive 5.0 for Voorspelbaarheid en Populaties in de tijd Doelgroep Klas 5 t/m 6 havo en vwo Vakken en domeinen Algemene natuurwetenschappen VWO Wiskunde VWO: A domein

Nadere informatie

Praktische. Pijlers (exacte) wetenschap. Programma. Wiskunde, Utrecht Gerard Sleijpen Kamer 504, WG Tel:

Praktische. Pijlers (exacte) wetenschap. Programma. Wiskunde, Utrecht Gerard Sleijpen Kamer 504, WG Tel: Praktische Wiskunde, Utrecht Numerieke Wiskunde Gerard Sleijpen Kamer 504, WG Tel: 030-2531732 sleijpen@math.uu.nl http://www.math.uu.nl/people/sleijpen >Lectures>Numerieke Wiskunde Gerard Sleijpen Paul

Nadere informatie

4 Positieve en niet-negatieve lineaire algebra

4 Positieve en niet-negatieve lineaire algebra 4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 7 J.Keijsper

Nadere informatie

HOOFDSTUK 3: Netwerkanalyse

HOOFDSTUK 3: Netwerkanalyse HOOFDSTUK 3: Netwerkanalyse 1. Netwerkanalyse situering analyseren van het netwerk = achterhalen van werking, gegeven de opbouw 2 methoden manuele methode = reductie tot Thévenin- of Norton-circuit zeer

Nadere informatie

Examen VWO - Compex. wiskunde A1

Examen VWO - Compex. wiskunde A1 wiskunde A1 Examen VWO - Compex Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 25 mei totale examentijd 3 uur 20 05 Vragen 14 tot en met 21 In dit deel staan de vragen waarbij de computer

Nadere informatie

Onderwijsbehoeften: - Korte instructie - Afhankelijk van de resultaten Test jezelf toevoegen Toepassing en Verdieping

Onderwijsbehoeften: - Korte instructie - Afhankelijk van de resultaten Test jezelf toevoegen Toepassing en Verdieping Verdiepend Basisarrange ment Naam leerlingen Groep BBL 1 Wiskunde Leertijd; 5 keer per week 45 minuten werken aan de basisdoelen. - 5 keer per week 45 minuten basisdoelen toepassen in verdiepende contexten.

Nadere informatie

Domein A: Vaardigheden

Domein A: Vaardigheden Examenprogramma Wiskunde A havo Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein B Algebra en tellen

Nadere informatie

Tentamen Planning 2de semester Wetenschappelijk verslag Lenzen en Hydrodynamica. 17 februari 2006 Meten en experimenteren 1

Tentamen Planning 2de semester Wetenschappelijk verslag Lenzen en Hydrodynamica. 17 februari 2006 Meten en experimenteren 1 Tentamen Planning 2de semester Wetenschappelijk verslag Lenzen en Hydrodynamica 17 februari 2006 Meten en experimenteren 1 tentamen Wie minimum 10/20 heeft behaald op het tentamen is vrijgesteld van het

Nadere informatie

Introductie in R. http://www.math.montana.edu/stat/tutorials/r-intro.pdf http://www.math.montana.edu/stat/docs/splus_notes.ps

Introductie in R. http://www.math.montana.edu/stat/tutorials/r-intro.pdf http://www.math.montana.edu/stat/docs/splus_notes.ps Introductie in R R is een programmeer taal met een groot aantal voorgeprogrammeerde statistische functies. Het is de open source versie van S-plus. Wij gebruiken R dan ook omdat het gratis is. Documentatie

Nadere informatie

Academisch schrijven. Tips and tricks

Academisch schrijven. Tips and tricks Academisch schrijven Tips and tricks Overzicht ViP s ViP-1: structuur 1 ViP-2: refereren, parafraseren en citeren ViP-3: cohesie en zinsconstructies ViP-5: structuur 2 ViP-1: structuur 1 Titel en kopjes

Nadere informatie

TI83-werkblad. Vergelijkingen bij de normale verdeling

TI83-werkblad. Vergelijkingen bij de normale verdeling TI83-werkblad Vergelijkingen bij de normale verdeling 1. Inleiding Een normale verdeling wordt bepaald door de constanten µ en σ. Dit blijkt uit het voorschrift van de verdelingsfunctie van de normale

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Leeswijzer bij het college Functies en Reeksen

Leeswijzer bij het college Functies en Reeksen Leeswijzer bij het college Functies en Reeksen Erik van den Ban Najaar 2012 Introductie eze leeswijzer bij het dictaat Functies en Reeksen (versie augustus 2011) heeft als doel een gewijzigde opbouw van

Nadere informatie

Tips voor schriftelijke rapportering. Laura Versteele, in samenwerking met Prof. Joris De Schutter Faculteit Ingenieurswetenschappen 20 februari 2013

Tips voor schriftelijke rapportering. Laura Versteele, in samenwerking met Prof. Joris De Schutter Faculteit Ingenieurswetenschappen 20 februari 2013 Tips voor schriftelijke rapportering Laura Versteele, in samenwerking met Prof. Joris De Schutter Faculteit Ingenieurswetenschappen 20 februari 2013 Overzicht Tips in verband met o Structuur en inhoud

Nadere informatie

WISKUNDE D VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE D VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE D VWO VAKINFORMATIE STAATSEAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de

Nadere informatie

Snelle glijbanen. Masterclass VWO-leerlingen juni Emiel van Elderen en Joost de Groot NWD Faculteit EWI, Toegepaste Wiskunde

Snelle glijbanen. Masterclass VWO-leerlingen juni Emiel van Elderen en Joost de Groot NWD Faculteit EWI, Toegepaste Wiskunde Masterclass VWO-leerlingen juni 2008 Snelle glijbanen Emiel van Elderen en Joost de Groot NWD 2009 1 Technische Universiteit Delft Probleemstelling Gegeven: een punt A(0,a) en een punt B(b, 0) met a 0.

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden

Nadere informatie

Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur.

Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur. Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur. Deze opdracht bestaat uit vier onderdelen; in elk onderdeel wordt gevraagd een Matlabprogramma te schrijven. De vier bijbehore bestanden stuur

Nadere informatie

Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012

Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012 Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012 Inleiding In de cursus Calculus 2 voor Bouwkunde (2DB90) wordt evenals in de cursus Calculus 1 gebruikt het boek: Calculus, Early Transcendental

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 2 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 2 november 2016 1 / 28 Minimum Opspannende Boom (Minimum Spanning

Nadere informatie

De kunst van wetenschappelijk schrijven

De kunst van wetenschappelijk schrijven De kunst van wetenschappelijk schrijven In de wetenschap gaat de erkenning naar diegene die de wereld heeft overtuigd, niet naar degene die als eerste op t idee kwam. (Darwin) Overzicht De schrijfopdracht

Nadere informatie

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening vwo A deel 4 13 Mathematische statistiek 13.1 Kansberekeningen 13.2 Kansmodellen 13.3 De normale verdeling 13.4 De n -wet 13.5 Discrete en continue verdelingen 13.6 Diagnostische toets 14 Algebraïsche

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

De comfortabele auto

De comfortabele auto De comfortabele auto 1e Matlab practicum Inleiding Wiskundige Systeemtheorie (156056) (inleveren tot en met vrijdag 13 Maart 2009, via Teletop). Dit is de eerste van twee verplichte Matlab/Simulink-practica

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

More points, lines, and planes

More points, lines, and planes More points, lines, and planes Make your own pictures! 1. Lengtes en hoeken In het vorige college hebben we het inwendig product (inproduct) gedefinieerd. Aan de hand daarvan hebben we ook de norm (lengte)

Nadere informatie

vwo: Het maken van een natuurkunde-verslag vs 21062011

vwo: Het maken van een natuurkunde-verslag vs 21062011 Het maken van een verslag voor natuurkunde, vwo versie Deze tekst vind je op www.agtijmensen.nl: Een voorbeeld van een verslag Daar vind je ook een po of pws verslag dat wat uitgebreider is. Gebruik volledige

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

Labo IDP. In dit labo gaan we IDP gebruiken voor het analyseren van logische circuits. XOR Q AND. Figuur 1: Een logisch circuit.

Labo IDP. In dit labo gaan we IDP gebruiken voor het analyseren van logische circuits. XOR Q AND. Figuur 1: Een logisch circuit. Labo IDP In dit labo gaan we IDP gebruiken voor het analyseren van logische circuits. K L A XOR N B XOR P M D AND Q AND C O OR E R R Tuesday 15 December 2009 Figuur 1: Een logisch circuit. Veronderstel

Nadere informatie

Matlab-Introductie (les 1)

Matlab-Introductie (les 1) Matlab-Introductie (les 1) Wat is Matlab? MATLAB staat voor MATrix LABoratory. Opstarten van Matlab Dit hangt af van het onderligge systeem (Windows, Linux,...), Maar kortweg geldt bijna altijd: ga met

Nadere informatie

8.0 Voorkennis ,93 NIEUW

8.0 Voorkennis ,93 NIEUW 8.0 Voorkennis Voorbeeld: In 2014 waren er 12.500 speciaalzaken. Sinds 2012 is het aantal speciaalzaken afgenomen met 7%. Bereken hoeveel speciaalzaken er in 2012 waren. Aantal 2014 = 0,93 Aantal 2012

Nadere informatie

Opgaven bij het vormen van ruimte: van Poincaré tot Perelman

Opgaven bij het vormen van ruimte: van Poincaré tot Perelman Opgaven bij het vormen van ruimte: van Poincaré tot Perelman Roland van der Veen Inleiding Deze reeks opgaven is bedoeld voor de werkcolleges van de vakantiecursus Wiskunde in Wording, Augustus 2013. 1

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen

20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen Onderwerp: Kwadraten en Wortels H1 19 De leerling leert passende wiskundetaal te gebruiken voor het ordenen van het eigen denken en voor uitleg aan anderen, en leert de wiskundetaal van anderen te begrijpen.

Nadere informatie

Tentamen numerieke analyse van continua I

Tentamen numerieke analyse van continua I Tentamen numerieke analse van continua I Maandag 12 januari 2009; 1.00-17.00 Code: 8W030, BMT 3.1 Faculteit Biomedische Technologie Technische Universiteit Eindhoven Het eamen is een volledig open boek

Nadere informatie

Numerieke berekening van integralen met DERIVE

Numerieke berekening van integralen met DERIVE Numerieke berekening van integralen met DERIVE Dirk Danckaert Sint-Norbertusinstituut Duffel In deze tekst maak je kennis met enkele eenvoudige algoritmen voor de numerieke berekening van bepaalde integralen.

Nadere informatie

Informatica: C# WPO 9

Informatica: C# WPO 9 Informatica: C# WPO 9 1. Inhoud Functies (functies met return-waarde) 2. Oefeningen Demo 1: Som Demo 2: Min en max of array Demo 3: Retourneer array van randomwaarden A: Absolute waarde A: Afstand A: Aantrekkingskracht

Nadere informatie

Complexe Analyse - Bespreking Examen Juni 2010

Complexe Analyse - Bespreking Examen Juni 2010 Complexe Analyse - Bespreking Examen Juni 2010 Hier volgt een bespreking van het examen van Complexe Analyse op 18 juni. De bedoeling is je de mogelijkheid te geven na te kijken wat je goed en wat je minder

Nadere informatie

Matlab introductie. Kees Vuik

Matlab introductie. Kees Vuik Matlab introductie Kees Vuik 2014 Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Copyright 2014 by Delft Institute

Nadere informatie

Bepalen van stroomlijnen met behulp van de stroomfunctie

Bepalen van stroomlijnen met behulp van de stroomfunctie Bepalen van stroomlijnen met behulp van de stroomfunctie André Blonk Momenteel wordt de stroming van grondwater veelal met numerieke methoden berekend. Het numerieke geweld doet de kracht en de schoonheid

Nadere informatie

Toepassingen op discrete dynamische systemen

Toepassingen op discrete dynamische systemen Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch

Nadere informatie

WISKUNDE B -DAG 2002 1+ 1 = 2. maar en hoe nu verder? 29 november 2002

WISKUNDE B -DAG 2002 1+ 1 = 2. maar en hoe nu verder? 29 november 2002 - 0 - WISKUNDE B -DAG 2002 1+ 1 = 2 maar en hoe nu verder? 29 november 2002 De Wiskunde B-dag wordt gesponsord door Texas Instruments - 1 - Inleiding Snel machtverheffen Stel je voor dat je 7 25 moet uitrekenen.

Nadere informatie

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 )

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 ) OI 2010 Finale 12 Mei 2010 Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub VOORNAAM :....................................................... NAAM :..............................................................

Nadere informatie

Werken met eenheden. Introductie 275. Leerkern 275

Werken met eenheden. Introductie 275. Leerkern 275 Open Inhoud Universiteit Appendix B Wiskunde voor milieuwetenschappen Werken met eenheden Introductie 275 Leerkern 275 1 Grootheden en eenheden 275 2 SI-eenhedenstelsel 275 3 Tekenen en grafieken 276 4

Nadere informatie

Wiskundige vaardigheden

Wiskundige vaardigheden Inleiding Bij het vak natuurkunde ga je veel rekenstappen zetten. Het is noodzakelijk dat je deze rekenstappen goed en snel kunt uitvoeren. In deze presentatie behandelen we de belangrijkste wiskundige

Nadere informatie

VORtech Computing. Experts in Technisch Rekenwerk MEMO. Verwerking van diagonale overlaten in WAQUA. BvtH/M08.079. Onderwerp. Documentinformatie

VORtech Computing. Experts in Technisch Rekenwerk MEMO. Verwerking van diagonale overlaten in WAQUA. BvtH/M08.079. Onderwerp. Documentinformatie Experts in Technisch Rekenwerk Postbus 260 2600 AG DELFT MEMO Datum Auteur(s) Onderwerp BvtH/M08.079 24-nov-2008 Bas van 't Hof Verwerking van diagonale overlaten in WAQUA tel. 015-285 0125 fax. 015-285

Nadere informatie

Significante cijfers en meetonzekerheid

Significante cijfers en meetonzekerheid Inhoud Significante cijfers en meetonzekerheid... 2 Significante cijfers... 2 Wetenschappelijke notatie... 3 Meetonzekerheid... 3 Significante cijfers en meetonzekerheid... 4 Opgaven... 5 Opgave 1... 5

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

Basisvaardigheden Microsoft Excel

Basisvaardigheden Microsoft Excel Basisvaardigheden Microsoft Excel Met behulp van deze handleiding kun je de basisvaardigheden leren die nodig zijn om meetresultaten van een practicum te verwerken. Je kunt dan het verband tussen twee

Nadere informatie

Notatieafspraken Grafische Rekenmachine, wiskunde A

Notatieafspraken Grafische Rekenmachine, wiskunde A Notatieafspraken Grafische Rekenmachine, wiskunde A Bij deze verstrek ik jullie de afspraken voor de correcte notatie bij het gebruik van de grafische rekenmachine. Verder krijg je een woordenlijst met

Nadere informatie

Toegepaste Wiskunde 2: Het Kalman-filter

Toegepaste Wiskunde 2: Het Kalman-filter Toegepaste Wiskunde 2: Het Kalman-filter 25 februari, 2008 Hans Maassen 1. Inleiding Het Kalman filter schat de toestand van een systeem op basis van een reeks, door ruis verstoorde waarnemingen. Een meer

Nadere informatie

Boek: A deel 1; A deel2; A deel 3 Hoofdstukken: 3, 5, 10

Boek: A deel 1; A deel2; A deel 3 Hoofdstukken: 3, 5, 10 5 havo Wiskunde A 11 januari 2010 PTA 2 Boek: A deel 1; A deel2; A deel 3 Hoofdstukken: 3, 5, 10 Houd er rekening mee, dat aan een antwoord alleen in het algemeen geen punten worden toegekend wanneer een

Nadere informatie

Grootste examentrainer en huiswerkbegeleider van Nederland. Wiskunde A. Trainingsmateriaal. De slimste bijbaan van Nederland! lyceo.

Grootste examentrainer en huiswerkbegeleider van Nederland. Wiskunde A. Trainingsmateriaal. De slimste bijbaan van Nederland! lyceo. Grootste examentrainer en huiswerkbegeleider van Nederland Wiskunde A Trainingsmateriaal De slimste bijbaan van Nederland! lyceo.nl Traininingsmateriaal Wiskunde A Lyceo-trainingsdag 2015 Jij staat op

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

Het oplossen van vergelijkingen Voor het benaderen van oplossingen van vergelijkingen van de vorm F(x)=0 bespreken we een aantal methoden:

Het oplossen van vergelijkingen Voor het benaderen van oplossingen van vergelijkingen van de vorm F(x)=0 bespreken we een aantal methoden: Hoofdstuk 4 Programmeren met de GR Toevoegen: een inleiding op het programmeren met de GR Hoofdstuk 5 - Numerieke methoden Numerieke wiskunde is een deelgebied van de wiskunde waarin algoritmes voor problemen

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

Vergelijkingen met breuken

Vergelijkingen met breuken Vergelijkingen met breuken WISNET-HBO update juli 2013 De bedoeling van deze les is het doorwerken van begin tot einde met behulp van pen en papier. 1 Oplossen van gebroken vergelijkingen Kijk ook nog

Nadere informatie

Enkele voorbeelden volstaan. Zie verder de Help-file van Matlab.

Enkele voorbeelden volstaan. Zie verder de Help-file van Matlab. 1 Inleiding Bij Stochastische Operations Research (2DD21 + SOR-deel van 2DD18) wordt software gebruikt: routines en procedures uit het pakket Matlab en uit een toolbox met Matlab-m-files die hoort bij

Nadere informatie

Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1

Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1 Inhoud Aan de student V Studiewijzer Aan de docent VII IX Over de auteurs XI Hoofdstuk 0 Basiswiskunde 1 Leereenheid 0.1 Elementaire algebra 3 0.1.1 Verzameling van getallen en het symbool 4 0.1.2 Merkwaardige

Nadere informatie

2. Syntaxis en semantiek

2. Syntaxis en semantiek 2. Syntaxis en semantiek In dit hoofdstuk worden de begrippen syntaxis en semantiek behandeld. Verder gaan we in op de fouten die hierin gemaakt kunnen worden en waarom dit in de algoritmiek zo desastreus

Nadere informatie

Basisvaardigheden Microsoft Excel

Basisvaardigheden Microsoft Excel Basisvaardigheden Microsoft Excel Met behulp van deze handleiding kun je de basisvaardigheden leren die nodig zijn om meetresultaten van een practicum te verwerken. Je kunt dan het verband tussen twee

Nadere informatie

Examen VWO. wiskunde A1

Examen VWO. wiskunde A1 wiskunde A1 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 25 mei 13.30 16.30 uur 20 05 Voor dit examen zijn maximaal 83 punten te behalen; het examen bestaat uit 21 vragen. Voor

Nadere informatie

Computervaardigheden I

Computervaardigheden I 2 Inhoud Computervaardigheden I Hoofdstuk 1 Basisvaardigheden dataverwerking Rekenblad - Navigeren door een venster - Bewaren - Formules (relatieve referenties) - Floating Point (precisie) - Formules (absolute

Nadere informatie

De inverse van een matrix

De inverse van een matrix De inverse van een matrix Laat A een n n matrix zijn. Veronderstel dat de matrixvergelijking A X = I n de oplossing X = C heeft. Merk op dat [ A I n ] rijoperaties [ I n C ] [ I n A] inverse rijoperaties

Nadere informatie

Uitwerkingen van de opgaven bij het vormen van ruimte: van Poincaré tot Perelman

Uitwerkingen van de opgaven bij het vormen van ruimte: van Poincaré tot Perelman Uitwerkingen van de opgaven bij het vormen van ruimte: van Poincaré tot Perelman Roland van der Veen Inleiding Deze reeks opgaven is bedoeld voor de werkcolleges van de vakantiecursus Wiskunde in Wording,

Nadere informatie

Dynamische modellen Subdomein 1: Dynamische Systemen Experimenteel lesmateriaal Wiskunde D vwo

Dynamische modellen Subdomein 1: Dynamische Systemen Experimenteel lesmateriaal Wiskunde D vwo Dynamische modellen Subdomein 1: Dynamische Systemen Experimenteel lesmateriaal Wiskunde D vwo Hoofdstuk 3 De wiskunde in een model (Coach-versie) Versie 1 oktober 2006 CTWO-werkgroep Dynamische Modellen

Nadere informatie

Inleiding statistiek

Inleiding statistiek Inleiding Statistiek Pagina 1 uit 8 Inleiding statistiek 1. Inleiding In deze oefeningensessie is het de bedoeling jullie vertrouwd te maken met een aantal basisbegrippen van de statistiek, meer bepaald

Nadere informatie

Gevorderde onderwerpen

Gevorderde onderwerpen Hoofdstuk 5 Gevorderde onderwerpen Doelstellingen 1. Weten wat M-cirkels voorstellen en de functie ervan begrijpen 2. Bodediagram van een algemene transfertfunctie kunnen tekenen 3. Begrijpen dat een regelaar

Nadere informatie

VAARDIGHEDEN EXCEL. MEETWAARDEN INVULLEN In de figuur hieronder zie je twee keer de ingevoerde meetwaarden, eerst ruw en daarna netjes opgemaakt.

VAARDIGHEDEN EXCEL. MEETWAARDEN INVULLEN In de figuur hieronder zie je twee keer de ingevoerde meetwaarden, eerst ruw en daarna netjes opgemaakt. VAARDIGHEDEN EXCEL Excel is een programma met veel mogelijkheden om meetresultaten te verwerken, maar het was oorspronkelijk een programma voor boekhouders. Dat betekent dat we ons soms in bochten moeten

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

1 De Hamilton vergelijkingen

1 De Hamilton vergelijkingen 1 De Hamilton vergelijkingen Gegeven een systeem met m vrijheidsgraden, geparametriseerd door m veralgemeende coördinaten q i, i {1,, m}, met lagrangiaan L(q, q, t). Nemen we de totale differentiaal van

Nadere informatie

Grafieken maken met Excel

Grafieken maken met Excel Grafieken maken met Excel Mooie plaatjes met Microsoft Excel 4 HAVO en 5 VWO Grafieken maken met Excel. Inleiding. Bij de practica moet je regelmatig een grafiek tekenen. Tot nu toe deed je dat waarschijnlijk

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1.

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1. Blokmatrices Soms kan het handig zijn een matrix in zogenaamde blokken op te delen, vooral als sommige van deze blokken uit louter nullen bestaan Berekeningen kunnen hierdoor soms aanzienlijk worden vereenvoudigd

Nadere informatie

P = LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten:

P = LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten: LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten: Voorbeeld: Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1. P = 0 1/4

Nadere informatie

Wiskunde B - Tentamen 2

Wiskunde B - Tentamen 2 Wiskunde B - Tentamen Tentamen van Wiskunde B voor CiT (57) Donderdag 4 april 005 van 900 tot 00 uur Dit tentamen bestaat uit 8 opgaven, 3 tabellen en formulebladen Vermeld ook je studentnummer op je werk

Nadere informatie

WISKUNDE A HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE A HAVO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE A HAVO VAKINFORMATIE STAATSEAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de

Nadere informatie

2. Het benaderen van nulpunten

2. Het benaderen van nulpunten Het benaderen van nulpunten Benaderen van vierkantswortels Als we met een numerieke rekenmachine benadering, 7 =,64575 7 berekenen, krijgen we als resultaat een Het numeriek benaderen kan met een recursieve

Nadere informatie