Wiskunde Opdrachten Pythagoras
|
|
|
- Hidde Josephus van den Pol
- 10 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Wiskunde Opdrachten Pythagoras Opdracht 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en AC. B. Laat door middel van berekening zien dat hoek B van driehoek ABC recht is. Opdracht 2. Gegeven een balk ABCD-EFGH met AB = 9 cm, BC = 11 cm en AE = 5 cm. Bereken EB, BG en EG. Opdracht 3. Bereken steeds de ontbrekende zijde van de driehoek. A. driehoek ABC met hoek A = 90 0, AB = 4 cm en AC = 21. B. driehoek DEF met hoek D = 90 0, DE = 17 cm en EF = 19. C. driehoek KLM met hoek K = 90 0, LM = 23 cm en LK = 5. D. driehoek PQR met hoek R = 90 0, PQ = 18 cm en QR = 11. E. driehoek UVW met hoek V = 90 0, UV = 31 cm en VW = 21.
2 Opdracht 4. Hierboven zie je een rechthoekig grasveld waar een voetpad doorheen loopt. A. Bereken de oppervlakte van het pad en het gras. B. Aan beide kanten van het pad wil men een kleine heg plaatsen. Bereken hoeveel meter heg men nodig heeft. Opdracht 5. Hierboven zie je een tekening van een eenvoudig poppenhuis. De hoogte is 31 cm. De andere maten zijn in ook cm. Bereken de oppervlakte van het dak. Opdracht 6. Een luchtballon zit aan een touw van 150 meter lengte vast. Door de wind gaat de ballon 100 meter opzij. Bereken hoeveel meter de ballon boven de grond hangt.
3 Opdracht 7. Een toren heeft een plat dak in de vorm van een rechthoek. De zijden van die rechthoek zijn 7 bij 11 meter. In één van de hoeken is een antennemast geplaatst. Vanaf een punt, dat 14 meter boven het dak ligt, is deze mast door kabels met de drie andere hoekpunten verbonden. Bereken de lengte van de drie kabels. Opdracht 8. Gegeven een open doos ABCD-EFGH met AB = 46 cm, BC = 15 cm en CG = 28 cm. M is het midden van AB. De rups kruipt van C naar F en vandaar in een rechte lijn naar E. De mier loopt eerst van C naar het midden M van AB en gaat dan in een rechte lijn naar E. De spin spant een draad van C naar E en volgt die weg. Bereken bij elk dier de lengte van de afgelegde weg. Opdracht 9. Gegeven een rechthoek ABCD waarbij AB = 10 en BC = 6 cm. P is het midden van AB en Q is het midden van BC. A. Maak een tekening van de rechthoek en teken driehoek PQD. B. Bereken de omtrek en de oppervlakte van driehoek PQD.
4 Gegeven rechthoek ABCD met AB = 8 cm en BC = 6 cm P is het midden van AD. Q ligt op AB zodat QB = 2 cm. R ligt op DC zodat DR = 5 cm. C. Bereken de oppervlakte van driehoek PQR. D. Bereken de omtrek van driehoek PQR. Gegeven rechthoek ABCD met AD = 9 cm. Op BC ligt punt K zodat KC = 5 cm. Verder weet je dat AK = 11 cm. E. Bereken AC. Opdracht 10. Nienke wil een kubusvormig doosje van 12 cm versieren. Ze beplakt alle diagonalen van de grensvlakken met stukken lint. Bereken hoeveel cm lint Nienke nodig heeft.
5 Wiskunde Antwoordenblad opdrachten Pythagoras Opdracht 1. A. Met de stelling van Pythagoras bereken je dat AB= Ö18 = 4,24. Met de stelling van Pythagoras bereken je dat BC= Ö32 = 5,66. Met de stelling van Pythagoras bereken je dat AC= Ö50 = 7,07. B. De driehoek ABC is recht, omdat de stelling van Pythagoras klopt. Ö(18)² + Ö(32)² = Ö(50)² Opdracht 2. Met de stelling van Pythagoras bereken je dat BE= Ö106 = 10,30. Met de stelling van Pythagoras bereken je dat BG= Ö146 = 12,08. Met de stelling van Pythagoras bereken je dat EG= Ö202 = 14,21. Opdracht 3. A. Met de stelling van Pythagoras bereken je dat de zijde = Ö457 = 21,38. B. Met de stelling van Pythagoras bereken je dat de zijde = Ö72 = 8,49. C. Met de stelling van Pythagoras bereken je dat de zijde = Ö504 = 22,45. D. Met de stelling van Pythagoras bereken je dat de zijde = Ö203 = 14,25. E. Met de stelling van Pythagoras bereken je dat de zijde = Ö1402 = 37,44. Opdracht 4. A. Oppervlakte parallellogram = basis x hoogte = 3x7 = 21. Oppervlakte driehoek = basis x hoogte : 2 = 8x7:2 = 28. Het pad heeft een oppervlakte van 21 en het gras heeft een oppervlakte van 2x28 = 56. B. Met de stelling van Pythagoras bereken je dat de zijde = Ö113 = 10,63. Men heeft in totaal 2x10,63 = 21,26 meter heg nodig.
6 Opdracht 5. Met de stelling van Pythagoras bereken je dat zijde = Ö225 = 15. De oppervlakte van het dak = 15x30x2 = 900 cm 2. Opdracht 6. Met de stelling van Pythagoras bereken je dat de zijde = Ö12500 = 111,80 m. Opdracht 7. Met de stelling van Pythagoras bereken je dat EB= Ö245 = 15,65 m. Met de stelling van Pythagoras bereken je dat ED= Ö317 = 17,80 m. Met de stelling van Pythagoras bereken je dat AC= Ö170 = 13,04 m. Met de stelling van Pythagoras bereken je dat EC= Ö366 = 19,13 m. Opdracht 8. Met de stelling van Pythagoras bereken je dat CF= Ö1009 = 31,76 cm. De route van de rups is CF+FE = 31,76+46 = 77,76 cm. Met de stelling van Pythagoras bereken je dat CM= Ö754 = 27,56 cm. Met de stelling van Pythagoras bereken je dat EM= Ö1313 = 36,24 cm. De route van de mier is CM+ME = 27,56+36,24 = 63,80 cm. Met de stelling van Pythagoras bereken je dat AC= Ö2341 = 48,38 cm. Met de stelling van Pythagoras bereken je dat CE= Ö3125 = 55,90 cm. De route van de spin = CE = 55,90 cm.
7 Opdracht 9. A. B. Met de stelling van Pythagoras bereken je dat DP = Ö61 = 7,81. Met de stelling van Pythagoras bereken je dat PQ = Ö34 = 5,83. Met de stelling van Pythagoras bereken je dat QD = Ö109 = 10,44. omtrek driehoek PQD = 7,81+5,83+10,44 = 24,08 cm. oppervlakte rechthoek ABCD = 10x6 = 60 cm². oppervlakte driehoek APD = 5x6:2 = 15 cm². oppervlakte driehoek PBQ = 5x3:2 = 7,5 cm². oppervlakte driehoek QCD = 10x3:2 = 15 cm². Dus is de oppervlakte van driehoek PQD = ,5-15 = 22,5 cm 2. C. De oppervlakte van de rechthoek is 8x6 = 48 cm². De oppervlakte van driehoek AQP = 6x3:2 = 9 cm². De oppervlakte van driehoek PDR = 5x3:2 = 7,5 cm². De oppervlakte van driehoek RSQ = 6x1:2 = 3 cm². De oppervlakte van rechthoek QBCS = 6x2 = 12 cm². Daarom is de oppervlakte van driehoek PQR = , = 16,5 cm 2.
8 D. Met de stelling van Pythagoras bereken je dat PQ = Ö45 = 6,71 cm. Met de stelling van Pythagoras bereken je dat QR = Ö37 = 6,08 cm. Met de stelling van Pythagoras bereken je dat PR = Ö34 = 5,83 cm. De omtrek is daarom 6,71+6,08+5,83 = 18,62 cm. E. Met de stelling van Pythagoras bereken je dat AB = Ö105 = 10,25 cm. Met de stelling van Pythagoras bereken je dat AC = Ö186 = 13,64 cm. Opdracht 10. Met de stelling van Pythagoras bereken je dat de lengte van een diagonaal Ö208 = 16,97 cm is. De totale lengte is dan 12x16,97 = 203,64 cm.
Oefenopgaven Stelling van Pythagoras.
Oefenopgaven Stelling van Pythagoras. 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en CD. B. Laat door middel van berekening zien dat hoek B van driehoek ABC
6.1 Rechthoekige driehoeken [1]
6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;
44 De stelling van Pythagoras
44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt
Driehoeken vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. http://maken.wikiwijs.nl/74268
Auteur VO-content Laatst gewijzigd Licentie Webadres 24 May 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74268 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein. Wikiwijsleermiddelenplein
de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1
Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden
Antwoordmodel - Vlakke figuren
Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.
d = 8 cm 2 6 A: = 26 m 2 B: = 20 m 2 C: = 18 m 2 D: 20 m 2 E: 26 m 2
H17 PYTHAGORAS 17.1 INTRO 1 b c d 1 4 4 = 8 cm 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine
Paragraaf 4.1 : Gelijkvormigheid
Hoofdstuk 4 Meetkunde (V4 Wis B) Pagina 1 van 8 Paragraaf 4.1 : Gelijkvormigheid Les 1 : Gelijkvormigheid Definities sin( A) = Overstaande Schuine cos( A) = Aanliggende Schuine = O S = A S tan( A) = Overstaande
6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2
Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine
2.1 Cirkel en middelloodlijn [1]
2.1 Cirkel en middelloodlijn [1] Hiernaast staat de cirkel met middelpunt M en straal 2½ cm In het kort: (M, 2½ cm) Op de zwarte cirkel liggen alle punten P met PM = 2½ cm In het rode binnengebied liggen
Noordhoff Uitgevers bv
70 Voorkennis V-a Driehoek is een rechthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 = 38,5 cm 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 = 30 cm
Stelling van Pythagoras vmbo-kgt12. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie.
Auteur VO-content Laatst gewijzigd Licentie Webadres 25 May 2016 CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie http://maken.wikiwijs.nl/57160 Dit lesmateriaal is gemaakt met Wikiwijs Maken van
1 a. Hoeveel hoekpunten heeft figuur 1 hieronder? b. Hoeveel hoekpunten heeft figuur 2 hieronder? c. Hoeveel hoekpunten heeft figuur 3 hieronder?
H1 Vlakke figuren 2 BBL 1.1 Eigenschappen van vlakke figuren 1 a. Hoeveel hoekpunten heeft figuur 1 hieronder? b. Hoeveel hoekpunten heeft figuur 2 hieronder? c. Hoeveel hoekpunten heeft figuur 3 hieronder?
Noordhoff Uitgevers bv
72 Voorkennis V-a Driehoek is een rehthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 5 38,5 m 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 5 30 m 2.
Noordhoff Uitgevers bv
V-1a c d e 1 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rechthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 = 8 roostervierkantjes.
Hoofdstuk 3: De stelling van Pythagoras
Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We
1 Coördinaten in het vlak
Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem
Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo
Vestiging Westplasmavo vak : Wiskunde leerweg : TL toetsnummer : 4T-WIS-S06 toetsduur: : 100 minuten aantal te behalen punten : 56 punten cesuur : 28 punten toetsvorm : Schriftelijk hulpmiddelen : Geodriehoek,
Let op: Indien van toepassing: schrijf berekeningen bij de opdrachten. Gebruik bij de tekeningen een passer en geodriehoek/hoekmeter.
Vestiging: Westplasmavo vak : Wiskunde leerweg : TL toetsnummer : 3T-WIS-S-01 toetsduur: : 100 minuten aantal te behalen punten : 56 punten cesuur : 28 punten toetsvorm : Schriftelijk hulpmiddelen :Geodriehoek,
5.1 Punten, lijnen en vlakken [1]
5.1 Punten, lijnen en vlakken [1] Snijdende lijnen hebben een snijpunt. De snijdende lijnen FH en EG liggen in het vlak EFGH. Snijdende lijnen liggen altijd in één vlak. Een vlak is altijd plat en heeft
Noordhoff Uitgevers bv
Hoofdstuk - Gelijkvormigheid Voorkennis V-1a /A = 74, /B 1 = 18 en /D 1 = 88 /A + /B 1 + /D 1 = 74 + 18 + 88 = 180 c /B = 104, /C = 55 en /D = 1 d /B = /B 1 + /B = 18 + 104 = 1 en /D = /D 1 + /D = 88 +
Hoofdstuk 7 : Gelijkvormige figuren
Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor
Hoofdstuk 10 Meetkundige berekeningen
Hoofdstuk 10 Meetkundige berekeningen Les 0 (Extra) Aant. Voorkennis: Hoeken en afstanden Theorie A: Sinus, Cosinus en tangens O RHZ tan A = A RHZ O RHZ sin A = SZ A RHZ cos A = SZ Afspraak: Graden afronden
7 Totaalbeeld. Samenvatten. Achtergronden. Testen
7 Totaalbeeld Samenvatten Je hebt nu het onderwerp "Vectormeetkunde" doorgewerkt. Er moet een totaalbeeld van deze leerstof ontstaan... Ga na, of je al de bij dit onderwerp horende begrippen kent en weet
Noordhoff Uitgevers bv
58 Voorkennis V-1a /A 5 74, /B 1 5 18 en /D 1 5 88 /A 1 /B 1 1 /D 1 5 74 1 18 1 88 5 180 c /B 2 5 104, /C 5 55 en /D 2 5 21 d /B 5 /B 1 1 /B 2 5 18 1 104 5 122 en /D 5 /D 1 1 /D 2 5 88 1 21 5 109, dus
Noordhoff Uitgevers bv
Extra oefening - Basis B-a 5x + 6 7x + e 4x + 6 x + 6 x + 3x + 6 4 x 3x 5 x 4 : dus x x 5 : 3 dus x 5 b 9x + 0 34 + x f 8x + 5x + 38 8x + 0 34 3x + 38 8x 4 3x 6 x 4 : 8 dus x 3 x 6 : 3 dus x c 4x + 9 7x
4 A: = 10 B: 4 C: 8 D: 8
Hoofdstuk OPPERVLAKTE VWO 0 INTRO A: + 6 = 0 B: C: 8 D: 8 DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0 Daar gaan twee halve
6.1 Kijkhoeken[1] Willem-Jan van der Zanden
6.1 Kijkhoeken[1] Het plaatje is een bovenaanzicht; De persoon kan het gedeelte binnen de kijkhoek zien; De twee rode lijnen zijn kijklijnen; De kijklijnen geven de grenzen aan van het gebied dat de persoon
Voorbereiding : examen meetkunde juni - 1 -
Voorbereiding : examen meetkunde juni - 1 - De driehoek : Congruentiekenmerken van een driehoek kennen Soorten lijnen in een driehoek kennen Bissectricestelling kennen Stelling van het zwaartelijnstuk
Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje
Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje Indien van toepassing: schrijf je berekening op. Tekening altijd met geodriehoek en potlood. Omtrek rechthoek
2.1 Gelijkvormige driehoeken[1]
2.1 Gelijkvormige driehoeken[1] 5 25 50 100 25 125 250 x Hierboven staat een verhoudingstabel. Kruiselings vermenigvuldigen van de getallen geeft: 5 x 125 = 25 x 25 (= 625) 5 x 250 = 25 x 50 (= 1250) 25
Samenvatting VWO wiskunde B H04 Meetkunde
Samenvatting VWO wiskunde B H04 Meetkunde Getal & Ruimte editie 11 Goniometrie in rechthoekige driehoeken Stap 1: Zoek de rechthoekige driehoeken Figuur 1: Ga na dat in dit voorbeeld alleen ADC en DBC
Hoofdstuk 6 : Projectie en Stelling van Thales
Hoofdstuk 6 : Projectie en Stelling van Thales - 127 1. Projectie op een rechte (boek pag 175) x en y zijn twee... rechten. We trekken door het punt A een evenwijdige rechte met de rechte y en noemen het
Noordhoff Uitgevers bv
6 Etra oefening - Basis B-a 0 y 9 8 8 9 b y = + y 8 0 6 8 0 6 O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a r = ( s+ )( s + ) e h= ( + i)( i +
1 Cartesische coördinaten
Cartesische coördinaten Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-d Analytische Meetkunde Cartesische coördinaten Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er
7 a. 8 a. de Wageningse Methode Antwoorden H24 GONIOMETRIE HAVO 1
H GONIOMETRIE HAVO.0 INTRO a schaal : 00 (het touw is in de tekening 6 cm) a 6 km : 00.000 = 6 cm b b ongeveer 8, meter. TEKENEN OP SCHAAL 6 a schaal : b 9 a 7 a (moeilijk nauwkeurig te meten) b schaal
2.9 Stelling van Pythagoras
Auteur hannie janssen Laatst gewijzigd 24 March 2016 Licentie CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie Webadres http://maken.wikiwijs.nl/74171 Dit lesmateriaal is gemaakt met Wikiwijs Maken
8.1 Gelijkvormige en congruente driehoeken [1] Willem-Jan van der Zanden
8.1 Gelijkvormige en congruente driehoeken [1] 1 8.1 Gelijkvormige en congruente driehoeken [1] Twee evenwijdige lijnen worden gesneden door een derde lijn. De twee rode hoeken (F-hoeken) zijn gelijk.
Wiskunde Opdrachten Vlakke figuren
Wiskunde Opdrachten Vlakke figuren Opdracht 1. Teken in de figuren hieronder alle symmetrieassen. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Opdracht 2. A. Welke
Thema: Stelling van Pythagoras vmbo-kgt12
Auteur VO-content Laatst gewijzigd 12 August 2016 Licentie CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie Webadres http://maken.wikiwijs.nl/57157 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein.
7 a. 8 a. de Wageningse Methode Antwoorden H24 GONIOMETRIE HAVO 1
H GONIOMETRIE HAVO.0 INTRO a : 00 (het touw is in de tekening 6 cm) a 6 km : 00.000 = 6 cm b 6 a Schaal :. b 9. TEKENEN OP SCHAAL a 7 a (moeilijk nauwkeurig te meten) b : 000 c Ik meet cm dus in werkelijkheid
Noordhoff Uitgevers bv
Etra oefening - Basis B-a 0 y 9 8 8 9 b y y = + 8 0 6 8 0 6 O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a g = 7 ( a+ ) a + 7 g = 7 a+ 0 b w= 9n(
16 a. b a. b 6a. de Wageningse Methode Antwoorden H21 OPPERVLAKTE HAVO 1
Hoofdstuk OPPERVLAKTE HAVO 5 a De rechthoeken zijn bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers.. INTRO Oppervlakte snelweg = 0 km 8 m = 0.000 m 8 m = 360.000 m. Zijde vierkant = 360. 000 = 600
STELLINGEN & BEWIJZEN 5VWO wiskunde B 1 e versie
STELLINGEN & BEWIJZEN 5VWO wiskunde B 1 e versie Euclides van Alexandrië (ca. 265-200 v.chr.) Thales van Milete (ca. 624 v.chr. - 547 v.chr.) INHOUDSOPGAVE Algemene begrippen..blz. 1-3 - Stelling en bewijs
de Wageningse Methode Antwoorden H25 RUIMTELIJKE FIGUREN IN HET PLAT VWO 1
H5 Ruimtelijke figuren in het plat VWO 5.0 INTRO a een vierkant ; een lijnstuk ; een vierkant Bijvooreeld zo: Het laagste punt is het midden van het grondvlak. Snij van een kurk aan weerszijden een stuk
Hoofdstuk 6 Goniometrie
Opstap Tangens O-1a EF!1044 32,3 m zije kwaraat zije kwaraat KL 30 m 900 ST 20 m 400 LM 15 m 225 TW? 225 KM? 1125 SW 25 m 625 KM!1125 33,5 m TW!225 15 m O-2a Driehoek PQR is een rehthoekige riehoek omat
Wiskunde oefentoets hoofdstuk 10: Meetkundige berekeningen
Wiskunde oefentoets hoofdstuk 0: Meetkundige berekeningen Iedere antwoord dient gemotiveerd te worden, anders worden er geen punten toegekend. Gebruik van grafische rekenmachine is toegestaan. Succes!
Wiskunde 1b Oppervlakte
PROFESSIONELE BACHELOR IN HET ONDERWIJS SECUNDAIR ONDERWIJS Auteur: Greet Verhelst, Eddy Greunlinx Lector: Academiejaar 2016-2017 Inhoudsopgave 1 Veelhoekig gebied... 4 2 van een veelhoekig gebied...
Hoofdstuk 4: Meetkunde
Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair
Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO
Hoofdstuk OPPERVLAKTE A: +6=0 B: C: 8 D: 8.0 INTRO. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve rechthoeken
Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO
Hoofdstuk OPPERVLAKTE VWO.0 INTRO A: +6=0 B: C: 8 D: 8. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM 5 a Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve
Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder.
Oefenopgaven oppervlakte en inhoud 1. Bereken de oppervlakte van de driehoeken en parallellogrammen hieronder. 2. Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder. 3. A. Bereken
Vermoeden: De drie deellijnen gaan door 1 punt. 33c. Vermoeden: De drie zwaartelijnen gaan door 1 punt. 33d.
17 Vermoeden: De drie deellijnen gaan door 1 punt. 33c. Vermoeden: De drie zwaartelijnen gaan door 1 punt. 33d. 18 Vermoeden: De drie hoogtelijnen gaan door 1 punt 34. a. De drie middelloodlijnen van een
15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21.
Hoofdstuk 1 OPPERVLAKTE HAVO 1.1 INTRO 15 a De rechthoeken zijn 1 bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: 1 Oppervlakte snelweg = 0 km 18 m = 0.000 m 18 m = 360.000 m. Zijde
Extra oefeningen: de cirkel
Extra oefeningen: de cirkel 1. Gegeven een cirkel met middelpunt M en straal r 5 cm en. De lengte van de raaklijnstukken PA PB uit een punt P aan deze cirkel bedraagt 1 cm. Bereken de afstand PM. () PAM
Noordhoff Uitgevers bv
V-1a Voorkennis C A m B C = 10 = 9 ABC is geen rehthoekige driehoek. V-a K m L d M = 10 = 90 L 0 M De rehthoekszijden zijn de zijden LM en KM. De langste zijde is zijde KL. d zijde kwadraat LM = 0 KL =
Thema: Vlakke figuren vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/74267
Auteur VO-content Laatst gewijzigd 21 October 2016 Licentie CC Naamsvermelding 3.0 Nederland licentie Webadres https://maken.wikiwijs.nl/74267 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet.
Hoofdstuk 2 - Plaats en afstand
Voorkennis V-1a Maaike ziet de voorwerpen vanuit Z, het zuiden. b Je eigen tekening. In je tekening staat rechts de vaas met rozen, in het midden de doos tissues en links de waxinelichthouder. V-2a Hoek
Proefwerk VMBO-T3 : Hoofdstuk 6 Oppervlakte en Inhoud Berekening niet opschrijven is altijd fout!! Succes
Proefwerk VMBO-T3 : Hoofdstuk 6 Oppervlakte en Inhoud Berekening niet opschrijven is altijd fout!! Succes Opdracht 1 Bereken de oppervlakte van de volgende figuren. Schrijf je berekening op. LT OP: Je
WISKUNDE-ESTAFETTE RU 2006 Antwoorden
WISKUNDE-ESTAFETTE RU 2006 Antwoorden 1 V 1 8 en 12 V 2 7 en 11 V 3 6 en 10 V 4 5 en 9 2 5040 opstellingen 3 De zijde is 37 4 α = 100 5 10, 2 liter 6 De volgorde is 2, 5, 3, 4, 1 7 30 euro 8 De straal
Antwoordmodel - In de ruimte
Antwoordmodel - In de ruimte Vraag 1 Welke ruimtefiguren (of delen van) herken je op de volgende foto s? a Foto 1. Balk, prisma, cilinder en kubus. b Foto 2. Cilinder, balk, kubus en prisma c Foto 3. Balk,
7 cilinder. bol. torus. 8 a
.0 INTRO a Een vierkant, een lijnstuk, een vierkant ijvooreeld zo: Het laagste punt is het midden van het grondvlak. Een lijnstuk nij van een kurk aan weerszijden een stuk af, zo dat je aan de ovenkant
uuur , DF en DB met kentallen. b) Laat zien door twee keer de stelling van Pythagoras in een rechthoekige uuur
4 Van D naar 3D Verkennen Van D naar 3D Inleiding Verkennen Bekijk de applet. Met de rechter muisknop kun je het assenstelsel om de oorsprong draaien en de fig van alle kanten bekijken. Beantwoord nu de
1. INLEIDING: DE KOERS VAN EEN BOOT
KLAS 4N VECTOREN . INLEIDING: DE KOERS VAN EEN BOOT. Boot vaart van Roe naar Tui via Rul. De koersgegevens zijn: van Roe naar Rul: 0, 5 km van Rul naar Tui: 40, 5 km a. Wat zijn de koersgegevens als de
Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden
Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:
Hoofdstuk 2 Vlakke meetkunde
Opstap Hoeken, driehoeken en vierhoeken O-1a P = 65 R O-2a O-3a O-4a P A De driehoek is een gelijkzijdige driehoek. M Q P + + N Q De lengte van OP is 3,5 m. De oppervlakte van ^MNO is MN OP : 2 5,4 3,5
1. rechthoek. 2. vierkant. 3. driehoek.
Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn
Blok 6B - Vaardigheden
B-a Etra oefening - Basis Eigenschap C is ook een definitie van een rechthoek. A: Als de diagonalen wel even lang zijn maar elkaar niet middendoor delen, is de vierhoek geen rechthoek. Denk ijvooreeld
Vraagstukken van de tweede graad
Vraagstukken van de tweede graad 1. Een getal en zijn tweedemacht hebben als som 90. Bepaal dat getal.. Bepaal twee opeenvolgende getallen waarvan de som van de kwadraten 365 is. 3. Verdeel het getal 37
Kleur de congruente vierhoeken in onderstaand mozaïek in eenzelfde kleur.
VRAAG 1 Kleur de congruente vierhoeken in onderstaand mozaïek in eenzelfde kleur. VRAAG 2 Duid in de onderstaande figuur de overeenkomstige zijden en hoeken van de congruente driehoeken aan met eenzelfde
8.1 Inhoud prisma en cilinder [1]
8.1 Inhoud prisma en cilinder [1] Een prisma heeft twee evenwijdige grensvlakken. Een grondvlak en een bovenvlak. De andere grensvlakken zijn rechthoeken. De hoogte van de prisma is de lengte van de opstaande
4.1 Rekenen met wortels [1]
4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:
CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus
CEVA-DRIEHOEKEN Eindwerk wiskunde 010 Heilige-Drievuldigheidscollege 6WeWIi Soetemans Dokus Inhoud 1. Inleiding... 4 1.1. Info over Giovanni Ceva... 4 1.. Wat zijn Ceva-driehoeken?... 4 1.3. Enkele voorbeelden...
Oefeningen in verband met tweedegraadsvergelijkingen
Oefeningen in verband met tweedegraadsvergelijkingen l. e omtrek van een rechthoek is 8 m en de diagonaal 10 m. Welke afmetingen heeft deze rechthoek?. Bereken x zodat de opp van de rechthoek even groot
Noordhoff Uitgevers bv
Extra oefening - Basis B- Van ABC is de asis BC = en de hoogte AD =. De oppervlakte van ABC is : = 9. Van KLM is de asis KM = 5 + 9 = en de hoogte NL. B-a KN = 5 NL = KL = 5 + 69 NL = = De oppervlakte
Paragraaf 14.1 : Vergelijkingen in de meetkunde
Hoofdstuk 14 Meetkunde Toepassen (V6 Wis B) Pagina 1 van 1 Paragraaf 14.1 : Vergelijkingen in de meetkunde Les 1 : Vergelijkingen maken bij meetkundige figuren Herhaling (1) Bijzondere rechthoekige driehoeken
Examen VBO-MAVO-C. Wiskunde
Wiskunde Examen VBO-MAVO-C Voorbereidend Beroeps Onderwijs Middelbaar Algemeen Voortgezet Onderwijs Tijdvak 1 Vrijdag 6 mei 13.30 15.30 uur 0 00 Dit examen bestaat uit 3 vragen. Voor elk vraagnummer is
4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden
4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In
PROBLEEMOPLOSSEND DENKEN MET
PROBLEEMOPLOSSEND DENKEN MET Van onderzoekend leren naar leren onderzoeken in de tweede en derde graad Luc Gheysens DPB-Brugge 2012 PROBLEEM 1 Stelling van Pythagoras en gelijkvormige driehoeken Hieronder
De arbelos. 1 Definitie
De arbelos 1 Definitie De arbelos is een meetkundige figuur die bestaat uit drie aan elkaar rakende halve cirkels. De raakpunten liggen op een lijn. In onderstaande tekening is de arbelos de paarse figuur.
Willem van Ravenstein
Willem van Ravenstein 1. Variabelen Rekenen is het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken je de bewerkingen machtsverheffen en worteltrekken.
Hoofdstuk 8 - Ruimtefiguren
Voorkennis V-a De oppervlakte van ABC is 2 5 : 2 = 0 cm 2. c d AB = 2 AC = 5 BC = 44 25 + 69 BC = 69 = cm De omtrek van ABC is 5 + 2 + = 0 cm. BD = 2 4 = 8 cm De oppervlakte van BCD is 8 5 : 2 = 20 cm
2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β.
1 Synthetische RM 1. (a) Geef de definitie van de loodrechte stand van twee vlakken. (b) Geen stellingen die voorwaarden uitdrukken opdat twee vlakken orthogonaal zijn. (c) Steun op 1a of 1b om te bewijzen
Wiskunde Leerjaar 2 - Periode 1 Meetkunde
Wiskunde Leerjaar 2 - Periode 1 Meetkunde Vierhoeken Vierkant Rechthoek Parallellogram Ruit Trapezium Vlieger Vierhoek 1. Vierkant zijde zijde Een vierkant is een vierhoek met vier rechte hoeken én vier
4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden
4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In
de Wageningse Methode Antwoorden H20 COÖRDINATEN VWO 1
Hoofdstuk 0 COÖRDINATEN VWO 0.0 INTRO abd c 3 OL, 0 NB 0. HET PLATTE VLAK 6 a A(-3,) ; B(,4) ; C(-,) ; D(,0) ; E(0,-3) ; F(-6,-4) ; G(6,-4) b cd 0. DE WERELD IN KAART 3 B 4 abc e d 90 NB de Wageningse
5 abd. 6 a A(-3,5) ; B(2,4) ; C(-2,2) ; D(5,0) ; E(0,-3) ; F(-6,-4) ; G(6,-4) b
Hoofdstuk 0 COÖRDINATEN VWO 0.0 INTRO abd c 3 OL, 0 NB 0. HET PLATTE VLAK 6 a A(-3,) ; B(,4) ; C(-,) ; D(,0) ; E(0,-3) ; F(-6,-4) ; G(6,-4) b cd 0. DE WERELD IN KAART 3 B 4 abc e d 90 NB de Wageningse
1. cos α = 0,25 2. sin α = -0,75 3. tan α = -0,5
Herhalingsoefeningen Willekeurige driehoeken Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef
In de ruimte vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie.
Auteur VO-content Laatst gewijzigd Licentie Webadres 12 April 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74213 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet.
Oefenopgaven vergroten en verkleinen
Oefenopgaven vergroten en verkleinen 1. Van een rechthoek ABCD zijn de zijden 7 en 11 cm. Rechthoek KLMN is een vergroting van rechthoek ABCD met factor 1,5. A. Bereken de zijden van rechthoek KLMN. B.
2 Inproduct. Verkennen. Uitleg
2 Inproduct Verkennen Inproduct Inleiding Verkennen Het begrip arbeid komt uit de natuurkunde. Bekijk de applet zorgvuldig. Als je de rode stippellijn laat samenvallen met de beweging van A naar B dan
PQS en PRS PS is de bissectrice van ˆP
OEFENINGEN 1 Kleur de figuren die congruent zijn met elkaar in dezelfde kleur. 2 Gegeven: PQS en PRS PS is de bissectrice van ˆP Gevraagd: Zijn de driehoeken congruent? Verklaar. 3 Gegeven: Gevraagd: Is
Bewijzen onder leiding van Ludolph van Ceulen
Bewijzen onder leiding van Ludolph van Ceulen 1540 1610 Margot Rijnierse Inleiding In de tijd van Ludolph van Ceulen hadden de meetkundige geleerden belangstelling voor de geschriften van de oude Grieken,
werkschrift driehoeken
werkschrift driehoeken 1 hoeken 11 Rangschik de hoeken van klein naar groot. 14 b Teken een lijn l met daarop een punt A. Teken met je geodriehoek een lijn die l loodrecht snijdt in A. c Kies een punt
Een bekende eigenschap van de middens van de zijden van een driehoek is de volgende.
Cabri-werkblad Rond het zwaartepunt van een driehoek Een bekende eigenschap van de middens van de zijden van een driehoek is de volgende. Stelling De verbindingslijn van de middens van twee zijden van
Noordhoff Uitgevers bv
Blok - Vwo VWO Reht, sherp of stomp? a AB 7 AC BC 8 6 6 Nee, de optelling van de kwadraten klopt niet, want 6 6 en geen 6. Nee, nabc is geen rehthoekige driehoek, want de optelling van de kwadraten klopt
Lees de inleiding Bestudeer de het probleemaanpak ABC Los de wiskundige problemen op Maak de eindtoets. Uit het examenprogramma:
Lees de inleiding Bestudeer de het probleemaanpak ABC Los de wiskundige problemen op Maak de eindtoets Uit het examenprogramma: Subdomein A2: Onderzoeksvaardigheden "De kandidaat kan een gegeven probleemsituatie
5 ab. 6 a. 22,9 25,95 cm
Hoofdstuk 5 GELIJKVORMIGHEID VWO 5 Vergroten en verkleinen a d 5 a 9 driehoekjes, zie plaatje: a 0,5 :,9, en :, ij 9 inh 7 0,5,57 m ij 7 5 5,9 5,95 m d 6,9 0,7 m 9 e a Die van ij Die van 0 ij 0, die van
