Logica voor AI. Bisimulatie en niet-karakteriseerbaarheid. Antje Rumberg. 21 november Correspondentie.

Maat: px
Weergave met pagina beginnen:

Download "Logica voor AI. Bisimulatie en niet-karakteriseerbaarheid. Antje Rumberg. 21 november Correspondentie."

Transcriptie

1 Logica voor AI en niet-karakteriseerbaarheid Antje Rumberg 21 november

2 Kripke Semantiek De taal L m van de modale propositielogica ϕ ::= p ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ Blokje en ruitje ϕ: het is noodzakelijk dat ϕ ϕ: het is mogelijk dat ϕ 2

3 Kripke Semantiek Modelstructuur (of frame) Een modelstructuur (of frame) is een geordend paar F = W, R, waarbij W een verzameling mogelijke werelden en R W W een bereikbaarheidsrelatie is. w v u t s r 3

4 Kripke Semantiek Kripke Model Een Kripke model is een geordend drietal M = W, R, V, waarbij W, R een modelstructuur en V : W Pow(VAR) een interpretatiefunctie is. Een propositie p is waar in een wereld w desda p V(w). (p, q) w (p) v (q) u t (q) s (p) r (q) 4

5 Frame eigenschappen Zij R W W een bereikbaarheidsrelatie. R is reflexief w(wrw) R is irreflexief w (wrw) R is symmetrisch w v(wrv vrw) R is asymmetrisch w v(wrv vrw) R is anti-symmetrisch w v((wrv w v) vrw) R is transitief w v z((wrv vrz) wrz) R is euclidisch w v z((wrv wrz) vrz) R is dicht w v(wrv z(wrz zrv)) R is deterministisch w v z((wrv wrz) v = z) R is voortzettend w v(wrv) R is disconnected w v( vrw) R is universeel w v(wrv) 5

6 Frame eigenschappen Een modelstructuur F = W, R heet reflexief (symmetrisch, transitief, etc.) desda R reflexief (symmetrisch, transitief, etc.) is. Een model M = W, R, V heet reflexief (symmetrisch, transitief, etc.) desda F = W, R reflexief (symmetrisch, transitief, etc.) is. 6

7 Geldigheid in een model: M ϕ Een formule ϕ is geldig in een Kripke model M = W, R, V, notatie: M ϕ, desda voor alle werelden w W geldt M, w ϕ Geldigheid in een modelstructuur: F ϕ Een formule ϕ is geldig in een modelstructuur F = W, R, notatie: F ϕ, desda voor alle modellen M = W, R, V geldt M ϕ Geldigheid in een klasse van modelstructuren: C ϕ Een formule ϕ is geldig in een klasse C van modelstructuren, notatie: C ϕ, desda voor alle modelstructuren F = W, R, C geldt F ϕ. 7

8 Karakteriseerbaarheid Een verzameling formules Γ L m karakteriseert een klasse C van modelstructuren desda voor alle modelstructuren F geldt: F C desda F ψ voor alle ψ Γ. Modale definieerbaarheid Een klasse C van modelstructuren is modaal definieerbaar desda er is een verzameling modale formules Γ L m die deze klasse karakteriseert. 8

9 Reflexiviteit De klasse van alle reflexieve modelstructuren is modaal definieerbaar. De formule ϕ ϕ karakteriseert de klasse van alle reflexieve modelstructuren. Zij F = W, R een modelstructuur. F is reflexief desda F ϕ ϕ. 9

10 Reflexiviteit Zij F = W, R een modelstructuur. Bewijs: F is reflexief desda F ϕ ϕ. Stel dat F = W, R reflexief is. Zij M = W, R, V een willekeurige model dat op F gebaseerd is en w W een willekeurige wereld. Stel dat M, w ϕ. Omdat F reflexief is, geldt: wrw Aangezien M, w ϕ, volgt: M, w ϕ Daaruit volgt: M, w ϕ ϕ Daar dit voor alle w W geldt, volgt: M ϕ ϕ Aangezien M willekeurig gekozen was, geldt: F ϕ ϕ 10

11 Reflexiviteit Zij F = W, R een modelstructuur. F is reflexief desda F ϕ ϕ. Bewijs: Stel dat F = W, R niet reflexief is. Dan is er een wereld w W zodanig dat wrw. Beschouw M = W, R, V met p V(x) desda wrx. Dan: M, w p en M, w p Daaruit volgt: M, w p p Dus: F ϕ ϕ 11

12 Zij F = W, R een modelstructuur. F ϕ ϕ (of F ϕ ϕ) desda F is reflexief F ϕ (of F ) desda F is disconnected F ϕ ϕ (of F ϕ ϕ) desda F is symmetrisch F ϕ ϕ (of F ϕ ϕ) desda F is transitief F ϕ ϕ (of F ϕ ϕ) desda F is euclidisch F ϕ ϕ (of F ϕ ϕ) desda F is dicht F ϕ ϕ desda F is deterministisch F ϕ ϕ desda F is voortzettend 12

13 Verschillende modaliteiten epistemisch doxastisch deontisch temporeel Verschillende principes (D) ϕ ϕ (T) ϕ ϕ (B) ϕ ϕ (4) ϕ ϕ (5) ϕ ϕ 13

14 Niet-karakteriseerbaarheid De klasse van irreflexieve intransitieve asymmetrische anti-symmetrische universele modelstructuren is niet karakteriseerbaar. 14

15 Modale onderscheidbaarheid 0 (p) 1 (p) 2 (p) 3 (p)... a (p) P Voor alle ϕ Lm : M, 0 ϕ desda M, a ϕ Voor alle ϕ Lm : M ϕ desda M ϕ Voor alle ϕ Lm : als F ϕ dan F ϕ 15

16 Zijn M = W, R, V en M = W, R, V Kripke modellen. Een bisimulatie tussen M en M is een relatie Z W W zodanig dat als wzw, dan V(w) = V(w ); als wzw en wrv, dan is er een v z.d.d. w R v en vzv ; R w v Z R w Z als wzw en w R v, dan is er een v z.d.d. wrv en vzv. R w v Z v v R w Z 16

17 Voorbeeld 0 (p) 1 (p) 2 (p) 3 (p)... a (p) P Z = {< 0, a >, < 1, a >, < 2, a >, < 3, a >,... } 17

18 theorema Zijn M = W, R, V en M = W, R, V Kripke modellen. Zij Z W W een bisimulatie tussen M en M met < w, w > Z. Dan geldt voor alle formules ϕ L m : M, w ϕ desda M, w ϕ Bewijs: formule inductie 18

19 Formule inductie Zijn M = W, R, V en M = W, R, V Kripke modellen. Zij Z W W een bisimulatie tussen M en M met < w, w > Z. Stelling: Voor alle ϕ L m : M, w ϕ desda M, w ϕ Inductiebasis: Voor alle atomaire proposities p VAR : M, w p desda M, w p Inductieaanname (IA): Zij ψ L m. Als < w, w > Z, dan geldt: M, w ψ desda M, w ψ Inductiestap: Als (IA) voor ψ, θ L m geldt, dan geldt voor alle ϕ := ψ ψ θ ψ θ ψ θ ψ θ ψ ψ: M, w ϕ desda M, m ϕ 19

20 Zijn M = W, R, V en M = W, R, V Kripke modellen. Zij Z W W een bisimulatie tussen M en M met < w, w > Z. Dan geldt voor alle formules ϕ L m : M, w ϕ desda M, w ϕ Inductiebasis: Zij p VAR een atomaire propositie: Dan geldt: M, w p desda p V(w) M, w p desda p V (w ) Aangezien wzw geldt: V(w) = V(w ). Daaruit volgt: p V(w) desda p V(w ). Dus: M, w p desda M, w p 20

21 Negatie: ϕ := ψ Inductieaanname (IA): Zij ψ L m. Als < w, w > Z, dan geldt: M, w ψ desda M, w ψ Inductiestap Zij ϕ := ψ en vooronderstel dat (IA) voor ψ L m geldt. Stel dat M, w ψ. Op grond van de semantiek van volgt: M, w ψ. Aangezien (IA) voor ψ geldt, volgt: M, w ψ. Daaruit volgt: M, w ψ M, w ψ M, w ψ wordt analoog bewezen. 21

22 Conjunctie: ϕ := ψ θ Inductieaanname (IA): Zij ψ L m. Als < w, w > Z, dan geldt: M, w ψ desda M, w ψ Inductiestap Zij ϕ := ψ θ en vooronderstel dat (IA) voor ψ, θ L m geldt. Stel dat M, w ψ θ. Op grond van de semantiek van volgt: M, w ψ en M, w θ. Aangezien (IA) voor ψ en θ geldt, volgt: M, w ψ en M, w θ Daaruit volgt: M, w ψ θ M, w ψ θ M, w ψ θ wordt analoog bewezen. 22

23 Mogelijkheid: ϕ := ψ Inductieaanname (IA): Zij ψ L m. Als < w, w > Z, dan geldt: M, w ψ desda M, w ψ Inductiestap Zij ϕ := ψ en vooronderstel dat (IA) voor ψ L m geldt. Stel dat M, w ψ. Op grond van de semantiek van volgt: er is tenminste één v met wrv en M, v ψ Omdat wzw, volgt: er is een v met w R v en vzv Aangezien (IA) voor ψ geldt, volgt: M, v ψ Daaruit volgt: M, w ψ M, w ψ M, w ψ wordt analoog bewezen. 23

24 Complete bisimulatie Zijn M = W, R, V en M = W, R, V Kripke modellen. Een bisimulatie Z W W tussen M en M heet compleet voor M desda voor alle w W is er een w W met wzw. Voorbeeld: 0 (p) 1 (p) 2 (p) 3 (p)... a (p) P 24

25 Zijn M = W, R, V en M = W, R, V Kripke modellen. Zij Z W W een bisimulatie tussen M en M die compleet is voor M. Dan geldt: M ϕ M ϕ Bewijs: Stel dat M ϕ. Daaruit volgt: voor alle w W geldt M, w ϕ Zij w W een willekeurige wereld in M. Omdat de bisimulatie Z compleet is voor M, geldt: er is een w W zodanig dat wzw. Aangezien M, w ϕ, volgt met de bisimulatietheorema: M, w ϕ Daar w willekeurig gekozen was, volgt: M ϕ. 25

26 Zijn F = W, R en F = W, R modelstructuren. Als er voor elke valuatie V op F een valuatie V op F is zodanig dat er een bisimulatie Z W W tussen de resulterende modellen M = W, R, V en M = W, R, V is die compleet is voor M, dan geldt: Bewijs: Stel dat F ϕ. F ϕ F ϕ Daaruit volgt: voor alle M = W, R, V geldt M ϕ Zij V een willekeurige valuatie op F. Dan volgt uit de aanname dat er een valuatie V op F is zodanig dat er een bisimulatie Z W W tussen de resulterende modellen M = W, R, V en M = W, R, V is die compleet is voor M. Aangezien M ϕ, volgt M ϕ Daar V (en dus M ) willekeurig gekozen was, volgt: F ϕ 26

27 Niet-karakteriseerbaarheid Goldblatt-Thomason-Theorema Als een frame eigenschap E in de taal van de predicatenlogica kan worden uitgedrukt, dan is deze eigenschap E modaal definieerbaar desda als E gesloten is onder gegenereerde subframes; als E gesloten is onder disjoint unions; als E gesloten is onder p-morfismen; als het complement van E gesloten is onder ultrafilter extensions. 27

28 Niet-karakteriseerbaarheid De relatie R Zij R W W een bereikbaarheidsrelatie. R = {< w, v >: er zijn u 1,..., u n zodanig dat wru 1 R... Ru n Rv} Voorbeeld: v t w u R = {< w, w >, < w, v >, < v, v >, < v, t >, < t, t >, < u, w >, < u, t >} R = {< w, w >, < w, v >, < w, t >, < v, v >, < v, t >, < t, t >, < u, w >, < u, v >, < u, t >} 28

29 Niet-karakteriseerbaarheid Gegenereerde subframes Zij F = W, R een modelstructuur en zij w W een wereld. Het w-gegenereerde subframe van F is de modelstructuur F w = W w, R w, waarbij Ww = {v W : v = w of wr v} en Rw = R (W w W w ) = {< v, w > R : v R w en w R w }. Voorbeeld: v t v t w u w 29

30 Niet-karakteriseerbaarheid Gegenereerde subframes Zij F = W, R een modelstructuur, w W een wereld, F w = W w, R w het w-gegenereerde subframe van F en M w = W w, R w, V w een model op F w. Dan is er een model M = W, R, V op F zodanig dat er een bisimulatie Z W W w tussen M en M w is die compleet is voor M w. Bewijs: Definieer V(v) = V w (v) voor alle v W w. Z = {< v, v >: v W w } W W w is een bisimulatie tussen M en M w die compleet is voor M w. 30

31 Niet-karakteriseerbaarheid Gegenereerde subframes Zij F = W, R een modelstructuur, w W een wereld en F w = W w, R w het w-gegenereerde subframe van F. Dan geldt voor alle formules ϕ L m F ϕ F w ϕ Hoe kan je met behulp van gegenereerde subframes laten zien dat een frame eigenschap niet modaal definieerbaar is? 31

32 Niet-karakteriseerbaarheid Gegenereerde subframes Hoe kan je met behulp van gegenereerde subframes laten zien dat een frame eigenschap niet modaal definieerbaar is? Je geeft een modelstructuur F = W, R welke de gewenste eigenschap heeft en een wereld w W zodanig dat het w-gegenereerde subframe F w van F die eigenschap niet heeft. Stel dat de klasse C van alle modelstructuren die de gewenste eigenschap hebben modaal definieerbaar was. Dan is er een karakteriserende formule ϕ zodanig dat voor alle modelstructuren F geldt: F ϕ desda F C Als F C, dan geldt: F ϕ. Daaruit volgt: Fw ϕ Als F C, dan kan ϕ geen karakteriserende formule voor de klasse C zijn. 32

33 Niet-karakteriseerbaarheid Gegenereerde subframes Voorbeeld: F F w v t v t w u w 33

34 Niet-karakteriseerbaarheid Disjoint unions Zijn F 1 = W 1, R 1 en F 2 = W 2, R 2 modelstructuren. De disjoint union van F 1 en F 2 is de modelstructuur F 1 F 2 = W, R, waarbij W = {(w, i) : w Wi, i {1, 2}} R = {< (w, i), (v, i) >: wri v, i {1, 2}} Voorbeeld: F 1 F 2 F 1 F 2 v w w t (v, 1) (w, 1) (w, 2) (t, 2) 34

35 Niet-karakteriseerbaarheid Disjoint unions Zijn F 1 = W 1, R 1 en F 2 = W 2, R 2 modelstructuren. Zij F 1 F 2 = W, R de disjoint union van F 1 en F 2. F 1 F 2 ϕ F 1 ϕ en F 2 ϕ Bewijs: Zij V 1 een valuatie op F 1. Definieer V(w, 1) = V 1 (w) voor alle w W 1. Z = {< (w, 1), w >: w W 1 } W W 1 is een bisimulatie tussen M en M 1 die compleet is voor M 1. Analoog voor F 2. Stel F 1 F 2 ϕ. Dan is er een valuatie V op F 1 F 2 en een wereld (w, i) W zodanig dat M, (w, i) ϕ. Definieer V i (w) = V(w, i) voor alle w W i Z = {< (w, i), w >: w W i } W W i is een bisimulatie tussen M en M i. Aangezien M, (w, i) ϕ volgt M i, w ϕ, en dus F i ϕ 35

36 Niet-karakteriseerbaarheid Disjoint unions Hoe kan je met behulp van disjoint unions laten zien dat een frame eigenschap niet modaal definieerbaar is? Je geeft een modelstructuur F = W, R welke de gewenste eigenschap heeft en zodanig is dat de disjoint union F F die eigenschap niet heeft. Stel dat de klasse C van alle modelstructuren die de gewenste eigenschap hebben modaal definieerbaar was. Dan is er een karakteriserende formule ϕ zodanig dat voor alle modelstructuren F geldt: F ϕ desda F C Als F C, dan geldt: F ϕ. Daaruit volgt: F F ϕ Als F F C, dan kan ϕ geen karakteriserende formule voor de klasse C zijn. 36

37 Niet-karakteriseerbaarheid P-morfisme Zijn F = W, R en F = W, R modelstructuren. Een p-morfisme tussen F en F is een functie f : W W zodanig dat f is een surjectie; als wrv, dan f(w)r f(v); v R w f f v w R p als f(w)r v, dan is er een v W met wrv en f(v) = v. v R w f f v w R p 37

38 Niet-karakteriseerbaarheid P-morfismen Voorbeeld: a f(n) = a voor alle n N 38

39 Niet-karakteriseerbaarheid P-morfismen Zijn F = W, R en F = W, R modelstructuren. Zij f : W W een p-morfisme tussen F en F. Zij M = W, R, V en model op F. Dan is eer model M = W, R, V op F zodanig dat er een bisimulatie is tussen M en M die compleet is voor M. Bewijs: Definieer V(w) = V (f(w)) voor alle w W. Z = {< w, f(w) >: w W is een bisimulatie tussen M en M die compleet is voor M. 39

40 Niet-karakteriseerbaarheid P-morfismen Zijn F = W, R en F = W, R modelstructuren. Zij f : W W een p-morfisme tussen F en F. Dan geldt voor alle formules ϕ L m : F ϕ F ϕ 40

41 Niet-karakteriseerbaarheid P-morfismen Hoe kan je met behulp van p-morfismen laten zien dat een frame eigenschap niet modaal definieerbaar is? Je geeft een modelstructuur F = W, R welke de gewenste eigenschap heeft en een modelstructuur F = W, R welke die eigenschap niet heeft zodanig dat er een p-morfisme f : W W tussen F en F is. Stel dat de klasse C van alle modelstructuren die de gewenste eigenschap hebben modaal definieerbaar was. Dan is er een karakteriserende formule ϕ zodanig dat voor alle modelstructuren F geldt: F ϕ desda F C Als F C, dan geldt: F ϕ. Daaruit volgt: F ϕ Als F C, dan kan ϕ geen karakteriserende formule voor de klasse C zijn. 41

42 Niet-karakteriseerbaarheid P-morfismen Voorbeeld: a f(n) = a voor alle n N 42

Logica voor AI. Responsiecollege. Antje Rumberg. 12 december Kripke Semantiek. Geldigheid. De bereikbaarheidsrelatie

Logica voor AI. Responsiecollege. Antje Rumberg. 12 december Kripke Semantiek. Geldigheid. De bereikbaarheidsrelatie Logica voor AI Responsiecollege Antje Rumberg Antje.Rumberg@phil.uu.nl 12 december 2012 1 De taal L m van de modale propositielogica ϕ ::= p ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ Blokje en ruitje ϕ: het is noodzakelijk

Nadere informatie

Logica voor AI. Bewijstheorie en natuurlijke deductie. Antje Rumberg. 28 november Kripke Semantiek.

Logica voor AI. Bewijstheorie en natuurlijke deductie. Antje Rumberg. 28 november Kripke Semantiek. Logica voor AI en natuurlijke deductie Antje Rumberg AntjeRumberg@philuunl 28 november 2012 1 De taal L m van de modale propositielogica ::= p Blokje en ruitje : het is noodzakelijk dat : het is mogelijk

Nadere informatie

Logica voor AI. Verschillende modale systemen en correctheid. Antje Rumberg. 30 november 2012.

Logica voor AI. Verschillende modale systemen en correctheid. Antje Rumberg. 30 november 2012. Logica voor AI en correctheid Antje Rumberg AntjeRumberg@philuunl 30 november 2012 1 De minimale normale modale logica K Axioma s alle tautologieën van de propositielogica ( ψ) ( ψ) (K-axioma) (Def ) Afleidingsregels

Nadere informatie

Logica voor AI. Inleiding modale logica en Kripke semantiek. Antje Rumberg. 14 november 2012

Logica voor AI. Inleiding modale logica en Kripke semantiek. Antje Rumberg. 14 november 2012 Logica voor AI Inleiding modale logica en Kripke semantiek Antje Rumberg Antje.Rumberg@phil.uu.nl 14 november 2012 1 Logica voor AI Deel 1: Modale logica semantiek en syntax van verschillende modale logica

Nadere informatie

Logica voor AI. Tijdslogica. Antje Rumberg. 07 december Kripke Semantiek. Tijdslogica. De bereikbaarheidsrelatie

Logica voor AI. Tijdslogica. Antje Rumberg. 07 december Kripke Semantiek. Tijdslogica. De bereikbaarheidsrelatie Logica voor AI Antje Rumberg Antje.Rumberg@phil.uu.nl 07 december 2012 1 De taal L m van de modale propositielogica ϕ ::= p ϕ ϕ ϕ ϕ ϕ Blokje en ruitje ϕ: het is noodzakelijk dat ϕ ϕ: het is mogelijk dat

Nadere informatie

IL-modellen en bisimulaties

IL-modellen en bisimulaties IL-modellen en bisimulaties René de Jonge juli 2004 Samenvatting In dit artikel worden enkele bekende begrippen en stellingen uit de klassieke modale logica geformuleerd voor de uitgebreidere logica IL.

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Logica als een oefening in Formeel Denken

Logica als een oefening in Formeel Denken Logica als een oefening in Formeel Denken Herman Geuvers Institute for Computing and Information Science Radboud Universiteit Nijmegen Wiskunde Dialoog 10 juni, 2015 Inhoud Geschiedenis van de logica Propositielogica

Nadere informatie

Logica voor Informatica

Logica voor Informatica Logica voor Informatica 10 Predikatenlogica Wouter Swierstra University of Utrecht 1 Vorige keer Syntax van predikatenlogica Alfabet Termen Welgevormde formulas (wff) 2 Alfabet van de predikatenlogica

Nadere informatie

Deel I: Modale Logica

Deel I: Modale Logica Deel I: Modale Logica i Contents Inleiding 1 1 Modale logica: basisbegrippen 3 1.1 basisdefinities.................................... 3 1.2 karakteriseerbaarheid................................ 8 1.3

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Samenvatting. TI1306 Redeneren & Logica Review Guide 2014 Door: David Alderliesten. Disclaimer

Samenvatting. TI1306 Redeneren & Logica Review Guide 2014 Door: David Alderliesten. Disclaimer Samenvatting TI1306 Redeneren & Logica Review Guide 2014 Door: David Alderliesten Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst mogelijke

Nadere informatie

Logica voor Informatica. Propositielogica. Normaalvormen en Semantische tableaux. Mehdi Dastani

Logica voor Informatica. Propositielogica. Normaalvormen en Semantische tableaux. Mehdi Dastani Logica voor Informatica Propositielogica Normaalvormen en Semantische tableaux Mehdi Dastani m.m.dastani@uu.nl Intelligent Systems Utrecht University Literals Een literal is een propositieletter, of de

Nadere informatie

b) Niet geldig. Zij π(n)(p) = 1 als n is even, anders π(n)(p) = 0. Schrijf

b) Niet geldig. Zij π(n)(p) = 1 als n is even, anders π(n)(p) = 0. Schrijf opgave 2.1 a) Geldig. Zij n N en π een willekeurige valuatie. Schrijf T = (N, π). Stel, T, n p. Dan bestaat m > n zodat T, m p. Dus voor k > m geldt altijd T, k p. Nu geldt T, n p, want voor alle x > n

Nadere informatie

Logica voor Informatica. Propositielogica. Syntax & Semantiek. Mehdi Dastani Intelligent Systems Utrecht University

Logica voor Informatica. Propositielogica. Syntax & Semantiek. Mehdi Dastani Intelligent Systems Utrecht University Logica voor Informatica Propositielogica Syntax & Semantiek Mehdi Dastani m.m.dastani@uu.nl Intelligent Systems Utrecht University Wat is Logica? Afleiden van conclusies uit aannames Jan Sara Petra Schuldig

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Mededelingen. TI1300: Redeneren en Logica. Waarheidstafels. Waarheidsfunctionele Connectieven

Mededelingen. TI1300: Redeneren en Logica. Waarheidstafels. Waarheidsfunctionele Connectieven Mededelingen TI1300: Redeneren en Logica College 4: Waarheidstafels, Redeneringen, Syntaxis van PROP Tomas Klos Algoritmiek Groep Voor de Fibonacci getallen geldt f 0 = f 1 = 1 (niet 0) Practicum 1 Practicum

Nadere informatie

Tentamen Grondslagen van de Wiskunde A, met uitwerkingen

Tentamen Grondslagen van de Wiskunde A, met uitwerkingen Tentamen Grondslagen van de Wiskunde A, met uitwerkingen 8 december 2015, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Tegenvoorbeeld. TI1300: Redeneren en Logica. De truc van Gauss. Carl Friedrich Gauss, 7 jaar oud (omstreeks 1785)

Tegenvoorbeeld. TI1300: Redeneren en Logica. De truc van Gauss. Carl Friedrich Gauss, 7 jaar oud (omstreeks 1785) Tegenvoorbeeld TI1300: Redeneren en Logica College 3: Bewijstechnieken & Propositielogica Tomas Klos Definitie (Tegenvoorbeeld) Een situatie waarin alle premissen waar zijn, maar de conclusie niet Algoritmiek

Nadere informatie

Mededelingen. TI1300: Redeneren en Logica. Metavariabelen Logica, p Minder connectieven nodig

Mededelingen. TI1300: Redeneren en Logica. Metavariabelen Logica, p Minder connectieven nodig Mededelingen TI1300: Redeneren en Logica College 5: Semantiek van de Propositielogica Tomas Klos Algoritmiek Groep Tip: Als ik je vraag de recursieve definitie van een functie over PROP op te schrijven,

Nadere informatie

Inleiding Wiskundige Logica

Inleiding Wiskundige Logica Inleiding Wiskundige Logica Yde Venema 2017/2018 c YV 2018 Institute for Logic, Language and Computation, University of Amsterdam, Science Park 904, NL 1098XH Amsterdam E-mail: yvenema@uvanl Voorwoord

Nadere informatie

College WisCKI. Albert Visser. 17 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties.

College WisCKI. Albert Visser. 17 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties. College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 17 oktober, 2012 1 Overview 2 Overview 2 Overview 2 Overview 2 Overview 3 Wat is een equivalentierelatie? Een

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

Z = de verzameling gehele getallen 0 J = het getal dertien

Z = de verzameling gehele getallen 0 J = het getal dertien 33 8 Semantiek 8.1 Structuren en betekenis Structuren Definitie 8.1 Een structuur voor een taal (F, R) is een paar M =(D, I), bestaande uit een niet-lege verzameling D, het domein van de structuur, en

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Redeneren over kennis

Redeneren over kennis Faculteit Wetenschappen Vakgroep Toegepaste Wiskunde en Informatica Voorzitter: Prof. Dr. W. Govaerts Redeneren over kennis met vaagmodale epistemische logica door Sofie De Clercq Begeleidster: Marjon

Nadere informatie

Formeel Denken 2013 Uitwerkingen Tentamen

Formeel Denken 2013 Uitwerkingen Tentamen Formeel Denken 201 Uitwerkingen Tentamen (29/01/1) 1. Benader de betekenis van de volgende Nederlandse zin zo goed mogelijk (6 punten) door een formule van de propositielogica: Het is koud, maar er ligt

Nadere informatie

Parvulae Logicales VI Modale Logica

Parvulae Logicales VI Modale Logica Parvulae Logicales VI Modale Logica Inhoud 1. Inleiding...2 2. Semantiek...6 2.1 Inleiding...6 2.2 Modellen voor modale logica...7 2.3 Geldigheid en ongeldigheid in modale logica...10 3 Modale (afleidings)systemen...14

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Logica voor Informatici najaar 2000 Opgaven en Oplossingen Hoofdstuk 3

Logica voor Informatici najaar 2000 Opgaven en Oplossingen Hoofdstuk 3 Logica voor Informatici najaar 2000 Opgaven en Oplossingen Hoofdstuk 3 3.1 Stel ϕ, ψ α, β γ, en ψ, α, γ χ. Indien nu bovendien bekend wordt dat χ onwaar is, maar ψ en β waar, wat weet u dan over ϕ? oplossing:

Nadere informatie

RAF belangrijk te onthouden

RAF belangrijk te onthouden RAF belangrijk te onthouden Auteur: Daan Pape Hoofdstuk 1 symbool omschrijving lees als negatie (ontkenning) p niet p het is niet zo dat p conjunctie p q p en q disjunctie p q p of q implicatie p q als

Nadere informatie

Relaties en Functies

Relaties en Functies Logica voor Informatica Relaties en Functies Mehdi Dastani m.m.dastani@uu.nl Intelligent Systems Utrecht University Geordende paren, productverzameling, relatie (a, b) geordend paar (a, b) = (c, d) a =

Nadere informatie

Semantiek van predicatenlogica en Tractatus

Semantiek van predicatenlogica en Tractatus Logica en de Linguistic Turn 2012 Semantiek van predicatenlogica en Tractatus Maria Aloni ILLC-University of Amsterdam M.D.Aloni@uva.nl 1/11/12 Plan voor vandaag 1. Predicatenlogica: semantiek 2. Tractatus:

Nadere informatie

Semantiek 1 college 10. Jan Koster

Semantiek 1 college 10. Jan Koster Semantiek 1 college 10 Jan Koster 1 Vandaag Vorige keer: conceptuele structuur en semantische decompositie Vandaag: inleiding in de formele semantiek Gebruikt notaties uit formele logica plus de daar gehanteerde

Nadere informatie

Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren

Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren Overzicht TI1300: Redeneren en Logica College 10: Verzamelingenleer Tomas Klos Algoritmiek Groep Colleges 1 2: Bewijstechnieken Colleges 3 9: Propositielogica Vandaag en morgen: Verzamelingenleer Colleges

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 15 februari 2009 RELATIES & GRAFEN Discrete Structuren Week 2: Relaties en Grafen

Nadere informatie

Formeel Denken 2014 Uitwerkingen Tentamen

Formeel Denken 2014 Uitwerkingen Tentamen Formeel Denken 2014 Uitwerkingen Tentamen (29/01/15) 1. Benader de betekenis van de volgende Nederlandse zin zo goed mogelijk (6 punten) door een formule van de propositielogica: Als het regent word ik

Nadere informatie

Voortgezette Logica, Week 2

Voortgezette Logica, Week 2 Voortgezette Logica, Week 2 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 164, 030-2535575 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Logica voor Informatica

Logica voor Informatica Logica voor Informatica 12 Normaalvormen Wouter Swierstra University of Utrecht 1 Vandaag We hebben gezien dat er verschillende normaalvormen zijn voor de propositionele logica. Maar hoe zit dat met de

Nadere informatie

Wiskundige beweringen en hun bewijzen

Wiskundige beweringen en hun bewijzen Wiskundige beweringen en hun bewijzen Analyse (en feitelijk de gehele wiskunde) gaat over het bewijzen van beweringen (proposities), d.w.z. uitspraken waaraan de karakterisering waar of onwaar toegekend

Nadere informatie

Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie

Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie Kennisrepresentatie & Redeneren Piter Dykstra Instituut voor Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 30 april 2007 INLEIDING Kennisrepresentatie & Redeneren Week1: Introductie

Nadere informatie

Het Logische Alwetendheidprobleem. Alwetendheid binnen de modale logica en Science of Discourse.

Het Logische Alwetendheidprobleem. Alwetendheid binnen de modale logica en Science of Discourse. Het Logische Alwetendheidprobleem. Alwetendheid binnen de modale logica en Science of Discourse. Bachelor Kunstmatige Intelligentie Studiejaar 2015-2016 Student: Abdulmohaimen Amer Studentnummer: 3910873

Nadere informatie

Getallensystemen, verzamelingen en relaties

Getallensystemen, verzamelingen en relaties Hoofdstuk 1 Getallensystemen, verzamelingen en relaties 1.1 Getallensystemen 1.1.1 De natuurlijke getallen N = {0, 1, 2, 3,...} N 0 = {1, 2, 3,...} 1.1.2 De gehele getallen Z = {..., 4, 3, 2, 1, 0, 1,

Nadere informatie

Over Plantinga s argument voor de existentie van een noodzakelijk bestaand individueel ding. G.J.E. Rutten

Over Plantinga s argument voor de existentie van een noodzakelijk bestaand individueel ding. G.J.E. Rutten 1 Over Plantinga s argument voor de existentie van een noodzakelijk bestaand individueel ding G.J.E. Rutten Introductie In dit artikel wil ik het argument van de Amerikaanse filosoof Alvin Plantinga voor

Nadere informatie

Tentamen TI1300 en IN1305-A (Redeneren en) Logica

Tentamen TI1300 en IN1305-A (Redeneren en) Logica TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Tentamen TI1300 en IN1305-A (Redeneren en) Logica 21 Januari 2011, 8.30 11.30 uur LEES DEZE OPMERKINGEN AANDACHTIG DOOR

Nadere informatie

Modelleren en Programmeren voor KI

Modelleren en Programmeren voor KI Modelleren en Programmeren voor KI Practicumopdracht 4: SAT Solver Tomas Klos Het SAT probleem Parvulae Logicales: Propositielogica, Hoofdstuk 6 (Semantiek), p. 62: Het SAT probleem Ik geef je een propositielogische

Nadere informatie

Inleiding Wiskundige Logica

Inleiding Wiskundige Logica Inleiding Wiskundige Logica Yde Venema 2017/2018 c YV 2018 Institute for Logic, Language and Computation, University of Amsterdam, Science Park 904, NL 1098XH Amsterdam E-mail: yvenema@uvanl Voorwoord

Nadere informatie

Logic for Computer Science

Logic for Computer Science Logic for Computer Science 06 Normaalvormen en semantische tableaux Wouter Swierstra University of Utrecht 1 Vorige keer Oneindige verzamelingen 2 Vandaag Wanneer zijn twee formules hetzelfde? Zijn er

Nadere informatie

Semantiek (2IT40) Jos Baeten. HG 7.19 tel.: Hoorcollege 3 (12 april 2007)

Semantiek (2IT40) Jos Baeten.  HG 7.19 tel.: Hoorcollege 3 (12 april 2007) Jos Baeten josb@wintuenl http://wwwwintuenl/~josb/ HG 719 tel: 040 247 5155 Hoorcollege 3 (12 april 2007) Voorbeeld [Bewijstechniek 2 niet altijd succesvol] Executie van commands is deterministisch: c

Nadere informatie

Eerste-orde logica (= Predikaatlogica)

Eerste-orde logica (= Predikaatlogica) Eerste-orde logica (= Predikaatlogica) Onderdeel van het college Logica (2017) Klaas Landsman 1.1 Eerste-orde taal (aanvulling op 2.2 in Moerdijk & van Oosten) De propositielogica is te eenvoudig om bijv.

Nadere informatie

rh265e 0 true. In onze schrijfwijze wordt dat dus: (de bewering) [ P ] is even waar als (de bewering) P = true.

rh265e 0 true. In onze schrijfwijze wordt dat dus: (de bewering) [ P ] is even waar als (de bewering) P = true. rh265e 0 Elementaire Predikatenrekening 0 Inleiding Dit is een samenvatting 0 van de rekenregels voor proposities en predikaten, zoals behandeld in het vak Logica & Verzamelingen. Enige vertrouwdheid met

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015 Je hebt twee uur de tijd voor het oplossen van de vraagstukken. Elk vraagstuk is maximaal 10 punten waard. Begin elke opgave op een nieuw vel papier. µkw uitwerkingen 12 juni 2015 Vraagstuk 1. We kunnen

Nadere informatie

(Isomorfie en) RELATIES

(Isomorfie en) RELATIES Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 15 maart 2009 (Isomorfie en) RELATIES. Paragrafen 10.5,11.1,11.2,11.4,11.5 Discrete

Nadere informatie

Tentamentips. Tomas Klos. 14 december 2010

Tentamentips. Tomas Klos. 14 december 2010 Tentamentips Tomas Klos 14 december 010 Samenvatting In dit document vind je een aantal tentamen tips. Het gaat om fouten die ik op tentamens veel gemaakt zie worden, en die ik je liever niet zie maken.

Nadere informatie

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,

Nadere informatie

Propositielogica. Onderdeel van het college Logica (2017) Klaas Landsman

Propositielogica. Onderdeel van het college Logica (2017) Klaas Landsman Propositielogica Onderdeel van het college Logica (2017) Klaas Landsman They who are acquainted with the present state of the theory of Symbolic Algebra, are aware of the validity of the processes of analysis

Nadere informatie

MasterClass Logica 2019 voor docenten. Logica Nu. Sonja Smets (ILLC, Universiteit van Amsterdam)

MasterClass Logica 2019 voor docenten. Logica Nu. Sonja Smets (ILLC, Universiteit van Amsterdam) MasterClass Logica 2019 voor docenten Logica Nu Sonja Smets (ILLC, Universiteit van Amsterdam) 1 Overzicht Logica in de oude tekstboeken = De studie van het menselijk redeneren Logica Nu De Studie van

Nadere informatie

Basiswiskunde. P.J.I.M. de Paepe Korteweg de Vries Instituut Universiteit van Amsterdam

Basiswiskunde. P.J.I.M. de Paepe Korteweg de Vries Instituut Universiteit van Amsterdam Basiswiskunde P.J.I.M. de Paepe Korteweg de Vries Instituut Universiteit van Amsterdam 22 augustus 2007 Inhoudsopgave 1 Verzamelingen 2 2 Taal van de wiskunde 6 3 Afbeeldingen 11 4 Relaties 15 5 Inductie

Nadere informatie

Elfde college complexiteit. 23 april NP-volledigheid III

Elfde college complexiteit. 23 april NP-volledigheid III college 11 Elfde college complexiteit 23 april 2019 NP-volledigheid III 1 TSP Als voorbeeld bekijken we het Travelling Salesman/person Problem, ofwel het Handelsreizigersprobleem TSP. Hiervoor geldt: TSP

Nadere informatie

Tentamen Grondslagen van de Wiskunde B met uitwerkingen

Tentamen Grondslagen van de Wiskunde B met uitwerkingen Tentamen Grondslagen van de Wiskunde B met uitwerkingen 8 november 2012, 14:00 17:00 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal

Nadere informatie

Recursie en inductie i

Recursie en inductie i Recursie en inductie i deel 2 Negende college inductiebewijzen 1 inductieprincipe Structurele inductie (inductie naar de opbouw) is de bewijstechniek die hoort bij inductief opgebouwde objecten zoals bomen

Nadere informatie

Topologie I - WPO Prof. Dr. E. Colebunders Dr. G. Sonck 24 september 2006

Topologie I - WPO Prof. Dr. E. Colebunders Dr. G. Sonck 24 september 2006 Topologie I - WPO Prof. Dr. E. Colebunders Dr. G. Sonck 24 september 2006 Inhoudsopgave 1 Topologische ruimten 2 2 Metriseerbaarheid en aftelbaarheid 7 3 Convergentie en continuïteit 8 4 Separatie-eigenschappen

Nadere informatie

Automaten. Informatica, UvA. Yde Venema

Automaten. Informatica, UvA. Yde Venema Automaten Informatica, UvA Yde Venema i Inhoud Inleiding 1 1 Formele talen en reguliere expressies 2 1.1 Formele talen.................................... 2 1.2 Reguliere expressies................................

Nadere informatie

Logica voor Informatici najaar 2000 Opgaven en Oplossingen Hoofdstuk 2

Logica voor Informatici najaar 2000 Opgaven en Oplossingen Hoofdstuk 2 Logica voor Informatici najaar 2000 Opgaven en Oplossingen Hoofdstuk 2 2.1 Geef de volgende zinnen weer in propositionele notatie: i Als de bus niet komt, komen de tram en de trein We voeren de volgende

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie 22 maart 2009 ONEINDIGHEID

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie   22 maart 2009 ONEINDIGHEID Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 maart 2009 ONEINDIGHEID. Paragraaf 13.3. De paradox van de oneindigheid ligt slechts

Nadere informatie

Hoofdstuk 4. In dit hoofdstuk wordt een aantal uiteenlopende eigenschappen van de propositielogica

Hoofdstuk 4. In dit hoofdstuk wordt een aantal uiteenlopende eigenschappen van de propositielogica Hoofdstuk 4 Stellingen over de Propositielogica In dit hoofdstuk wordt een aantal uiteenlopende eigenschappen van de propositielogica behandeld. In x4.1 wordt het begrip meta-stelling gentroduceerd en

Nadere informatie

Logica voor Informatica. Propositielogica. Bewijssystemen voor propositielogica. Mehdi Dastani

Logica voor Informatica. Propositielogica. Bewijssystemen voor propositielogica. Mehdi Dastani Logica voor Informatica Propositielogica Bewijssystemen voor propositielogica Mehdi Dastani mmdastani@uunl Intelligent Systems Utrecht University Deductie Tot nu toe voornamelijk semantisch naar logica

Nadere informatie

College WisCKI. Albert Visser. 10 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties.

College WisCKI. Albert Visser. 10 oktober, Department of Philosophy, Faculty Humanities, Utrecht University. Equivalentierelaties. College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 10 oktober, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Wat is een equivalentierelatie? Een equivalentie

Nadere informatie

TI1300: Redeneren en Logica, Practicum 1 Deadline: 17 september 2010, 10:45 uur

TI1300: Redeneren en Logica, Practicum 1 Deadline: 17 september 2010, 10:45 uur TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica TI1300: Redeneren en Logica, Practicum 1 Deadline: 17 september 2010, 10:45 uur Introductie In deze practicumopgave komt

Nadere informatie

Vectorruimten met inproduct

Vectorruimten met inproduct Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij

Nadere informatie

Oefening 2.2. Welke van de volgende beweringen zijn waar?

Oefening 2.2. Welke van de volgende beweringen zijn waar? Oefeningen op hoofdstuk 2 Verzamelingenleer 2.1 Verzamelingen Oefening 2.1. Beschouw A = {1, {1}, {2}}. Welke van de volgende beweringen zijn waar? Beschouw nu A = {1, 2, {2}}, zelfde vraag. a. 1 A c.

Nadere informatie

Hoofdstuk 3. behandeld. In de paragrafen 3.1 en 3.2 worden de noties valuatie, model en

Hoofdstuk 3. behandeld. In de paragrafen 3.1 en 3.2 worden de noties valuatie, model en Hoofdstuk 3 Semantiek van de Propositielogica In dit hoofdstuk wordt de semantiek (betekenistheorie) van de propositielogica behandeld. In de paragrafen 3.1 en 3.2 worden de noties valuatie, model en logisch

Nadere informatie

Wiskunde logica Werkcollege 6

Wiskunde logica Werkcollege 6 Wiskunde logica Werkcollege 6 Jolien Oomens 17 maart 2017 Jolien Oomens Werkcollege 6 17 maart 2017 1 / 7 Opgave 1 Welke van deze formules zijn af te leiden? (a) Γ$ϕ,Γ$ψ Γ$ϕ^ψ (b) Γ$Dxϕ Γ$@xϕ. Jolien Oomens

Nadere informatie

Hoofdstuk 15. In dit hoofdstuk geven we een inleiding op het gebied van het automatisch bewijzen

Hoofdstuk 15. In dit hoofdstuk geven we een inleiding op het gebied van het automatisch bewijzen Resolutie in de Propositielogica Hoofdstuk 15 In dit hoofdstuk geven we een inleiding op het gebied van het automatisch bewijzen van theorema's. Het idee daarbij is dat een computerprogramma nagaat of

Nadere informatie

Tentamen Grondslagen van de Wiskunde B met uitwerkingen

Tentamen Grondslagen van de Wiskunde B met uitwerkingen Tentamen Grondslagen van de Wiskunde B met uitwerkingen 19 januari 2012, 13.30-16.30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal

Nadere informatie

Verzamelingen. Hoofdstuk 5

Verzamelingen. Hoofdstuk 5 Hoofdstuk 5 Verzamelingen In de meest uiteenlopende omstandigheden kan het handig zijn om een stel objecten, elementen, of wat dan ook, samen een naam te geven. Het resultaat noemen we dan een verzameling.

Nadere informatie

Verzamelingenleer. Onderdeel van het college Logica (2017) Klaas Landsman

Verzamelingenleer. Onderdeel van het college Logica (2017) Klaas Landsman Verzamelingenleer Onderdeel van het college Logica (2017) 1.1 Zermelo Fraenkel axioma s Klaas Landsman De moderne wiskunde berust op het volgende stelsel van axioma s, dat in de periode 1900 1925 werd

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:

Nadere informatie

Stelling. SAT is NP-compleet.

Stelling. SAT is NP-compleet. Het bewijs van de stelling van Cook Levin zoals gegeven in het boek van Sipser gebruikt niet-deterministische turing machines. Het is inderdaad mogelijk de klasse NP op een alternatieve wijze te definiëren

Nadere informatie

Equivalentierelaties. Partities. College WisCKI. Albert Visser. Department of Philosophy, Faculty Humanities, Utrecht University.

Equivalentierelaties. Partities. College WisCKI. Albert Visser. Department of Philosophy, Faculty Humanities, Utrecht University. College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 3 oktober, 2012 1 Overview 2 Overview 2 Overview 3 Wat is een equivalentierelatie? 1 De notie equivalentierelatie

Nadere informatie

Logica 1. Joost J. Joosten

Logica 1. Joost J. Joosten Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 jjoosten@phil.uu.nl www.phil.uu.nl/ jjoosten (hier moet een tilde

Nadere informatie

Logica Les 1 Definities en waarheidstabellen. (Deze les sluit aan bij les 1 van de syllabus Logica WD_online)

Logica Les 1 Definities en waarheidstabellen. (Deze les sluit aan bij les 1 van de syllabus Logica WD_online) Logica Les 1 Definities en waarheidstabellen (Deze les sluit aan bij les 1 van de syllabus Logica WD_online) Definities Een propositie is een bewering die waar of onwaar is (er is geen derde mogelijkheid).

Nadere informatie

III.3 Supremum en infimum

III.3 Supremum en infimum III.3 Supremum en infimum Zowel de reële getallen als de rationale getallen vormen geordende lichamen. Deze geordende lichamen zijn echter principieel verschillend. De verzameling R is bijvoorbeeld aanzienlijk

Nadere informatie

4 Beschouw de volgende formuleverzameling S: {"x "y ((Rxy Æ "z (Rxz Æ y = z)), "x "y (Ryx Æ "z (Rzx Æ y = z)),

4 Beschouw de volgende formuleverzameling S: {x y ((Rxy Æ z (Rxz Æ y = z)), x y (Ryx Æ z (Rzx Æ y = z)), T E N T A M E N L O G I C A 1 1 Bepaal met behulp van een waarheidstabel een disjunctieve normaalvorm voor de formule (p (q Ÿ ( r Æ (p Ÿ q)))). Is er een eenvoudiger formule waarmee de gevonden formule

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Eigenschap (Principe van welordening) Elke niet-lege deelverzameling V N bevat een kleinste element.

Eigenschap (Principe van welordening) Elke niet-lege deelverzameling V N bevat een kleinste element. Hoofdstuk 2 De regels van het spel 2.1 De gehele getallen Grof gezegd kunnen we de (elementaire) getaltheorie omschrijven als de wiskunde van de getallen 1, 2, 3, 4,... die we ook de natuurlijke getallen

Nadere informatie

Enkele valkuilen om te vermijden

Enkele valkuilen om te vermijden Enkele valkuilen om te vermijden Dit document is bedoeld om per onderwerp enkele nuttige strategieën voor opgaven te geven. Ook wordt er op een aantal veelgemaakte fouten gewezen. Het is géén volledige

Nadere informatie

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010

RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 RuG-Informatica-cursus Discrete Structuren, versie 2009/2010 Handout 3A Jan Terlouw maandag 22 februari 2010 De eerste paragraaf van deze handout is inhoudelijk een afronding van handout 2B (versie als

Nadere informatie

Collegestof verzamelingenleer. Verzamelingenleer. Inhoud dit deel college. Verzamelingen. Universele en lege verzameling. Verzamelingen en elementen

Collegestof verzamelingenleer. Verzamelingenleer. Inhoud dit deel college. Verzamelingen. Universele en lege verzameling. Verzamelingen en elementen Collegesto verzamelingenleer Verzamelingenleer Pro dr J-J Ch Meyer UU - ICS Gebaseerd op (aantal hoodstukken van) het boek: Set Theory and Related Topics by Seymour Lipschutz Schaum s Outlines, McGraw-Hill

Nadere informatie

Wiskunde. Verzamelingen, functies en relaties. College 2. Donderdag 3 November

Wiskunde. Verzamelingen, functies en relaties. College 2. Donderdag 3 November Wiskunde Verzamelingen, functies en relaties College 2 Donderdag 3 November 1 / 17 Equivalentierelaties Def. Een relatie R heet reflexief als x xrx. R heet transitief als x y z (xry yrz xrz). R heet symmetrisch

Nadere informatie

EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie

EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I MAANDAG 17 JANUARI 2011 1. Theorie Opgave 1. (a) In Voorbeelden 2.1.17 (7) wordt gesteld dat de maximale lineair onafhankelijke deelverzamelingen van

Nadere informatie

Hoofdstuk 1. Afspraken en notaties

Hoofdstuk 1. Afspraken en notaties Hoofdstuk 1 Afspraken en notaties In deze tekst onderzoeken we een eenvoudig dobbelspel: twee spelers hebben een dobbelsteen, gooien deze, en wie het hoogst aantal ogen gooit wint. Er blijken setjes dobbelstenen

Nadere informatie

Intelligente Systemen & Logica. Architectuur. Intelligent Systeem als Logische Theorie. Geschiktheid van Logica

Intelligente Systemen & Logica. Architectuur. Intelligent Systeem als Logische Theorie. Geschiktheid van Logica Intelligente Systemen & Logica Architectuur Intelligent systeem als kennissysteem: kennisrepresentatie automatisch redeneren/inferentie acquisitie van kennis modelleren communicatie (systeem-gebruikersdialoog)

Nadere informatie

Inleiding logica Inleveropgave 3

Inleiding logica Inleveropgave 3 Inleiding logica Inleveropgave 3 Lientje Maas 30 september 2013 Ik (Rijk) heb verbeteringen in rood vermeld. Deze verbeteringen meegenomen zijn dit correcte uitwerkingen van de derde inleveropgaven. 1

Nadere informatie

Topologie I - WPO. Prof. Dr. E. Colebunders

Topologie I - WPO. Prof. Dr. E. Colebunders Topologie I - WPO Prof. Dr. E. Colebunders Academiejaar 2015-2016 Inhoudsopgave 1 Topologische ruimten 2 2 Metriseerbaarheid en aftelbaarheid 7 3 Convergentie en continuïteit 8 4 Separatie-eigenschappen

Nadere informatie

R.P. Thommassen. Whitehead Groepen. Bachelorscriptie, 10 Augustus Scriptiebegeleider: prof.dr. K.P. Hart

R.P. Thommassen. Whitehead Groepen. Bachelorscriptie, 10 Augustus Scriptiebegeleider: prof.dr. K.P. Hart R.P. Thommassen Whitehead Groepen Bachelorscriptie, 10 Augustus 2014 Scriptiebegeleider: prof.dr. K.P. Hart Mathematisch Instituut, Universiteit Leiden Inhoudsopgave 1 Inleiding 3 2 Binnen ZFC 6 2.1 Eigenschappen

Nadere informatie

Bewijzen en Redeneren voor Informatici

Bewijzen en Redeneren voor Informatici Bewijzen en Redeneren voor Informatici Reinoud Berkein 17 januari 2018 Samenvatting Een korte samenvatting van definities uit de cursus. Hoofdstuk 1 Doorsnede: De verzamerling die alle elementen bevat

Nadere informatie