Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde"

Transcriptie

1 Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden in Maple ingevoerd als resp. +,,, / en ˆ. Bij vermenigvuldigen mag de * niet worden weggelaten.. Elke opdracht wordt in Maple afgesloten met ; De opdracht wordt daarna uitgevoerd nadat de Enter toets is ingedrukt. 3. Wanneer aan een bepaalde uitdrukking een naam moet worden gegeven dan kan dat via := Als we bijvoorbeeld aan de uitdrukking x + 5 de naam p willen geven dan kunnen we intypen p := x + 5; (gevolgd door Enter). 4. Een functie f(x) voeren we in als f := x > f(x); Bijvoorbeeld de functie f(x) = x 3 + sin(x) wordt f := x > x ˆ 3 + sin(x); Als deze functie is ingevoerd kunnen functiewaarden voor verschillende waarden van x worden uitgerekend. Zo geeft bijvoorbeeld f(1); als antwoord 1 + sin(1) en f(a); als antwoord a 3 + sin(a). 5. In Maple zijn o.a. de volgende functies standaard aanwezig: sin(x), cos(x), tan(x), sqrt(x) (= x), exp(x) (= e x ), ln x, arcsin x, arccos x, arctan x, sinh x, cosh x, tanh x. 6. Het oplossen van vergelijkingen kan met behulp van solve(vergelijking, variabele); Zo levert solve (xˆ 5 x + 6 = 0, x) ; als resultaat, Het uitwerken van een uitdrukking (bijvoorbeeld haakjes wegwerken) kan met behulp van het commando expand worden uitgevoerd. Zo geeft bijvoobeeld expand((x + 1) (x 3)); na Enter de uitkomst x x Een numerieke benadering van een getal of een uitkomst wordt verkregen met behulp van evalf. Zo levert evalf (sqrt()) ; als resultaat op Soms wil je van een door Maple uitgerekend resultaat een numerieke benadering hebben. Je hoeft dan niet noodzakelijk dit resultaat in het commando evalf in te typen, maar je kunt in plaats daarvan de opdracht evalf(%) gebruiken. Het programma leest % als de laatst uitgerekende uitkomst. 1

2 1. Werk met behulp van Maple de volgende producten uit. (a) (x + 3) 3 (x 1) (b) (x 1)(x )(x 3)(x 4)(x 5) (c) (x + a) (x b) 3. Los met behulp van Maple de volgende vergelijkingen op. (a) x 13x 3 = 0 (b) x 3 30x 357x = 0 (c) x 5 6x 4 10x x 351x + 70 = 0 3. Los de volgende vergelijkingen op met behulp van Maple. In hoeverre worden alle oplossingen gegeven? (a) 3 sin x + 3 = cos x (b) sin x + sin x 1 = 0 (c) cos 3x + cos x + cos x = 0 4. Bepaal numerieke benaderingen van 3 en e = exp(1). Het tekenen van grafieken. 1. Het tekenen van de grafiek van een functie f(x) op een interval [a, b] gaat via plot(f(x), x = a..b); Als we de grafiek willen hebben over heel R dan kan dat via plot(f(x), x = inf inity..inf inity);. Het symbool wordt dus in Maple ingevoerd als infinity. Het getal π wordt ingevoerd als P i. 3. In één plaatje kunnen desgewenst meerdere grafieken getekend worden. De grafieken van twee functies f(x) en g(x) op een interval [a, b] worden bijvoorbeeld in één plaatje getekend door plot({f(x), g(x)}, x = a..b); 1. Voer in Maple de functie f(x) = x + 3x in. Teken de grafiek van deze functie op 1 + x 6 het interval [ 3, 3]. Teken vervolgens de grafiek op heel R. Wat is het verschil?. Teken in één plaatje de grafieken van sin x en cos x op het interval [ π, π].

3 3 Limieten en differentiëren. 1. Voor een gegeven functie f(x) kunnen via het Maple commando limit limieten worden uitgerekend, ook eenzijdige. Zo worden na resp. limit(f(x), x = a);, limit(f(x), x = a, right); en limit(f(x), x = a, lef t); zo mogelijk door Maple bepaald lim f(x), x a lim f(x) en lim f(x). Het symbool kan worden ingevoerd als infinity. x a x a. De eerste orde afgeleide van een functie f(x) kan worden bepaald via diff (f(x), x); En de tweede orde afgeleide als diff (f(x), x, x); 3. Wanneer de afgeleide verder gebruikt moet worden kan het handig zijn deze een aparte naam te geven, bijvoorbeeld als g := x >diff (f(x), x); 1. Bepaal de volgende limieten. x 4 1 (a) lim x 1 x 3 1 x 3 (b) lim x 9 x 9 (c) lim x x 3 x + 4x 5x 3 + 3x 5x + 1. Gegeven is de functie f(x) = x ln (1 + x ). + cos x f(x + h) f(x) (a) Bepaal met behulp van Maple lim. Hier wordt dus de afgeleide h 0 h bepaald uitgaande van de definitie. (b) Bepaal rechtstreeks met behulp van Maple de afgeleide van f(x). (c) Zijn de uitkomsten van (a) en (b) aan elkaar gelijk? (d) Teken in één figuur de grafieken van f(x) en f (x) voor 0 x 8. Klopt het stijgen/dalen van f(x) met het verloop van f (x)? 3. Bepaal de afgeleiden van de volgende functies. (a) f(x) = arcsin x 1 x (b) f(x) = x3 x + x x 4 (c) f(x) = ex x n 3

4 4 Integreren. 1. Zowel onbepaalde als bepaalde integralen kunnen door Maple worden uitgerekend. Voor onbepaalde integralen f(x)dx moet worden ingetypt int(f(x), x); en voor bepaalde integralen b a f(x)dx is dit int(f(x), x = a..b);. Ook oneigenlijke integralen kunnen op deze manier worden bepaald. Zo geeft bijvoorbeeld int(1/(1 + xˆ), x = 0..infinity); als antwoord 1 π. 3. Als f(x) een rationale functie is dan kan een breuksplitsing van f(x) bepaal worden via convert(f(x), parf rac, x); Als bijvoorbeeld f := x > 1/(x ˆ 1); dan geeft convert(f(x), parfrac, x); als resultaat 1 1 x x Bepaal met behulp van Maple de volgende onbepaalde integralen. (a) x 3 e x sin xdx tan (b) xdx 1 (c) 1 + x dx 6. Bepaal met behulp van Maple zo mogelijk de volgende integralen. (a) (b) (c) x 4 x + x + 1 dx x dx 3 ( x 3 + x + 3 ) e x dx 3. Bepaal breuksplitsingen van de volgende functies. (a) f(x) = 1 x 3 8 x + 1 (b) f(x) = x 5x + 6 4

5 (c) f(x) = x + 4x 5 + 4x 3 + x 4. Beschouw de functie f(x) = 4x4 + 13x x + 89x x 5 + 3x x 3 + 4x + 45x (a) Bepaal met behulp van Maple f(x)dx. (b) Bepaal met behulp van Maple een breuksplitsing voor f(x). (c) Integreer de uitkomst uit (b). (d) Zijn de uitkomsten van (a) en (c) aan elkaar gelijk? 5 Differentiaalvergelijkingen. 1. Om na te gaan of een gegeven functie y(x) oplossing van een bepaalde differentiaalvergelijking is kunnen we deze functie invullen, en zien wat Maple als uitkomst geeft. Via diff (y(x), x) en diff (y(x), x, x) kunnen we over eerste en tweede orde afgeleiden van y(x) beschikken (en eventueel nog hogere orde). Als we bijvoorbeeld de differentiaalvergelijking x y xy 3y = 0 bekijken, en we willen nagaan of de functie y(x) = x een oplossing is dan kunnen we in Maple eerst invoeren y := x > xˆ3 + 1; en vervolgens xˆ diff (y(x), x, x) x diff (y(x), x) 3 y(x); Maple geeft dan als antwoord: 3, dus deze functie is geen oplossing van de differentiaalvergelijking.. De Maple opdracht dsolve kan gebruikt worden om differentiaalvergelijkingen op te lossen. Bijvoorbeeld de differentiaalvergelijking y = xy wordt ingevoerd als dsolve(diff (y(x), x) = x y(x), y(x)); Maple geeft dan als oplossing: y(x) = C1e ( 1 x ) Met de notatie C1 geeft Maple de in de oplossing voorkomende constante aan. 3. Het commando dsolve uit. kan nog uitgebreid worden zó dat ook de oplossing van een beginwaardeprobleem kan worden bepaald. Als we bijvoorbeeld naar de oplossing van de differentiaalvergelijking y = xy zoeken met beginwaarde y(0) = dan kan dat in Maple via dsolve({diff (y(x), x) = x y(x), y(0) = }, y(x)); Maple levert nu als antwoord y(x) = e ( 1 x ). Let dus op dat in dit geval de twee vergelijkingen y = xy en y(0) = beide binnen de accolades worden opgenomen, en y(x) is dan die functie die aan beide vergelijkingen voldoet. 4. Met behulp van Maple kunnen ook richtingsvelden voor een gegeven differentiaalvergelijking getekend worden, en wel met het commando dfieldplot. Bij het opstarten van Maple is dit commando niet standaard aanwezig. Om toch de beschikking over dit commando te krijgen moeten we eerst een extra file laden. Deze file heet DEtools, 5

6 en het laden gaat als volgt: with(detools); Op het scherm verschijnt een overzicht van alle extra commando s die nu beschikbaar zijn. Eén daarvan is dfieldplot. Dit werkt als volgt. Stel dat gegeven is de differentiaalvergelijking y = 1 y (example 6.1 uit 6.6), en we willen een richtingsveld tekenen op het gebied 5 x 5, 5 y 5. Voer dan in Maple in: dfieldplot(diff (y(x), x) = y(x)/, y(x), x = 5..5, y = 5..5, color=blue); en er verschijnt een plaatje zoals in Figure 6.6a uit In Maple bestaan opdrachten om numeriek oplossingen van differentiaalvergelijkingen te bepalen. De methode van Euler is echter in Maple niet aanwezig. Nu kunnen we deze zelf programmeren. Stel dat de differentiaalvergelijking gegeven is in de vorm y = f(x, y) met als beginvoorwaarde y (x 0 ) = y 0. We kiezen een stapgrootte h. De methode van Euler bestaat dan uit het bepalen van een rij getallen y 1 = y 0 + hf (x 0, y 0 ), y = y 1 + hf (x 1, y 1 ), waarbij x 1 = x 0 + h, y 3 = y + hf (x, y ), waarbij x = x 1 + h, enz. Nu moeten getallen zoals x i en y i in Maple worden ingevoerd als x[i] en y[i]. Voor x[i] geldt: x[i] = x[0] + ih. En dan geldt dus dat y[i] = y[i 1] + hf (x[0] + (i 1)h, y[i 1]) Stel dat we nu bij een gegeven differentiaalvergelijking y = f(x, y) met beginvoorwaarde x 0 = a, y 0 = b de methode van Euler willen toepassen met n stappen met stapgrootte h. Dan kan dat in Maple als volgt worden uitgevoerd: y[0] := b :for i from 1 to n do y[i] := y[i 1] + h f (a + (i 1) h, y[i 1]) end do; Op het scherm verschijnt dan de rij getallen y 1, y,..., y n. 1. Bepaal alle oplossingen van de volgende eerste orde differentiaalvergelijkingen. (a) xy + y = e x (b) x 5 y y = e y (c) y = 3y 1 x. Bepaal oplossingen van de volgende beginwaarde problemen. (a) y = y(100 y), y(0) = 15 (b) y + 3x y = x, y(0) = 1 (c) y + y cos x = xe sin x, y(π) = 0 3. Teken in elk van de volgende gevallen een richtingsveld op het gebied 3 x 3, 3 y 3 voor de gegeven differentiaalvergelijking. (a) y = x + 4y (opgave 5 uit 6.6) 6

7 (b) y = y y (opgave 7 uit 6.6) 4. In elk van de volgende gevallen is een differentiaalvergelijking gegeven, en een beginwaarde. Tevens is een stapgrootte h en het gewenste aantal stappen voor de methode van Euler gegeven. Bepaal in elk van die gevallen de benaderingen volgens de methode van Euler. (a) y = y, y(0) = 1, h = 0.1, n = 10. (Dit levert de eerste tabel uit Example 6.4 op) (b) y = xy, y(0) = 1, h = 0.1, n = 10, en ook het geval h = 0.05, n = 0 (Dit is opgave 17 uit 6.6) (c) y = x/y, y(0) =, h = 0.1, n = 10, en ook het geval h = 0.05, n = 0 (Dit is opgave 18 uit 6.6) 7

Korte handleiding Maple bij de cursus Meetkunde voor B

Korte handleiding Maple bij de cursus Meetkunde voor B Korte handleiding Maple bij de cursus Meetkunde voor B Deze handleiding sluit aan op en is gedeeltelijk gelijk aan de handleidingen die gebruikt worden bij de cursussen Wiskunde 2 en 3 voor B. Er zijn

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde 3 voor B. Functies van twee variabelen.. Een functie fx, y) van twee variabelen kan analoog aan een functie van één variabele in Maple

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/38 Elektrotechniek, Wiskunde en Informatica EWI Bekijken we de volgende vergelijking: x 2 C Œf.x/

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

Toets 3 Calculus 1 voor MST, 4501CALC1Y donderdag 20 oktober 2016; 13:30-15:30 uur

Toets 3 Calculus 1 voor MST, 4501CALC1Y donderdag 20 oktober 2016; 13:30-15:30 uur Toets 3 Calculus voor MST, 450CALCY donderdag 20 oktober 206; 3:30-5:30 uur Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Volgt de lessen bij: (Leids) studentnummer: A (Keijzer)

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /37 Elektrotechniek, Wiskunde en Informatica EWI Newton s method Hoe vinden we een nulpunt: f.x/ D 0 Stel

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Derive in ons wiskundeonderwijs Christine Decraemer

Derive in ons wiskundeonderwijs Christine Decraemer Dag van de Wiskunde 003 de en 3 de graad Module 6: Eerste sessie Derive in ons wiskundeonderwijs Christine Decraemer Je kunt Derive het best vergelijken met een uitgebreid rekentoestel. Niet enkel numerieke,

Nadere informatie

WolframAlpha gratis op internet

WolframAlpha gratis op internet WolframAlpha gratis op internet Jan van de Craats Nog steeds worden leerlingen op havo en vwo verplicht om voor de wiskundelessen een grafische rekenmachine aan te schaffen. Zo n apparaat is duur, zeer

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 201300130 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/57 Elektrotechniek, Wiskunde en Informatica EWI Horizontale asymtoten Gedrag van de functie voor grote

Nadere informatie

Uitwerkingen analyse op de lijn tweede deel

Uitwerkingen analyse op de lijn tweede deel Uitwerkingen analse op de lijn tweede deel Het uitwerkspook 23 juli 25 Inhoudsopgave Hoofdstuk 2 3 2 Hoofdstuk 32 3 3 Hoofdstuk 29 4 4 Hoofdstuk 33 5 5 Hoofdstuk 34 5 6 Hoofdstuk 36 5 7 Hoofdstuk 37 7

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/43 Elektrotechniek, Wiskunde en Informatica EWI Maxima en minima Gegeven een functie f met domein

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Primitiveren. Omgekeerd differentiëren (primitieve bepalen)

Primitiveren. Omgekeerd differentiëren (primitieve bepalen) Primitiveren WISNET-HBO update april 2006 Inleiding Soms moet je juist de functie bepalen waarvan de afgeleide bekend is. Dit omgekeerd differentiëren (de primitieve bepalen) heet in het Engels de antiderivative.

Nadere informatie

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert).

(Assistenten zijn Sofie Burggraeve, Bart Jacobs, Annelies Jaspers, Nele Lejon, Daan Michiels, Michael Moreels, Berdien Peeters en Pieter Segaert). Tussentijdse Toets Wiskunde I 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie, Informatica, Schakelprogramma Master Toegepaste Informatica, donderdag 17 november 011, 8:30 10:00 uur

Nadere informatie

MAPLE: Een Inleiding

MAPLE: Een Inleiding MAPLE: Een Inleiding Numerieke wiskunde 2de Bac. Ir. Wet. 2006-2007 Inhoudsopgave 1 Inleiding 2 1.1 Wat is Maple 10?..................................... 2 1.2 Enkele weetjes......................................

Nadere informatie

Inverse functies en limieten

Inverse functies en limieten Inverse functies en limieten Inverse functies We nemen aan dat A en B deelverzamelingen zijn van R. Een functie f : A B heet één-één duidig of injectief als f (x 1 ) f (x 2 ) voor alle x 1 x 2, x 1, x

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /46 Elektrotechniek, Wiskunde en Informatica EWI Kunnen we elke integraal oplossen? Z e x x dx Z e x2 dx

Nadere informatie

K.0 Voorkennis. Herhaling rekenregels voor differentiëren:

K.0 Voorkennis. Herhaling rekenregels voor differentiëren: K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( )

Nadere informatie

Paragraaf K.1 : Substitutiemethode

Paragraaf K.1 : Substitutiemethode Hoofdstuk K Voortgezette Integraalrekening (V5 Wis B) Pagina van 8 Paragraaf K. : Substitutiemethode Stappenplan voor de substitutiemethode : () Neem y = formule (bij kettingregel noem je deze formule

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle. De n-de term van de numerieke rij (t n ) (met n = 0,, 2,...) is het rekenkundig gemiddelde van zijn twee voorgangers. (a) Bepaal het Z-beeld F van deze numerieke rij en het bijhorende convergentiegebied.

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

12. Uitwerkingen van de opgaven

12. Uitwerkingen van de opgaven 12. Uitwerkingen van de opgaven 12.1. Uitwerkingen opgaven van hoofdstuk 3 Opgave 3.1 3,87 0,152 641, 2 Bereken met behulp van Maxima: 2,13 7,29 78 0,62 45 (%i1) 3.87*0.152*641.2/(2.13*7.29*78*0.62*45);

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl 1/60 Elektrotechniek, Wiskunde en Informatica EWI Een functie f W A! B is injectief of one-to-one als

Nadere informatie

CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen

CALCULUS 2. najaar Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen 0 CALCULUS 2 najaar 2008 Wieb Bosma (naar aantekeningen van Arno van den Essen) Radboud Universiteit Nijmegen college 1: integratie Centrale vraag: hoe bereken je de bepaalde integraal Algemeen idee: b

Nadere informatie

WI1708TH Analyse 3. College 2 12 februari Challenge the future

WI1708TH Analyse 3. College 2 12 februari Challenge the future WI1708TH Analyse 3 College 2 12 februari 2015 1 Programma Vandaag Partiële afgeleiden (14.3) Hogere orde partiële afgeleiden (14.3) Partiële differentiaal vergelijkingen (14.3) 2 Functies van twee variabelen

Nadere informatie

Analyse 1 November 2011 Januari 2011 November 2010

Analyse 1 November 2011 Januari 2011 November 2010 WI1330CT/CT1135-1/CTB1001-1 Januari 2013 November 2012 Januari 2012 Analyse 1 November 2011 Januari 2011 November 2010 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" TU DELFT, 2010

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op dinsdag 26 augustus 28, 9. 2. uur. De uitwerkingen van de opgaven dienen

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden

7.0 Voorkennis. tangens 1 3. Willem-Jan van der Zanden 7.0 Voorkennis Bij bepaalde aantallen graden hebben de sinus, cosinus en tangens een exacte oplossing. In deze gevallen moet je de exacte oplossing geven: hoek 30 45 60 sinus cosinus 2 tangens 3 3 3 2

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1.

1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1. Tentamen-wiskunde?. De basiswiskunde. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + ) =. Oplossing : ln(x + 2) = + ln(x + ) x + 2 = ln + x + 3 = ln dus x =

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006 1ste semester 31 januari 2006 Analyse I 1. Onderstel dat f : [a, b] R continu is, en dat f(a)f(b) < 0. Toon aan dat f minstens 1 nulpunt heeft gelegen in het interval (a, b). 2. Gegeven is een functie

Nadere informatie

K.1 De substitutiemethode [1]

K.1 De substitutiemethode [1] K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

2. Een eerste kennismaking met Maxima

2. Een eerste kennismaking met Maxima . Een eerste kennismaking met Maxima Als u nog niet eerder kennis heeft gemaakt met CAS (Computer Algebra System) software, dan lijkt Maxima misschien erg gecompliceerd en moeilijk, zelfs voor het oplossen

Nadere informatie

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00

TWEEDE DEELTENTAMEN CONTINUE WISKUNDE. donderdag 13 december 2007, 14.00-16.00 TWEEDE DEELTENTAMEN CONTINUE WISKUNDE donderdag 1 december 007, 14.00-16.00 Het gebruik van grafische of programmeerbare rekenmachines is niet toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een

Nadere informatie

Matlab introductie. Kees Vuik

Matlab introductie. Kees Vuik Matlab introductie Kees Vuik 2014 Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Copyright 2014 by Delft Institute

Nadere informatie

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1 Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Inleiding In de cursus Wiskunde 1 voor B (2DB00) wordt gebruikt het boek Calculus, Robert T. Smith, Roland B. Minton, second edition, Mc Graw

Nadere informatie

Integratietechnieken: substitutie en partiële integratie

Integratietechnieken: substitutie en partiële integratie Integratietechnieken: substitutie en partiële integratie Inleiding In dit pakket wordt zeer kort de definitie van onbepaalde integralen herhaald evenals het verband tussen bepaalde en onbepaalde integralen.

Nadere informatie

Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober (Leids) studentnummer: A (Keijzer) / B (Kooij) / C (Weber) / D (van den Dries)

Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober (Leids) studentnummer: A (Keijzer) / B (Kooij) / C (Weber) / D (van den Dries) Proeftoets 3 Calculus 1 voor MST, 4051CALC1Y dinsdag 31 oktober 2017 Technische Universiteit Delft, Delft Institute of Applied Mathematics Naam: Groep (omcirkel): (Leids) studentnummer: A (Keijzer) / B

Nadere informatie

Wiskunde onder spanning

Wiskunde onder spanning Wiskunde onder spanning Ik bespreek hier de opgaven met een analysekarakter in het centraal examen Wiskunde B van 15 mei 17. 1iseenkalesom.De functies f en g zijn gegeven door f(x) =ln(x) en g(x) = 1 e

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 15 september 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 15 september 2014: algemene feedback IJkingstoets 5 september 04 - reeks - p. /0 Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 5 september 04: algemene feedback In totaal namen 5 studenten deel aan deze ijkingstoets industrieel

Nadere informatie

2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen?

2. Hoelang moet de tweede faze duren om de hoeveelheid zout in de tank op het einde van de eerste faze, op de helft terug te brengen? Vraag Een vloeistoftank met onbeperkte capaciteit, bevat aanvankelijk V liter zuiver water. Tijdens de eerste faze stroomt water, dat zout bevat met een concentratie van k kilogram per liter, de tank binnen

Nadere informatie

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide

Nadere informatie

2 Differentiaal- en integraalrekening - Peter Bueken

2 Differentiaal- en integraalrekening - Peter Bueken Ü Ø Ï Ø Ò ÔÔ Ò ÒÁÒ ÓÖÑ Ø ÀÓ Ö Ú ÖØ ÓÓÐ ÒØÛ ÖÔ Ò ÇÒ ÖÛ Ò Ö ÒØ Ð¹ Ò ÒØ Ö ÐÖ Ò Ò È Ø Ö Ù Ò HZS-OE5-NW4 Eerste jaar Bachelor Nautische Wetenschappen Versie.4 4 maart 29 2 Differentiaal- en integraalrekening

Nadere informatie

college 2: partiële integratie

college 2: partiële integratie 39 college 2: partiële integratie Zoals de substitutieregel voor integratie de inverse van de kettingregel voor differentiatie genoemd zou kunnen worden, zo is partiële integratie de inverse van de productregel:

Nadere informatie

Speciale functies. 2.1 Exponentiële functie en natuurlijke logaritme

Speciale functies. 2.1 Exponentiële functie en natuurlijke logaritme Wiskunde voor kunstmatige intelligentie, 006 Les Speciale functies We ebben in de vorige les een aantal elementaire functies bekeken en iervoor gezien oe we deze functies kunnen afleiden. In wezen waren

Nadere informatie

~ (" 3 5x5 + 3x3 - gx + C. ~ 1 1-6/5 f (x =~=X65= x. = x~~5 + c = 55X + c V I NTEGRAALREKENING.

~ ( 3 5x5 + 3x3 - gx + C. ~ 1 1-6/5 f (x =~=X65= x. = x~~5 + c = 55X + c V I NTEGRAALREKENING. 1 I NTEGRAALREKENING. Onder een primitieve funktie F(x) van een funktie f(x) verstaan we de funktie F(x) waarvoor geldt: F ' (x) = f (x) B i j v. f (x) = x F (x) = x + c (c R) een primitieve funktie f(x)

Nadere informatie

Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012

Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012 Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012 Inleiding In de cursus Calculus 2 voor Bouwkunde (2DB90) wordt evenals in de cursus Calculus 1 gebruikt het boek: Calculus, Early Transcendental

Nadere informatie

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen Hoofdstuk : Partiële differtiaalvergelijking Fourierreeks Partiële differtiaalvergelijking zijn vergelijking waarin e onbekde functie van twee of meer variabel z n partiële afgeleide(n) voorkom. Dit in

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

6.1 Eenheidscirkel en radiaal [1]

6.1 Eenheidscirkel en radiaal [1] 6.1 Eenheidscirkel en radiaal [1] De eenheidscirkel heeft een middelpunt O(0,0) en straal 1. De draaiingshoek van P is α overstaande rechthoekzijde sin schuine zijde PQ yp sin yp OP 1 aanliggende rechthoekzijde

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

4051CALC1Y Calculus 1

4051CALC1Y Calculus 1 4051CALC1Y Calculus 1 College 1 2 september 2014 1 Even voorstellen Theresia van Essen Docent bij Technische Wiskunde Aanwezig op maandag en donderdag EWI 04.130 j.t.vanessen@tudelft.nl Slides op http://homepage.tudelft.nl/v9r7r/

Nadere informatie

Introductie in R. http://www.math.montana.edu/stat/tutorials/r-intro.pdf http://www.math.montana.edu/stat/docs/splus_notes.ps

Introductie in R. http://www.math.montana.edu/stat/tutorials/r-intro.pdf http://www.math.montana.edu/stat/docs/splus_notes.ps Introductie in R R is een programmeer taal met een groot aantal voorgeprogrammeerde statistische functies. Het is de open source versie van S-plus. Wij gebruiken R dan ook omdat het gratis is. Documentatie

Nadere informatie

Handleiding gebruik van Wortel TU/e

Handleiding gebruik van Wortel TU/e Handleiding gebruik van Wortel TU/e Wortel TU/e ( http://wortel.tue.nl ) is een website waar je (zelfstudie ) materiaal Wiskunde kunt vinden. Om gebruik te maken van de website, moet je een moderne browser

Nadere informatie

maplev 2010/7/12 14:02 page 23 #25 Functies, getallen

maplev 2010/7/12 14:02 page 23 #25 Functies, getallen maplev 2010/7/12 14:02 page 23 #25 Module 3 Functies, getallen Onderwerp Voorkennis Expressies Bibliotheken Zie ook Definitie van functies van één of meer variabelen, rationale, reële en complexe getallen.

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 2 januari 2014 Wiskundige Technieken Uitwerkingen Hertentamen januari 4 Normering voor 4 pt vragen (andere vragen naar rato): 4pt 3pt pt pt pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012

Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012 Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012 Inleiding In de cursus Calculus 1 voor Bouwkunde (2DB80) wordt gebruikt het boek Calculus, Early T ranscendental F unctions, Robert T. Smith,

Nadere informatie

Een eerste kennismaking met Mathematica

Een eerste kennismaking met Mathematica Een eerste kennismaking met Mathematica Marcel Vonk November 2013 Inhoud 1 Over Mathematica 1 2 Notebooks en invoer 2 3 Mathematica als rekenmachine 3 4 Werken met variabelen 5 5 Het gebruik van functies

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn

Nadere informatie

Zomercursus Wiskunde. Grafieken van functies en krommen (versie 14 augustus 2008)

Zomercursus Wiskunde. Grafieken van functies en krommen (versie 14 augustus 2008) Katholieke Universiteit Leuven September 8 Grafieken van functies en krommen (versie 4 augustus 8) Grafieken van functies en krommen Inleiding In deze module bestuderen we grafieken van functies van reële

Nadere informatie

Praktische opdracht: modelleren met Coach

Praktische opdracht: modelleren met Coach Praktische opdracht: modelleren met Coach VWO 5 wiskunde B Mei 00 Hieronder zie je een ketting waaraan vijf gelijke gewichten hangen. Daarnaast een schematische tekening van ketting en gewichten. Aan de

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus C (WCB) op zaterdag 5 januari 04, 9:00 :00 uur Maak dit vel los van de rest van het tentamen. Vul uw naam etc. in op

Nadere informatie

Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009

Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009 Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009 Inleiding In de cursus Calculus 1 voor Bouwkunde (2DB80) wordt gebruikt het boek Calculus, Early Transcendental Functions Robert T. Smith,

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

college 6: limieten en l Hôpital

college 6: limieten en l Hôpital 126 college 6: ieten en l Hôpital In dit college herhalen we enkele belangrijke definities van ieten, en geven we belangrijke technieken om ieten van functies (eigenlijk en oneigenlijk) te bepalen. In

Nadere informatie

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville. Academiejaar 006-007 1ste semester februari 007 Analyse I 1. Toon aan dat elke begrensde rij een convergente deelrij heeft. Geef de definitie van een Cauchy rij, en toon aan dat elke Cauchy rij begrensd

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

In dit hoofdstuk komen korte onderwerpen aan bod die we uitwerken met DERIVE. Zo leer je heel wat functies van DERIVE kennen.

In dit hoofdstuk komen korte onderwerpen aan bod die we uitwerken met DERIVE. Zo leer je heel wat functies van DERIVE kennen. Hoofdstuk Een DERIVE-tour In dit hoofdstuk komen korte onderwerpen aan bod die we uitwerken met DERIVE. Zo leer je heel wat functies van DERIVE kennen..1 Exact en benaderend rekenen Met de standaardinstelling

Nadere informatie

Examenvragen Wiskundige Analyse I 1ste bach ir wet, eerste examenperiode

Examenvragen Wiskundige Analyse I 1ste bach ir wet, eerste examenperiode Examenvragen Wiskundige Analyse I 1ste bach ir wet, eerste examenperiode 2008-2009 Een vloeistoftank met een capaciteit van 500 liter bevat aanvankelijk 100 liter water, waarin 30 kilogram zout is opgelost.

Nadere informatie

Vergelijkingen en hun oplossingen

Vergelijkingen en hun oplossingen Vergelijkingen en hun oplossingen + 3 = 5 is een voorbeeld van een wiskundige vergelijking: er komt een = teken in voor, en een onbekende of variabele: in dit geval de letter. Alleen als we voor de variabele

Nadere informatie

Oefenopgaven wi3097: Numerieke methoden voor differentiaalvergelijkingen

Oefenopgaven wi3097: Numerieke methoden voor differentiaalvergelijkingen Oefenopgaven wi3097: Numerieke methoden voor differentiaalvergelijkingen 1 Introductie Taylor polynoom, floating point getal, afrondfout Orde symbool Landau 1. Laat f(x) = x 3. Bepaal het tweede orde Taylor

Nadere informatie

Samenvatting. TI1106M Calculus Samenvatting colleges 2014 Door: David Alderliesten. Disclaimer

Samenvatting. TI1106M Calculus Samenvatting colleges 2014 Door: David Alderliesten. Disclaimer Samenvatting TI1106M Calculus Samenvatting colleges 2014 Door: David Alderliesten Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst mogelijke

Nadere informatie

Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1

Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1 Inhoud Aan de student V Studiewijzer Aan de docent VII IX Over de auteurs XI Hoofdstuk 0 Basiswiskunde 1 Leereenheid 0.1 Elementaire algebra 3 0.1.1 Verzameling van getallen en het symbool 4 0.1.2 Merkwaardige

Nadere informatie

Over de functies arcsin, arccos en arctan

Over de functies arcsin, arccos en arctan Over de functies arcsin, arccos en arctan Booglengte figuur figuur De grafiek van een functie f tussen twee punten P (met a) en Q (met b) kan worden opgedeeld in stukjes die kunnen worden opgevat als lijnstukken,

Nadere informatie

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt:

Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt. x 1 Domein(f) als voor alle x Domein(f) geldt: Definitie: Een functie f heeft een absoluut maximum f(x 0 ) in het punt x 0 Domein(f) als voor alle x Domein(f) geldt: f(x) f(x 0 ). Een functie f heeft een absoluut minimum f(x 1 ) in het punt x 1 Domein(f)

Nadere informatie

(x x 1 ) + y 1. x x 1 x k x x x k 1

(x x 1 ) + y 1. x x 1 x k x x x k 1 Les Taylor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen

Nadere informatie

6. Functies. 6.1. Definities en gebruik van functies/variabelen

6. Functies. 6.1. Definities en gebruik van functies/variabelen Computeralgebra met Maxima 6. Functies 6.1. Definities en gebruik van functies/variabelen Een van de belangrijkste gereedschappen in een CAS betreft het gebruik van functies (definitie, berekening en grafiek).

Nadere informatie

Hints en uitwerkingen huiswerk 2013 Analyse 1 H18

Hints en uitwerkingen huiswerk 2013 Analyse 1 H18 Hints en uitwerkingen huiswerk 2013 Analyse 1 H18 Rocco van Vreumingen 29 augustus 2014 1 Inhoudsopgave 1 Hints 1 3 2 Hints 2 4 3 Hints 3 5 4 Hints 4 5 5 Hints 5 6 6 Hints 6 6 7 Hints 7 6 8 Antwoorden

Nadere informatie

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen De inhoud van hoofdstuk 3 zou grotendeels bekende stof moeten zijn. Deze stof is terug te vinden in Stewart, hoofdstuk 17. Daar staat alles

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Analyse A, deeltentamen Uitwerkingen maandag 1 november 2010, 9 11 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

integreren is het omgekeerde van differentiëren

integreren is het omgekeerde van differentiëren Integraalrekening Als we een functie f(x) differentiëren is het resultaat de eerste afgeleide f (x). Dezelfde functie f(x) kunnen we ook integreren met als resultaat de zogenaamde primitieve functie F(x).

Nadere informatie

1.1 Differentiëren, geknipt voor jou

1.1 Differentiëren, geknipt voor jou 1.1 Differentiëren, geknipt voor jou Je hebt leren omgaan met hellings of, wat hetzelfde is: s. We frissen de begrippen en rekenmethoden die hierbij horen nu wat op. Stel dat je met een (gewone) schaar

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts

Voorbereiding toelatingsexamen arts/tandarts Voorbereiding toelatingsexamen artstandarts Wiskunde: oppervlakteberekening juli 05 dr. Brenda Castelen Met dank aan: Atheneum van Veurne (http:www.natuurdigitaal.begeneeskundefsicawiskundewiskunde.htm),

Nadere informatie

1 Computeralgebra met Maple

1 Computeralgebra met Maple 1 Computeralgebra met Maple Met Maple kan je computeralgebra doen: het is een systeem om symbolische berekeningen te maken. Dit in tegenstelling tot MATLAB dat vooral bedoeld is voor numerieke berekeningen.

Nadere informatie

Functies van één veranderlijke 191512600

Functies van één veranderlijke 191512600 Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /40 Elektrotechniek, Wiskunde en Informatica EWI Partieel Breuksplitsen a0 x m C a x m C C a m x C a m

Nadere informatie

f even en g oneven = f g oneven. f(x) dx = 2 Stel dat f een even functie is en dat de Fourierreeks voor f gelijk is aan a n cos nπx + b n sin nπx )

f even en g oneven = f g oneven. f(x) dx = 2 Stel dat f een even functie is en dat de Fourierreeks voor f gelijk is aan a n cos nπx + b n sin nπx ) .4. Ev onev functies. E functie f heet ev als voor elke x in het domein van f ook x tot dat domein behoort f( x) = f(x) voor alle x in het domein van f. En e functie f heet onev als voor elke x in het

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

Jan van de Craats STUDIESTEUN. bij. Basisboek Wiskunde. Tweede editie

Jan van de Craats STUDIESTEUN. bij. Basisboek Wiskunde. Tweede editie Jan van de Craats STUDIESTEUN bij Basisboek Wiskunde Tweede editie Basisboek wiskunde, Tweede editie door Jan van de Craats en Rob Bosch, ISBN 978-9-43-1673-5, is een uitgave van Pearson Benelux, Postbus

Nadere informatie