Logica 1. Joost J. Joosten
|
|
|
- Alfred Thys
- 6 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan CS Utrecht Kamer 158, [email protected] jjoosten (hier moet een tilde bij) Logica 1 p.1/7
2 Technieken Week 1: natuurlijke deductie Logica 1 p.2/7
3 Technieken Week 1: natuurlijke deductie Week 2: waarheidstabellen Logica 1 p.2/7
4 Technieken Week 1: natuurlijke deductie Week 2: waarheidstabellen Week 3: inductie Logica 1 p.2/7
5 Inductie Thema/techniek van vorige en deze week: inductie Logica 1 p.3/7
6 Inductie Thema/techniek van vorige en deze week: inductie Natuurlijke getallen zijn inductief gedefinieerd Logica 1 p.3/7
7 Inductie Thema/techniek van vorige en deze week: inductie Natuurlijke getallen zijn inductief gedefinieerd Een inductieve definitie heeft altijd twee componenten Logica 1 p.3/7
8 Inductie Thema/techniek van vorige en deze week: inductie Natuurlijke getallen zijn inductief gedefinieerd Een inductieve definitie heeft altijd twee componenten Basis Logica 1 p.3/7
9 Inductie Thema/techniek van vorige en deze week: inductie Natuurlijke getallen zijn inductief gedefinieerd Een inductieve definitie heeft altijd twee componenten Basis Inductiestap Logica 1 p.3/7
10 Inductie Thema/techniek van vorige en deze week: inductie Natuurlijke getallen zijn inductief gedefinieerd Een inductieve definitie heeft altijd twee componenten Basis Inductiestap Voorbeeld: formules Logica 1 p.3/7
11 Inductie Thema/techniek van vorige en deze week: inductie Natuurlijke getallen zijn inductief gedefinieerd Een inductieve definitie heeft altijd twee componenten Basis Inductiestap Voorbeeld: formules Voorbeeld: bewijzen Logica 1 p.3/7
12 Inductie Thema/techniek van vorige en deze week: inductie Natuurlijke getallen zijn inductief gedefinieerd Een inductieve definitie heeft altijd twee componenten Basis Inductiestap Voorbeeld: formules Voorbeeld: bewijzen Makkelijkste voorbeeld: Logica 1 p.3/7
13 Inductie Thema/techniek van vorige en deze week: inductie Natuurlijke getallen zijn inductief gedefinieerd Een inductieve definitie heeft altijd twee componenten Basis Inductiestap Voorbeeld: formules Voorbeeld: bewijzen Makkelijkste voorbeeld: natuurlijke getallen Logica 1 p.3/7
14 Getallen Logica 1 p.4/7
15 Getallen Wees niet bang voor wiskunde Logica 1 p.4/7
16 Getallen Wees niet bang voor wiskunde Voorbeeld: Gauss Logica 1 p.4/7
17 Getallen Wees niet bang voor wiskunde Voorbeeld: Gauss Voorbeeld: Torens van Hanoi Logica 1 p.4/7
18 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Logica 1 p.5/7
19 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Voorbeeld: formule inductie Logica 1 p.5/7
20 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Voorbeeld: formule inductie Als alle atomaire formules eigenschap P hebben Logica 1 p.5/7
21 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Voorbeeld: formule inductie Als alle atomaire formules eigenschap P hebben Als P behouden blijft onder het samenstellen met connectieven Logica 1 p.5/7
22 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Voorbeeld: formule inductie Als alle atomaire formules eigenschap P hebben Als P behouden blijft onder het samenstellen met connectieven Dan hebben alle formules eigenschap P. Logica 1 p.5/7
23 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Voorbeeld: formule inductie Als alle atomaire formules eigenschap P hebben Als P behouden blijft onder het samenstellen met connectieven Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Dan hebben alle formules eigenschap P. Logica 1 p.5/7
24 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Voorbeeld: formule inductie Als alle atomaire formules eigenschap P hebben Als P behouden blijft onder het samenstellen met connectieven Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Dan hebben alle formules eigenschap P. Logica 1 p.5/7
25 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Voorbeeld: formule inductie Als alle atomaire formules eigenschap P hebben Als P behouden blijft onder het samenstellen met connectieven Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Dan hebben alle formules eigenschap P. Logica 1 p.5/7
26 Inductieprincipes Slogan: iedere inductief gedefinieerde verzameling heeft zijn eigen inductie principe. Voorbeeld: formule inductie Als alle atomaire formules eigenschap P hebben Als P behouden blijft onder het samenstellen met connectieven Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Als P(ϕ) en P(ψ), dan P((ϕ ψ)) Als P(ψ), dan P( ψ) Dan hebben alle formules eigenschap P. Logica 1 p.5/7
27 Inductieprincipes We kunnen nu de indrukwekkende stelling bewijzen dat elke formule een even aantal haakjes heeft. Logica 1 p.6/7
28 Inductie met Deductie Combinatie van de twee technieken: Logica 1 p.7/7
29 Inductie met Deductie Combinatie van de twee technieken: Voor alle natuurlijke getallen n geldt: (A (B 0...B n ) ((A B 0 )... (A B n )) Logica 1 p.7/7
Logica 1. Joost J. Joosten
Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 [email protected] www.phil.uu.nl/ jjoosten (hier moet een tilde
Logica 1. Joost J. Joosten
Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 [email protected] www.phil.uu.nl/ jjoosten (hier moet een tilde
Logica 1. Joost J. Joosten
Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 [email protected] www.phil.uu.nl/ jjoosten (hier moet een tilde
Voortgezette Logica, Week 2
Voortgezette Logica, Week 2 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 164, 030-2535575 [email protected] www.phil.uu.nl/ jjoosten (hier
Logica 1. Joost J. Joosten
Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 [email protected] www.phil.uu.nl/ jjoosten (hier moet een tilde
Logica 1. Joost J. Joosten
Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 [email protected] www.phil.uu.nl/ jjoosten (hier moet een tilde
Mededelingen. TI1300: Redeneren en Logica. Waarheidstafels. Waarheidsfunctionele Connectieven
Mededelingen TI1300: Redeneren en Logica College 4: Waarheidstafels, Redeneringen, Syntaxis van PROP Tomas Klos Algoritmiek Groep Voor de Fibonacci getallen geldt f 0 = f 1 = 1 (niet 0) Practicum 1 Practicum
Recursie en inductie i
Recursie en inductie i deel 2 Negende college inductiebewijzen 1 inductieprincipe Structurele inductie (inductie naar de opbouw) is de bewijstechniek die hoort bij inductief opgebouwde objecten zoals bomen
Tegenvoorbeeld. TI1300: Redeneren en Logica. De truc van Gauss. Carl Friedrich Gauss, 7 jaar oud (omstreeks 1785)
Tegenvoorbeeld TI1300: Redeneren en Logica College 3: Bewijstechnieken & Propositielogica Tomas Klos Definitie (Tegenvoorbeeld) Een situatie waarin alle premissen waar zijn, maar de conclusie niet Algoritmiek
Logica 1. Joost J. Joosten
Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 [email protected] www.phil.uu.nl/ jjoosten (hier moet een tilde
Logica 1. Joost J. Joosten
Logica 1 Joost J. Joosten Universiteit Utrecht (sub)faculteit der Wijsbegeerte Heidelberglaan 8 3584 CS Utrecht Kamer 158, 030-2535579 [email protected] www.phil.uu.nl/ jjoosten (hier moet een tilde
Inleiding Wiskundige Logica
Inleiding Wiskundige Logica Yde Venema 2017/2018 c YV 2018 Institute for Logic, Language and Computation, University of Amsterdam, Science Park 904, NL 1098XH Amsterdam E-mail: yvenema@uvanl Voorwoord
Logica voor Informatici najaar 2000 Opgaven en Oplossingen Hoofdstuk 2
Logica voor Informatici najaar 2000 Opgaven en Oplossingen Hoofdstuk 2 2.1 Geef de volgende zinnen weer in propositionele notatie: i Als de bus niet komt, komen de tram en de trein We voeren de volgende
Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen.
Hoofdstuk 7 Volledige inductie Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen we het volgende: (i) 0 V (ii) k N k V k + 1 V Dan is V = N. Men ziet dit als
Tentamen TI1300 en IN1305-A (Redeneren en) Logica
TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Tentamen TI1300 en IN1305-A (Redeneren en) Logica 21 Januari 2011, 8.30 11.30 uur LEES DEZE OPMERKINGEN AANDACHTIG DOOR
Logica voor Informatica
Logica voor Informatica 10 Predikatenlogica Wouter Swierstra University of Utrecht 1 Vorige keer Syntax van predikatenlogica Alfabet Termen Welgevormde formulas (wff) 2 Alfabet van de predikatenlogica
4 Beschouw de volgende formuleverzameling S: {"x "y ((Rxy Æ "z (Rxz Æ y = z)), "x "y (Ryx Æ "z (Rzx Æ y = z)),
T E N T A M E N L O G I C A 1 1 Bepaal met behulp van een waarheidstabel een disjunctieve normaalvorm voor de formule (p (q Ÿ ( r Æ (p Ÿ q)))). Is er een eenvoudiger formule waarmee de gevonden formule
Logic for Computer Science
Logic for Computer Science 06 Normaalvormen en semantische tableaux Wouter Swierstra University of Utrecht 1 Vorige keer Oneindige verzamelingen 2 Vandaag Wanneer zijn twee formules hetzelfde? Zijn er
Eigenschap (Principe van welordening) Elke niet-lege deelverzameling V N bevat een kleinste element.
Hoofdstuk 2 De regels van het spel 2.1 De gehele getallen Grof gezegd kunnen we de (elementaire) getaltheorie omschrijven als de wiskunde van de getallen 1, 2, 3, 4,... die we ook de natuurlijke getallen
Logica voor Informatica. Propositielogica. Syntax & Semantiek. Mehdi Dastani Intelligent Systems Utrecht University
Logica voor Informatica Propositielogica Syntax & Semantiek Mehdi Dastani [email protected] Intelligent Systems Utrecht University Wat is Logica? Afleiden van conclusies uit aannames Jan Sara Petra Schuldig
Inleiding logica Inleveropgave 3
Inleiding logica Inleveropgave 3 Lientje Maas 30 september 2013 Ik (Rijk) heb verbeteringen in rood vermeld. Deze verbeteringen meegenomen zijn dit correcte uitwerkingen van de derde inleveropgaven. 1
Formeel Denken 2014 Uitwerkingen Tentamen
Formeel Denken 2014 Uitwerkingen Tentamen (29/01/15) 1. Benader de betekenis van de volgende Nederlandse zin zo goed mogelijk (6 punten) door een formule van de propositielogica: Als het regent word ik
FP-theorie. 2IA50, Deel B. Inductieve definities 1/19. / department of mathematics and computer science
FP-theorie 2IA50, Deel B Inductieve definities 1/19 Inductieve definitie Definitie IL α, (Cons-)Lijsten over α Zij α een gegeven verzameling. De verzameling IL α van eindige (cons-)lijsten over α is de
Logica voor AI. Bisimulatie en niet-karakteriseerbaarheid. Antje Rumberg. 21 november Correspondentie.
Logica voor AI en niet-karakteriseerbaarheid Antje Rumberg [email protected] 21 november 2012 1 Kripke Semantiek De taal L m van de modale propositielogica ϕ ::= p ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ Blokje en
Logica. Oefeningen op hoofdstuk Propositielogica
Oefeningen op hoofdstuk 1 Logica 1.1 Propositielogica Oefening 1.1. Stel dat f en g functies zijn waarvoor f(x)dx = g(x)+c niet waar is. Als Elio Di Rupo paarse sokken heeft, bepaal dan de waarheidswaarde
Parvulae Logicales INDUCTIE Extra materiaal bij het college Logica voor CKI 10/11. Albert Visser & Piet Lemmens & Vincent van Oostrom
Parvulae Logicales INDUCTIE Extra materiaal bij het college Logica voor CKI 10/11 Albert Visser & Piet Lemmens & Vincent van Oostrom 15 september 2010 Inhoudsopgave 1 Inleiding 2 2 Inductieve Definities
Samenvatting. TI1306 Redeneren & Logica Review Guide 2014 Door: David Alderliesten. Disclaimer
Samenvatting TI1306 Redeneren & Logica Review Guide 2014 Door: David Alderliesten Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst mogelijke
Tentamen TI1300 en IN1305-A (Redeneren en) Logica
TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Tentamen TI1300 en IN1305-A (Redeneren en) Logica 5 november 2010, 9.00 12.00 uur LEES DEZE OPMERKINGEN AANDACHTIG DOOR
Formeel Denken 2013 Uitwerkingen Tentamen
Formeel Denken 201 Uitwerkingen Tentamen (29/01/1) 1. Benader de betekenis van de volgende Nederlandse zin zo goed mogelijk (6 punten) door een formule van de propositielogica: Het is koud, maar er ligt
Logica voor AI. Inleiding modale logica en Kripke semantiek. Antje Rumberg. 14 november 2012
Logica voor AI Inleiding modale logica en Kripke semantiek Antje Rumberg [email protected] 14 november 2012 1 Logica voor AI Deel 1: Modale logica semantiek en syntax van verschillende modale logica
Tentamen IN1305-I Fundamentele Informatica 1, deel I: Logica
TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica Tentamen IN1305-I Fundamentele Informatica 1, deel I: Logica 27 oktober 2008, 9.00 12.00 uur Dit tentamen bestaat uit 5
Logica voor Informatica. Propositielogica. Normaalvormen en Semantische tableaux. Mehdi Dastani
Logica voor Informatica Propositielogica Normaalvormen en Semantische tableaux Mehdi Dastani [email protected] Intelligent Systems Utrecht University Literals Een literal is een propositieletter, of de
Inhoud leereenheid 1. Inleiding. Introductie 13. Leerkern 13. 1.1 Wat is logica? 13 1.2 Logica en informatica 13
Inhoud leereenheid 1 Inleiding Introductie 13 Leerkern 13 1.1 Wat is logica? 13 1.2 Logica en informatica 13 12 Leereenheid 1 Inleiding I N T R O D U C T I E Studeeraanwijzing Deze leereenheid is een leesleereenheid.
Getallensystemen, verzamelingen en relaties
Hoofdstuk 1 Getallensystemen, verzamelingen en relaties 1.1 Getallensystemen 1.1.1 De natuurlijke getallen N = {0, 1, 2, 3,...} N 0 = {1, 2, 3,...} 1.1.2 De gehele getallen Z = {..., 4, 3, 2, 1, 0, 1,
Logica voor AI. Responsiecollege. Antje Rumberg. 12 december Kripke Semantiek. Geldigheid. De bereikbaarheidsrelatie
Logica voor AI Responsiecollege Antje Rumberg [email protected] 12 december 2012 1 De taal L m van de modale propositielogica ϕ ::= p ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ Blokje en ruitje ϕ: het is noodzakelijk
Examen G0U13 - Bewijzen en Redeneren,
Examen G0U13 - Bewijzen en Redeneren, 2010-2011 bachelor in de Wisunde, bachelor in de Fysica, bachelor in de Economische Wetenschappen en bachelor in de Wijsbegeerte Vrijdag 4 februari 2011, 8u30 Naam:
Inleiding Wiskundige Logica
Inleiding Wiskundige Logica Yde Venema 2017/2018 c YV 2018 Institute for Logic, Language and Computation, University of Amsterdam, Science Park 904, NL 1098XH Amsterdam E-mail: yvenema@uvanl Voorwoord
Inleiding Logica voor CKI
Inleiding Logica voor CKI Albert Visser Philosophy, Faculty Humanities, Utrecht University 17 oktober, 2013 1 Overview 2 Overview 2 Overview 2 Overview 3 Signatuur Een signatuur Σ is een rijtje Pred, Con,
1 Recurrente betrekkingen
WIS1 1 1 Recurrente betrekkingen 1.1 De torens van Hanoi De torens van Hanoi Edouard Lucas, 1884: Gegeven 3 pinnen en 64 schijven van verschillende grootte. Startsituatie: 64 op linkerpin, geordend naar
Talen & Automaten. Wim Hesselink Piter Dykstra Opleidingsinstituut Informatica en Cognitie 9 mei 2008
Talen & Automaten Wim Hesselink Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.cs.rug.nl/~wim 9 mei 2008 Talen & automaten Week 1: Inleiding Dit college Talen Automaten Berekenbaarheid Weekoverzicht
Eerste-orde logica (= Predikaatlogica)
Eerste-orde logica (= Predikaatlogica) Onderdeel van het college Logica (2017) Klaas Landsman 1.1 Eerste-orde taal (aanvulling op 2.2 in Moerdijk & van Oosten) De propositielogica is te eenvoudig om bijv.
Semantiek van predicatenlogica en Tractatus
Logica en de Linguistic Turn 2012 Semantiek van predicatenlogica en Tractatus Maria Aloni ILLC-University of Amsterdam [email protected] 1/11/12 Plan voor vandaag 1. Predicatenlogica: semantiek 2. Tractatus:
Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07
Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde vrijdag 31 januari 2014, 8:30 12:30 Auditorium L.00.07 Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.
Basiswiskunde. P.J.I.M. de Paepe Korteweg de Vries Instituut Universiteit van Amsterdam
Basiswiskunde P.J.I.M. de Paepe Korteweg de Vries Instituut Universiteit van Amsterdam 22 augustus 2007 Inhoudsopgave 1 Verzamelingen 2 2 Taal van de wiskunde 6 3 Afbeeldingen 11 4 Relaties 15 5 Inductie
Propositielogica, waarheid en classificeren
Logica in actie H O O F D S T U K 2 Propositielogica, waarheid en classificeren We hebben al gezien dat voor een logicus het verhevene heel dicht kan liggen bij het alledaagse. Misschien beter gezegd:
Tentamentips. Tomas Klos. 14 december 2010
Tentamentips Tomas Klos 14 december 010 Samenvatting In dit document vind je een aantal tentamen tips. Het gaat om fouten die ik op tentamens veel gemaakt zie worden, en die ik je liever niet zie maken.
Inzien en Bewijzen. Jan van Eijck en Albert Visser. Noordwijkerhout, 4 februari Samenvatting
Inzien en Bewijzen Jan van Eijck en Albert Visser [email protected], [email protected] Noordwijkerhout, 4 februari 2005 Samenvatting In maart 2005 verschijnt bij Amsterdam University Press Inzien en Bewijzen,
Hoofdstuk 15. In dit hoofdstuk geven we een inleiding op het gebied van het automatisch bewijzen
Resolutie in de Propositielogica Hoofdstuk 15 In dit hoofdstuk geven we een inleiding op het gebied van het automatisch bewijzen van theorema's. Het idee daarbij is dat een computerprogramma nagaat of
Combinatoriek groep 1
Combinatoriek groep 1 Recursie Trainingsdag 3, 2 april 2009 Getallenrijen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een directe formule geeft a n in
Enkele valkuilen om te vermijden
Enkele valkuilen om te vermijden Dit document is bedoeld om per onderwerp enkele nuttige strategieën voor opgaven te geven. Ook wordt er op een aantal veelgemaakte fouten gewezen. Het is géén volledige
Recursie en inductie i
Recursie en inductie i deel Achtste college recursie en inductie Geen hoofdstuk in Schaum, maar volledige inductie komt wel aan de orde als bewijstechniek. Ook recursief gedefinieerde functies zijn terug
Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen
Vector-en matrixvergelijkingen (a) Parallellogramconstructie (b) Kop aan staartmethode Figuur: Vectoren, optellen (a) Kop aan staartmethode, optellen (b) Kop aan staart methode, aftrekken Figuur: Het optellen
Mededelingen. TI1300: Redeneren en Logica. Metavariabelen Logica, p Minder connectieven nodig
Mededelingen TI1300: Redeneren en Logica College 5: Semantiek van de Propositielogica Tomas Klos Algoritmiek Groep Tip: Als ik je vraag de recursieve definitie van een functie over PROP op te schrijven,
Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie
Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter [email protected] 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:
Gödels Onvolledigheidsstellingen
Gödels Onvolledigheidsstellingen Jaap van Oosten Department Wiskunde, Universiteit Utrecht Symposium A-eskwadraat, 11 december 2014 De Onvolledigheidsstellingen van Gödel zijn verreweg de beroemdste resultaten
3 De stelling van Kleene
18 3 De stelling van Kleene Definitie 3.1 Een formele taal heet regulier als hij wordt herkend door een deterministische eindige automaat. Talen van de vorm L(r) met r een reguliere expressie noemen we
Predikaatlogica, modellen en programma s
Logica in actie H O O F D S T U K 4 Predikaatlogica, modellen en programma s De taal van de propositielogica is voor veel toepassingen te arm. Dat bleek al in de Klassieke Oudheid, waar logici allerlei
Logica voor AI. Bewijstheorie en natuurlijke deductie. Antje Rumberg. 28 november Kripke Semantiek.
Logica voor AI en natuurlijke deductie Antje Rumberg AntjeRumberg@philuunl 28 november 2012 1 De taal L m van de modale propositielogica ::= p Blokje en ruitje : het is noodzakelijk dat : het is mogelijk
Logica voor Informatica. Propositielogica. Bewijssystemen voor propositielogica. Mehdi Dastani
Logica voor Informatica Propositielogica Bewijssystemen voor propositielogica Mehdi Dastani mmdastani@uunl Intelligent Systems Utrecht University Deductie Tot nu toe voornamelijk semantisch naar logica
Z = de verzameling gehele getallen 0 J = het getal dertien
33 8 Semantiek 8.1 Structuren en betekenis Structuren Definitie 8.1 Een structuur voor een taal (F, R) is een paar M =(D, I), bestaande uit een niet-lege verzameling D, het domein van de structuur, en
Logica voor Informatici najaar 2000 Opgaven en Oplossingen Hoofdstuk 3
Logica voor Informatici najaar 2000 Opgaven en Oplossingen Hoofdstuk 3 3.1 Stel ϕ, ψ α, β γ, en ψ, α, γ χ. Indien nu bovendien bekend wordt dat χ onwaar is, maar ψ en β waar, wat weet u dan over ϕ? oplossing:
Predikaatlogica en informatica
Logica in actie H O O F D S T U K 5 Predikaatlogica en informatica Wanneer is een predikaatlogische formule waar? Om de gedachten te bepalen, beschouwen we nog eens de formule: x (P(x) y (P(y) y > x))
Aanvulling basiscursus wiskunde. A.C.M. Ran
Aanvulling basiscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de basiscursus (Basisboek wiskunde van Jan van de Craats en Rob Bosch) staan. Die
Propositielogica. Leereenheid 4
Leereenheid 4 Propositielogica I N T R O D U C T I E Logica Van oudsher is de logica de leer van het correct redeneren. Nog steeds is het herkennen van correcte en incorrecte redeneringen een belangrijke
Logica voor Informatica
Logica voor Informatica 13 Prolog Wouter Swierstra University of Utrecht 1 Programmeren met Logica Propositielogica is niet geschikt voor programmeren er is nauwlijkst iets interessants uit te drukken.
De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica
De Resolutiemethode (Logica, hoofdstuk 15) Robinson (1965) TI1300 Redeneren en Logica College 7: Resolutie Tomas Klos Algoritmiek Groep De Resolutiemethode De resolutiemethode is een methode waarmee je
Logica in het (V)WO. Barteld Kooi
Logica in het (V)WO Barteld Kooi Wie ben ik? Bijzonder hoogleraar logica en argumentatietheorie Ik geef al meer dan tien jaar colleges logica aan de RuG voor de opleidingen wijsbegeerte, wiskunde, (alfa-)informatica,
Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015
Je hebt twee uur de tijd voor het oplossen van de vraagstukken. Elk vraagstuk is maximaal 10 punten waard. Begin elke opgave op een nieuw vel papier. µkw uitwerkingen 12 juni 2015 Vraagstuk 1. We kunnen
Boolealgebra s. Leereenheid 16
Leereenheid 16 Boolealgebra s I N T R O D U C T I E Als we ons afvragen welk van de twee verzamelingen wiskundig interessanter is: de verzameling natuurlijke getallen of de verzameling {Astrid, Bert, Corrie,
Maak automatisch een geschikte configuratie van een softwaresysteem;
Joost Vennekens [email protected] Technologiecampus De Nayer We zijn geïnteresseerd in het oplossen van combinatorische problemen, zoals bijvoorbeeld: Bereken een lessenrooster die aan een aantal
Oefenopgaven Grondslagen van de Wiskunde A
Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat
Formeel Denken. Herfst 2004
Formeel Denken Herman Geuvers Deels gebaseerd op het herfst 2002 dictaat van Henk Barendregt en Bas Spitters, met dank aan het Discrete Wiskunde dictaat van Wim Gielen Herfst 2004 Contents 1 Propositielogica
Aanvulling aansluitingscursus wiskunde. A.C.M. Ran
Aanvulling aansluitingscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de Aansluitingscursus staan. Die onderwerpen zijn: complexe getallen en volledige
Hoofdstuk 3. behandeld. In de paragrafen 3.1 en 3.2 worden de noties valuatie, model en
Hoofdstuk 3 Semantiek van de Propositielogica In dit hoofdstuk wordt de semantiek (betekenistheorie) van de propositielogica behandeld. In de paragrafen 3.1 en 3.2 worden de noties valuatie, model en logisch
Tentamen Grondslagen van de Wiskunde B met uitwerkingen
Tentamen Grondslagen van de Wiskunde B met uitwerkingen 8 november 2012, 14:00 17:00 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is het totaal
cyclotomische polynomen
Coëfficiënten van cyclotomische polynomen Joris Luijsterburg Studentnummer: 0314137 Maart 2009 Bachelorscriptie Onder begeleiding van Dr. W. Bosma Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en
Getaltheorie I. c = c 1 = 1 c (1)
Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk
Verzamelingen. Hoofdstuk 5
Hoofdstuk 5 Verzamelingen In de meest uiteenlopende omstandigheden kan het handig zijn om een stel objecten, elementen, of wat dan ook, samen een naam te geven. Het resultaat noemen we dan een verzameling.
Law and Order in Algorithmics
Law and Order in Algorithmics Maarten Fokkinga Vakgroep SETI, fac INF, Universiteit Twente Versie van May 25, 1993 Algoritmiek (engels: algorithmics) is de theorie en praktijk van het algebraïsch redeneren
De vragen van vandaag. Hoeveel elementen? Hoeveel provincies? Hoeveel natuurlijke getallen? Non impeditus ab ulla scientia
De vragen van vandaag Hoeveel elementen? Non impeditus ab ulla scientia K. P. Hart Faculteit EWI TU Delft Hoeveel provincies heeft Nederland? Hoeveel natuurlijke getallen zijn er? Hoeveel reële getallen
Inleiding Wiskundige Logica
Inleiding Wiskundige Logica Yde Venema 2015/2016 c YV 2016 Institute for Logic, Language and Computation, University of Amsterdam, Science Park 904, NL 1098XH Amsterdam E-mail: yvenema@uvanl Voorwoord
Fundamenten van de Informatica
Fundamenten van de Informatica Luc De Raedt Academiejaar 2006-2007 naar de cursustekst van Karel Dekimpe en Bart Demoen A.1: Talen en Eindige Automaten 1 Deel 1: Inleiding 2 Motivatie Fundamenten van de
Automaten. Informatica, UvA. Yde Venema
Automaten Informatica, UvA Yde Venema i Inhoud Inleiding 1 1 Formele talen en reguliere expressies 2 1.1 Formele talen.................................... 2 1.2 Reguliere expressies................................
Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1
Uitwerking Opgaven Formele talen, grammaticas en automaten Week 1 Bas Westerbaan [email protected] 24 april 2012 1 Opgave 1.1 Een goed en voldoende antwoord is: L 1 = L 2, want L 1 en L 2 zijn alle woorden
Logica Les 1 Definities en waarheidstabellen. (Deze les sluit aan bij les 1 van de syllabus Logica WD_online)
Logica Les 1 Definities en waarheidstabellen (Deze les sluit aan bij les 1 van de syllabus Logica WD_online) Definities Een propositie is een bewering die waar of onwaar is (er is geen derde mogelijkheid).
Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren
Overzicht TI1300: Redeneren en Logica College 10: Verzamelingenleer Tomas Klos Algoritmiek Groep Colleges 1 2: Bewijstechnieken Colleges 3 9: Propositielogica Vandaag en morgen: Verzamelingenleer Colleges
Bewijs door inductie
Bewijs door inductie 1 Bewijs door inductie Vaak bestaat een probleem erin aan te tonen dat een bepaalde eigenschap geldt voor elk natuurlijk getal. Als je wilt weten of iets waar is voor alle natuurlijke
