NAM. Nederlandse Aardolie Maatschappij B.V. BEZORGEN



Vergelijkbare documenten
SAMPLE 11 = + 11 = + + Exploring Combinations of Ten + + = = + + = + = = + = = 11. Step Up. Step Ahead

Summary 124

Aardbevingen en gaswinning. Bernard Dost KNMI

CSRQ Center Rapport over onderwijsondersteunende organisaties: Samenvatting voor onderwijsgevenden

Socio-economic situation of long-term flexworkers

Ir. Herman Dijk Ministry of Transport, Public Works and Water Management

Add the standing fingers to get the tens and multiply the closed fingers to get the units.

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 8 februari 2010

Introductie in flowcharts

Quality of life in persons with profound intellectual and multiple disabilities. Marga Nieuwenhuijse maart 2016

Lichamelijke factoren als voorspeller voor psychisch. en lichamelijk herstel bij anorexia nervosa. Physical factors as predictors of psychological and

de Rol van Persoonlijkheid Eating: the Role of Personality

Over figuur 14 zegt de NAM dat er nog veel onzekerheid bestaat tussen de verschillende berekeningsmodellen voor de compactie en dat dit een

SUPPLEMENTARY FIGURES AND TABLES

Impact en disseminatie. Saskia Verhagen Franka vd Wijdeven

Travel Survey Questionnaires

Datum ME! Betreft Verwachtingenbrief aanvuliing winningsplan Groningenveid 2016

Running head: OPVOEDSTIJL, EXTERNALISEREND PROLEEMGEDRAG EN ZELFBEELD

Assessment of Subsidence based on Production Scenario Basispad Kabinet

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE

Process Mining and audit support within financial services. KPMG IT Advisory 18 June 2014

(1) De hoofdfunctie van ons gezelschap is het aanbieden van onderwijs. (2) Ons gezelschap is er om kunsteducatie te verbeteren

Innovatief monitoren van sportvelden. 31 mei 2018

Karen J. Rosier - Brattinga. Eerste begeleider: dr. Arjan Bos Tweede begeleider: dr. Ellin Simon

GOVERNMENT NOTICE. STAATSKOERANT, 18 AUGUSTUS 2017 No NATIONAL TREASURY. National Treasury/ Nasionale Tesourie NO AUGUST

Invloed van het aantal kinderen op de seksdrive en relatievoorkeur

VOORSTEL TOT STATUTENWIJZIGING UNIQURE NV. Voorgesteld wordt om de artikelen 7.7.1, 8.6.1, en te wijzigen als volgt: Toelichting:

ALGORITMIEK: answers exercise class 7

University of Groningen

Aim of this presentation. Give inside information about our commercial comparison website and our role in the Dutch and Spanish energy market

Designing climate proof urban districts

CHROMA STANDAARDREEKS

Classification of triangles

Safe production of Marine plants and use of Ocean Space. 2de Nederlands-Belgische Zeewierconferentie: DE MULTIFUNCTIONELE NOORDZEE

Summary 136

Quality requirements concerning the packaging of oak lumber of Houthandel Wijers vof ( )

2010 Integrated reporting

Global TV Canada s Pulse 2011

Falende Interpretatie? De Samenhang van Faalangst met Interpretatiebias

De Relatie tussen Werkdruk, Pesten op het Werk, Gezondheidsklachten en Verzuim

COGNITIEVE DISSONANTIE EN ROKERS COGNITIVE DISSONANCE AND SMOKERS

INFORMATIEBIJEENKOMST ESFRI ROADMAP 2016 HANS CHANG (KNAW) EN LEO LE DUC (OCW)

De Samenhang tussen Dagelijkse Stress, Emotionele Intimiteit en Affect bij Partners met een. Vaste Relatie

Het verband tussen alledaagse stress en negatief affect bij mensen met een depressie en de rol van zelfwaardering daarbij

3e Mirror meeting pren April :00 Session T, NVvA Symposium

MyDHL+ Van Non-Corporate naar Corporate

Ben ik Lid van de Groep? Ervaren inclusie als Moderator van de Relatie tussen Procedurele Rechtvaardigheid en Organizational Citizenship Behavior.

HOTCO2: alternatief voor de WKK en ketel in de tuinbouw

Opgave 2 Geef een korte uitleg van elk van de volgende concepten: De Yield-to-Maturity of a coupon bond.

Uitwegen voor de moeilijke situatie van NL (industriële) WKK

De Samenhang tussen Dagelijkse Stress en Depressieve Symptomen en de Mediërende Invloed van Controle en Zelfwaardering

THE WORK HET WERK HARALD BERKHOUT

Nieuwsbrief NRGD. Editie 11 Newsletter NRGD. Edition 11. pagina 1 van 5.

Ouderlijke Controle en Angst bij Kinderen, de Invloed van Psychologische Flexibiliteit

Preschool Kindergarten

The Dutch mortgage market at a cross road? The problematic relationship between supply of and demand for residential mortgages

Researchcentrum voor Onderwijs en Arbeidsmarkt The role of mobility in higher education for future employability

Esther Lee-Varisco Matt Zhang

z x 1 x 2 x 3 x 4 s 1 s 2 s 3 rij rij rij rij

Annual event/meeting with key decision makers and GI-practitioners of Flanders (at different administrative levels)

Verloop bij de Politie: de Rol van Procedurele en Interactionele Rechtvaardigheid en Commitment

De Relatie tussen Voorschoolse Vorming en de Ontwikkeling van. Kinderen

PROJECT INFORMATION Building De Meerlanden Nieuweweg 65 in Hoofddorp

Het Effect van Verschil in Sociale Invloed van Ouders en Vrienden op het Alcoholgebruik van Adolescenten.

Notitie : In de grond gevormde palen met grondverwijdering

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE

The genesis of the game is unclear. Possibly, dominoes originates from China and the stones were brought here by Marco Polo, but this is uncertain.

Verklaring van het beweeggedrag van ouderen door determinanten van. The explanation of the physical activity of elderly by determinants of

Modererende Rol van Seksuele Gedachten. Moderating Role of Sexual Thoughts. C. Iftekaralikhan-Raghubardayal

General info on using shopping carts with Ingenico epayments

Question-Driven Sentence Fusion is a Well-Defined Task. But the Real Issue is: Does it matter?

Europa: Uitdagingen? Prof. Hylke Vandenbussche Departement Economie- International Trade 26 April 2018 Leuven

Pure Bending. A beam satisfying above given requirements are shown below: Why this surface is called neutral will be explained later in the lecture.

Academisch schrijven Inleiding

The first line of the input contains an integer $t \in \mathbb{n}$. This is followed by $t$ lines of text. This text consists of:

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 22 februari 2013

VALUE ENGINEERING: THE H E G A G ME! E

Geslacht, Emotionele Ontrouw en Seksdrive. Gender, Emotional Infidelity and Sex Drive

3.C.1 Communicatieplan CO2-reductiesysteem

Assessing writing through objectively scored tests: a study on validity. Hiske Feenstra Cito, The Netherlands

Four-card problem. Input

Het is geen open boek tentamen. Wel mag gebruik gemaakt worden van een A4- tje met eigen aantekeningen.

Het Effect van Assertive Community Treatment (ACT) op het. Sociaal Functioneren van Langdurig Psychiatrische Patiënten met. een Psychotische Stoornis.

Winningsplan Groningen 2013: advies Staatstoezicht op de Mijnen

FOD VOLKSGEZONDHEID, VEILIGHEID VAN DE VOEDSELKETEN EN LEEFMILIEU 25/2/2016. Biocide CLOSED CIRCUIT

Laatst bijgewerkt op 2 februari 2009 Nederlandse samenvatting door TIER op 25 mei 2011

Effecten van contactgericht spelen en leren op de ouder-kindrelatie bij autisme

University of Groningen. Stormy clouds in seventh heaven Meijer, Judith Linda

Stretching T. Mertens

HON-GT-01 ST1 & 02 Project 1156

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 7 februari 2011

Werk in balans. verloop bij verzorgenden en verpleegkundigen. Work in balance. turnover of nurses and health-care workers.

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE

C - de totale constante kosten. N - de normale bezetting in stuks

INVLOED VAN CHRONISCHE PIJN OP ERVAREN SOCIALE STEUN. De Invloed van Chronische Pijn en de Modererende Invloed van Geslacht op de Ervaren

Report for D-Sheet Piling 9.2

MyDHL+ ProView activeren in MyDHL+

Beïnvloedt Gentle Teaching Vaardigheden van Begeleiders en Companionship en Angst bij Verstandelijk Beperkte Cliënten?

Psychometrische Eigenschappen van de Youth Anxiety Measure for DSM-5 (YAM-5) Psychometric Properties of the Youth Anxiety Measure for DSM-5 (YAM-5)

Transcriptie:

Nederlandse Aardolie Maatschappij B.V. BEZORGEN ISO 14001 Het Ministerie van Economische Zaken De minister, zijne excellentie de heer H.G.J. Kamp t.a.v. de directie Energiemarkt Bezuidenhoutseweg 73 2594 AC Den Haag NAM Schepersmaat 2 Postbus 28000 9400 HH Assen Telefoon: (0592) 369111 Telefax: (0592) 362200 www.nam.nl Uw ref: DGTEM EM/13216580 Onze ref: EP201312212241 Assen, 23 december 2013 Onderwerp: Toelichting op gewijzigd Winningsplan Groningenveld Excellentie, Bij brief met bovengenoemde kenmerk heeft u NAM verzocht de op 29 november jongstleden ingediende wijziging van het winningsplan Groningen op bepaalde punten nader toe te lichten. U heeft aangegeven dat u de toelichting graag uiterlijk 24 december aanstaande ontvangt. Hierbij treft u deze toelichting aan. Vragen U heeft de volgende vragen gesteld. 1. De set nog door NAM door te rekenen productiescenario's dient (ten minste) te bestaan uit: - het NAM 'market demand'-scenario; - het NAM 'market demand' -scenario met insluiting van de vijf clusters rond Loppersum (LRM, OVS, PA U, POS, ZND). Elk bovengenoemd productiescenario dient te zijn doorgerekend met het RTCM of isotach compactiemodel met lage waterinstroming vanuit het noorden, gebruikmakend van veldgeoptimaliseerde compressabiliteit. 2. Voor de diverse scenario's dient bepaald te worden wat het effect is op de bodemdaling, de seismische hazard, het seismisch risico voor het gebied rondom Loppersum en op de totale Gronignenproductie. Zowel voor een periode van 3 jaar, 5 jaar als voor een periode van 10 jaar. De gewenste output voor ieder scenario zijn PGA-hazardmaps bij overschrijdingskansen van 2%, 10% en 50% (zoals figuur 8.6 op bladzijde 125 van de technische bijlage bij het winningsplan) en een grafiek en tabel van de PGA tegen de overschrijdingskans (zoals op bladzijde 126 in de technische bijlage). Bij voorkeur als getallen in digitale vorm. En daarnaast de gebruikelijke output zoals bodemdalingskaarten en het verloop van het compactievolume en de bodemdaling (lijn en mapview) in de tijd. Nederlandse Aardolie Maatschappij B.v. is statutair gevestigd te 's-gravenhage - Handelsregister no. 04008869

3. Ten slotte ontvang ik graag een beschouwing met betrekking tot de risico's en de weging daarvan. In het winningsplan wordt weliswaar verwezen naar de onderliggende rapporten, maar het is behulpzaam ten behoeve van de verdere besluitvorming dat deze nog eens in samenhang worden geduid. Ad 1 en 2 De door u gevraagde gegevens zijn opgenomen in bijlage 1 bij deze brief. Ad 3: De door u gevraagde beschouwing is uiteengezet in een interne notitie, die bij deze brief is gevoegd als bijlage 2. Wij vertrouwen erop u hiermee voldoende te hebben geïnformeerd. Hoogachtend, Nederlandse Aardolie Maatschappij B.V. b. D.~ Bijlagen: 1. Technische bijlage 2. Notitie Risicobenadering seismisch risico Groningen

Bijlage 1

ft NAM Nederlandse Aardolie Maatschappij B.V. Supplementary information to the "Technical Addendum of the Winningsplan Groningen 2013"

Business Approval: Name Ref.lndioator Role Signature Date Version Control: Vers ion Objective Comment Issue Date Document Number: EP201312212261 Supplementary information to the "T echnical Addendum of the Winningsplan Groningen 2013" 2

Confenfs Executive Summary...................................................................... 4 Introduction.................................................... 6 2 Groningen Model Realisations.......................................... 6 3 Add itional Depletion Scenarios......................................... 7 4 Compaction Modelling.............................................. 11 4. 1 Aquifer Model................................................................................... 11 4.2 Compaction Model........................................................... 11 5 Hazard Assessment....................................................... 14 5. 1 Depletion Scena rio 1................................................... 14 5.2 Depletion Scenario 2.......................................................................... 16 6 Discussion and Conclusions.......................................... 18 7 Appendix A - PGA comparison for the additional depletion scenarios.................................. 19 8 Appendix B - Subsidence data for depletion scena rio 1............................................... 21 9 Appendix C - Subsidence data for depletion scenario 2........................................... 23 Supplementary information to the /lt echnical Addendum of the Winningspla n Gron ingen 201 3/1 3

Executive Summary Following the submission of the Groningen Winningsplan 2013 on 29 1h November 2013, a request was made by the Ministry of Economic Affairs to evaluate additional production scenarios. The objective of this supplement is to discuss these additional production scenarios. In addition to the production scenarios described in the ''Technical Addendum to the Winningsplan, Groningen 2013" another!wo scenarios have been evaluated, one to test a different compaction model in combination with a different aquifer model (Depletion Scenario 1) and another one to test a different way of depletion aiming to reduce seismicity in the core area (at least temporarily) by changing the offtake pattern (Depletion Scenario 2): 1. A Market Demand scenario with the isotach compaction model and with a weak aquifer in the north of the field (G2). For the isotach model, a compaction coefficient was taken th at is in line with the compaction coefficient used for the time-decay compaction model. 2. A 30 Bcm/year production scenario with the isotach compaction model and with a weak aquifer in the north of the field (G2l, with 5 production clusters (LRM, OVS, PAU, POS and ZND) around Loppersum closed in. The second scenario is for the initial years (2014-2017) similar to the Alternative Production Philosophy presented in the 'T echnical Addendum to the Winningsplan Groningen 2013" (scenario option A2 in table 3.2 of the Technical Addendum, page 50). In this scenario the same 5 production clusters around Loppersum are closed in until 2017. The maximum PGA (Peak Ground Acceleration) values for the 2 additional scenarios are shown in the table below: I Scenario 1 Period Maximum PGA P 50 PlO P 2 2013-2016 0.02g 0.16g 0.399 2013-2018 0.04g 0.23g 0.52g 2013-2023 0.08g 0.40g 0.79g I Scenario 2 Period Maximum PGA P 50 PlO P 2 2013-2016 0.02g 0.13g 0.33g 2013-2018 0.03g 0.19g 0.439 2013-2023 0.05g 0.30g 0.65g Scenario 1 The fit belween measured subsidence and modelled subsidence is worse for the weak aquifer model (G2) than for the moderate aquifer model (G 1 ). The seismic hazard (expressed as maximum PGA) for the subsurface realisation with a weak aquifer (G2) is higher than the seismic hazard predicted on the basis of the subsurface realisation with a moderate aquifer (Gl). This is related to overprediction of subsidence in particularly the north-western part of the Groningen field (the G2 model shows a paar match with observed subsidence data in particularly that part of the field). Seismic hazard maps indicate that the area with the highest PGA value has moved to the north-west for the the subsurface realisation with a weak aquifer (G2) compared to the subsurface realisation with a Supplementary information to the ''T echnical Addendum of the Winningsplan Groningen 2013" 4

moderate aquifer (Gl). This has moved the area with the highest PGA value away from the area with highest observed seismicity. Scenario 2 The following observations can be made for this scenario: This alternative production scenario temporarily reduces compaction and consequently the seismic hazard in the area with the highest level of seismicity. A pressure differential builds up over the fjeld, leading to an increased pressure differential across faults (NAM's current production philosophy aims at minimising pressure differentials across the fjeld). These higher pressure differentials may increase stresses across faults and may consequently increase seismicity. The combined impact on the seismic hazard of reduced compaction with increased pressure differentials cannot be determined with the current model. A 3D geomechanical model induding faults offers the possibility to assess the combined effect. Such model allowing effective subsurface stress management is under development. Production is stabie at 30 Bcm/yr for 4 years and thereafter rapidly dedines further. Based on these results, we condude that: The weak aquifer model provides a poor match with observed subsidence data, especially in the northwestern part of the field, and consequently overestimates the seismie hazard The close-in of 5 clusters around Loppersum provides a temporary 15-18% reduction of the maximum PGA in the area with the highest level of seismicity, but " The associated increase in pressure differentials across the fjeld may in turn increase seismicity. The combined effect of reduced compaction and increased pressure differentials can only be assessed by means of a 3D geomechanical model. Such model is currently under development B After a short plateau of 4 years the production level rapidly dedines. Supplementary information to the "Technical Addendum of the Winningsplan Groningen 2013" 5

1 Introduction Following the submission of the Groningen Winningsplan 2013 on 1 sf December 201 3, a request was made by the Ministry of Economic Affairs to evaluate additiona l production scenarios. The objective of this supplement is to di scuss these additional production scenarios. 2 Groningen Model Realisations As part of the Groningen fi eld review (201 2), a set of subsurface rea lisations of the Groningen fi eld has been developed, capturing the full subsurface uncertainty ra nge. This set is based on a single structu ra l and static model, while reservoir properties (e.g. transmi ssibility of ma jor faults and the strength of critical aquifers) differ between the different rea li sations in this set. Different combinations of these reservoi r properties led to different qualities of match between the modelled reservoir pressure and water encroachment and the observed reservoir pressure and water encroachment in the field. The recent review of the static and dynamic models of the Groningen field by SGS Horizon focussed on the best matched model, but also addressed whether the set of selected subsurface realisation models (based on the quality of the history match) reflected the full reservoir uncertainty. In their Opinion Letter, SGS Horizon states "The (computer assisted) history matching methodology, which employs Shell proprietary software, is clearly documented and is thorough. This has resulted in a suite of acceptable history matched reservoir realisations." The suite of acceptable history matched models included models with different transmissibility of major faults and the strength of critical aquifers (including the northern aquifers). Two of th ese subsurface realisations of the Groningen field were used in the "Technical Addendum to the Winningsplan Groningen 2013"; these are label led G 1 and G2. The G2 model is the best matched model from the history matching process, based on reservoir pressure and water encroachment from the aquifers in the north of the field. For this reason, it is used as the base case for development planning in the Groningen field. However, compaction modelling based on this reservoir realisation model showed some discrepancies with the measured subsidence at surface in the north of the field and adjacent aquifers. It has been suggested that this might be altributed to a lower actual reservoir porosity in this area than the average modelled porosity. A possible explanation for such a discrepancy could be the limited weil and therefore data density in this peripheral part of the field. Same of the models in the set of realisations showed a better match between the modelled and the observed subsidence. A subsurface realisation with a stronger aquifer north of the field resulted in an improved match between the modelled and the observed subsidence. Note th at this realisation still overpredicts the subsidence in this peripheral area. While the ma tch for reservoir pressure was still acceptable, the modelled water encroachment in the north of the field was slightly larger than seen in the observation wells. This suggests that a further improved match can possibly be achieved with a model based on a lower Iocal porosity. In the coming year, such a model will be constructed and history matched to investigate this hypothesis. In the technical studies in support of the winningsplan, the model with the larger aquifer and closer correspondence between the modelled and observed subsidence in the north of the field was labelled G 1. As compaction plays a crucial role for induced earthquakes, this G 1 model was preferred and used for the seismic hazard assessment. In section 3.6 (pg 49) of the 'Technical Addendum to the Winningsplan Groningen 2013", the labels for these two models have erroneously been switched in the Following sentence: "Two geological models were used, i. e. the best history matched model based on reservoir pressure (G 1) and a model with additional changes in the porosily and aquifer strength in the northwest of the field to improve the match of the modelled subsidence with the measured subsidence data (G2)" Supplementary information to the "Technical Addendum of the Winningsplan Groningen 201 3" 6

3 Additional Depletion Scenarios In addition to the production scenarios described in the "Technical Addendum to the Winningsplan, Groningen 2013" another two scenarios have been evaluated: 1. A Market Demand scenario with the isotach compaction model and with a weak aquifer in the north of the field (G2). For the isotach model, a compaction coefficient was taken that is in line with the compaction coefficient used for the time-decay compaction model. 2. A 30 Bcm/yr production scenario with the isotach compaction model and with a weak aquifer in the north of the field (G2l, with 5 production clusters (LRM, OVS, PAU, POS and ZND) around Loppersum closed in. In the "Technical Addendum to the Winningsplan Groningen 2013", an alternative production philosophy aimed at reducing production in the Loppersum area has been evaluated (labelled A2, see table 3.1 on page 50). In this philosophy, the clusters located at a larger distance from the seismically more active Loppersum area are produced preferentially, while production from the clusters located closer to this area is reduced. Sensitivities associated with the implementation of this philosophy were presented in the "T echnical Addendum to the Winningsplan Groningen 2013" with curtailment to 30 Bcm/year and 40 Bcm/year. wh en this alternative production philosophy is implemented for subsurface realisation model Gl (stronger aquifer) with a curtailment to 30 Bcm/year, the clusters near Loppersum (ZND, OVS, PAU, POS and LRM) are producing only minimal volumes «1 Bcm/year) for the period 2014 to 2017. These 5 clusters are in this scenario effectively closed-in for this four-year period, refer figure 3.1 a and 3.1 b. The production philosophy where 5 clusters are closed -in (as in the additional scenario 2) is for the period 2014 to 2017 very similar to the scenario presented in the "Technical Addendum to the Winningsplan Groningen 2013", based on the G 1 model where the alternative depletion scenario was implemented with curtailment to 30 Bcm/year. The production forecast for the additional scenario with a 30 Bcm/yr curtailment, where 5 clusters in the north of the field are closed-in, is shown in figures 3.2a and figure 3.2b. In this scenario, the production decline starts in 2018, consistent with the start of the ramp up of the northern clusters in case of the alternative production strategy. The Ministry of Economic Affairs also requested to evaluate a Market Demand scenario with the 5 northern clusters closed-in. This is effectively a scenario with 40 Bcm/yr in 2014 (the maximum production level with 5 clusters closed-in) and steadily declining production levels down to 30 Bcm/yr around 2019 and further down in later years (see Figure 3.3a and 3.3b). In this scenario, there is already in the near-term no excess capacity available as all clusters are produced full out. The Norg underground gas storage is in this case the only supplier of Aexible capacity. This facility is currently being expanded to a working volume of 7 Bcm in 2017. The resulting seismic hazard for this scenario was not assessed in detail, but will be between the values for the end-member scenarios 1 and 2. Closing-in of 5 clusters also affecis the recovery from the field. At the current base case abandonment date of 2080, the difference in recovery at this date between production from all clusters and production with 5 clusters closed-in is some 36 Bcm (based on subsurface realisation model G2). Supplementary information to the "T echnical Addendum of the Winningsplan Groningen 2013" 7

Yearly production cluster groups (30 bcm yearly offtake) 18.-----------~----------------------------------------------------- 16 t--.~~----_+--+-r-~--------------------------------------------- 14 t-~----~~~----------~----------------------------------------- 12 t---,,~----_*--------------~------------------------------------- I ~lo r------------+----~~--------~-----------------------------------.l! ~ >." > - ZND, OVS, PA U, POS, LRM - OWG, AMR, SOS, TJM, SIR, SC8, KPO, SLO - ZPD, lus, ZVN, EKR, SZW,SPI 2014 2015 2016 2017 Figure 3. 10 Production foreeosl using Ihe G 1 model for Ihe o/lemolive production philosophy wilh production eurloilmenllo 30 Bem/yeor. The eonlribulions 10 Ihe gos production of Ihe norlhem cluslers (blue), Ihe centrol clusters (red), the southem clusters (green) ond Eemskonool cluster (purple) is shown. The timeoxis hos been splil to highlight the period 2014 10 2017. Yearly production Groningen (30 bcm yearly offtake) ls.-------------~--------------~--~----~--~------~------------ lo ~~... ~------------------------------------ 2S. ZND, OVS, PAU, POS, LRM 10. OWG. AMR, SOS, ljm. BIR, SeB, KPO, SLO Z014 ZOlS 2016 2017 '" n '" n o 0 N N. ZPO, lus, ZVN, EKR, SZW, SPI Figure 3. 1b Production foreeosl using the G 1 model for Ihe oltemolive production phi/osophy with production curloilmenl 10 30 Bem/yeor. The sloeked eonlribulions 10 Ihe gos production of Ihe norlhem cluslers (blue), the eenlrol cluslers (red), Ihe soulhem cluslers (green) ond Eemskonool clusler (purple) IS shown, The time-oxis hos been split 10 highlighllhe period 20 14 102017. Supplementary information to the "T echnical Addendum of the Winningsplan Groningen 2013" 8

Yearly production cluster groups with 5 clusters shut in (30 bcrn yearly offtake) 10 18 ----------- ----------------- 14 --IND, OVS, PAU, POS, LRM (,hu tin) Il +----Y--------~--------------\------------------------------ --OWG, AMR, SDS, TJM, SIR, SCS, KPD, Sla e ~ 10 +------------- I ---b~r_----------~~--------------------------- --IPD, rus, ZVN, EKR, SZW, SP I f > 8 +------------+--------~------------~~~--------------------- - EKl Figure 3.2a Production forecast using the G2 model with the 5 northem clusters c1osed-in with production curtailment to 30 Bcm/year. The contributions to the gas production of the northem clusters {blue}, the central clusters {red}, the southem clusters {green} and Eemskanaal cluster {purple} is shown. The time axis has been split to highlight the period 2014 to 2017. Yearly produetion Groningen with 5 clusters shut in (30 bem yearly offtake) 35 ~-------------r------------------------------------------------------------- 30 ~.. ~,,~~,,~------------------------------------------------------------------------ 25 _ ZNO, OVS, PAU, POS, LRM. OWG, AMR, SOB, TJM, BIR, SCB, KPO, SLO ZPO, TUS, ZVN, EKR, SZW, SPI _ EKL 10 o 2014 20lS 2016 2017 Figure 3.2b Production forecast using the G2 model with the 5 northem clusters c1osed-in with production curtailment to 30 Bcm/year. The stacked contributions to the gas production of the northem clusters {blue; not shown}, the central clusters {red}, the southem clusters {green} and Eemskanaal cluster {purple} is shown. The time-axis hos been split to highlight the period 2014 to 2017. Supplementary information to the "Technical Addendum of the Winningsplan Groningen 2013" 9

30 Yearlyproduetion cluster groups with 5 clusters shut in (40 bern yearly offtake) 25 ------------- - ZND. OV5. PAU. POS. l RM (shut In) 20 1 ~ 15 - i ~ >- 10 1---- - OWG. AMR. SOS. TIM. SIR. SCS. KPD. SLO - ZPD. TUS. ZVN. EKR. SZW. SPI - EKl... 2014 2015 2016 2017 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ tri ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ f;j ~ :J ~ ~!;; ~ ~ ~ 000000000000000000000000000000000 NNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Figure 3.3a Production forecast using the G2 model with the 5 northem clusters closed-in with production curtailmentto 40 Bcm/year {as the field id not able to produce at higher levels, this is also the market demand scenario}. The contribulions to the gas production of the northem clusters {blue}, the central clusters {red}, the southem clusters {green} and Eemskanaal cluster {purple} is shown. The time-axis has been splitto highlightthe period 20 14 to 2017. Yearly production Groningen with 5 clusters shut in (40 bcrn yearly offtake) 45.-------------,--------------------------------------------------------- 40 ~------------~--------------------------------------------------------- 35 30 ZND. OVS. PAU. POS. lrm (,huiin). OWG. AMR. SOS. TIM. SIR. SCS. KPD. SLO SPI EKL 15 10 o 2014 2015 2016 201 7 Figure 3.3b Production forecast using the G2 model with the 5 northem clusters closed-in with production curtailmentto 40 Bcm/year {as the field id not able to produce at higher levels, this is also the market demand scenario}. The stacked contributions to the gas production of the northem clusters {blue; not shown}, the central clusters {red}, the southem clusters {green} and Eemskanaal cluster {purple} IS shown. The time-axis has been splitto highlightthe period 2014 to 2017. Supplementary information to the "T echnical Addendum of the Winningsplan Groningen 2013" 10

4 Compaction Modelling This section first describes the aquifer model and the compaction model used for the additional scenarios and subsequently discusses the predicted subsidence and seismie hazard for the two scenarios. 4. 1 Aquifer Model In general, with stronger aquifer support of the gas reservoir, the pressure decl ine in the aquifer will be less, but feit in a larger area of the aquifer. This will impact the compaction of the aquifer rock. The uncertainty in aquifer behaviour therefore impacts compaction and subsidence predictions and consequently also the seismie hazard. In the history matching process the reservoir model is conditioned to reproduce the measured pressure data throughout the production history. A very extensive data set of more than 1700 pressure measurements in the gas column is available. The history matching process results in a well-conditioned model, which can serve to pred ict future reservoir pressure with confidence. A good pressure match with historical pressure data con be obtained with different levels of pressure support from the aquifer. The geological model used for the evaluation of different production scenarios, as described in the ''Technical Addendum to the Winningsplan Groningen 2013", was based on a moderate strength aquifer in the north of the field (G1). With this aquifer both observed pressures and observed subsidence can be matched weil, but the rise of the water level in the north is overpredicted. An alternative geological model is one with a weak aquifer (G2). With this model a good match con be obtained with both observed pressures and the rising water level in the north. This weak aquifer model does however overpredict subsidence in the north of the field. Given that compaclion is the driver behind seismicity in NAM's seismie hazard model, a good match of measured subsidence data was deemed more important than a good match of rising water levels. This has led to a preferenee for the moderate aquifer model for the seismie hazard study (G 1 ). The additional depletion scenarios evaluated in thi s supplement (to the ''T echnical Addendum to the Winningsplan Groningen 2013") are based on a weak aquifer (G2). 4.2 Compacfion Model For the modelling of compaction and subsidence for the Winningsplan three compaction models were used: the time-decay model, the linear isotach model and the bi-linear model. These models are described in detail in Chapter 4 of the ''T echnical Addendum to the Winningsplan Groningen 2013". A good fit with measured subsidence can be obtained for each of these three models. For the time-decay and bi-linear models the compaction coefficient needs to be adjusted from core measured values to obtain a good fit with measured subsidence levels. The isotach model is the only model that allows a good fit to measured subsidence levels without applying a correction to the core measured compaction coefficient. A good fit to observed subsidence data can however also be obtained for the isotoch model with a compaction coefficient that is in line with the coefficient used for the time-decay model. The additional depletion scenarios discussed in this supplement are based on an isotoch compaction model with a compaction coefficient that is in line with the coefficient used for the time-decay model as described in Section 4.6.5 of the ''Technical Addendum to the Winningsplan Groningen 2013". Using this compaction model in combination with the weak aquifer reservo ir model, the fit between the measured and modelled subsidence is less good, as shown below in figures 4.1 and 4.2. From comparing this figure with figure 4.29 in the ''Technical Addendum to the Winningsplan Groningen 2013", it can be concluded that using the weak aquifer model does not improve the fit between model led and measured subsidence data. Supplementary information to the ''T echnical Addendum of the Winningsplan Gron ingen 2013" 11

periode 1964.3-2008.6 Rms 2.41 periode 1972.7-1987.6 Rms 1.59 periode 1972.7-1991.4 Rms 2.26 periode 1972.7-1993.5 Rms 2.05 ;JFll ~ "...... ~~:tlr,, ~ l :.!!!...;...!.~~j!... ~... [,: i -si i.: :l : :... :' ---j-------i------,.. a~1.t1..' 11, ~ L " p.. -r :. : : :, I, i j 1._.1. L.._ Mellng (cm) Mellng (cm) Mellng (cm) Mellng (cm) periode 1972.7-1998.4 Rms 3.08 periode 1972.7-2003.5 Rms 3.08 periode 1972.7-2008.6 Rms 3.49 periode 1996-2011 Rms 1.27 Maling (cm) M.llng(cm} M.llng(cm} Maling (cm) Figure 4. 1 Measured VS. modeled subsidence for Ihe fullievelling and ins ar surveys (1996-20 11) Figure 4.2 Subsidence measured in 2008 (sinee 1972) shown al Ihe benchmarks wilh conlours of Ihe modelled subsidence in cm (1964-2008). Modelled conlours indicale subsidence as aresuft from gas production exclusively from Ihe Groningen field (G2). The red dol indicales Ihe 7E00333 benchmark. Figure 4.2 shows the poor match between modeled and measured subsidence for the G2 model especially in the north-western part of the field (difference of a factor 2 to 3 can be observed around the 18 ond 22 cm contours). Supplementary information to the ''1 echnical Addendum of the Winningsplan Groningen 20 13" 12

Figure 4.3 shows the forecast of the subsidence at the end of the field life using the compaction model described above, again in combination with the weak aquifer reservoir model. Figure 4.3 Subsidence prognosis (in cm) al Ihe end of field life, based on Ihe isolach model using Ihe Cm values determined by calibralion with the time decay model, in combination with a weak aquifer model. Supplementary information to the "Technical Addendum of the Winningsplan Groningen 20 13" 13

5 Hazard Assessment 5.1 Depte/ion Scenario 1 Hazard ma ps (Peak Ground Acceleration - PGA) for thi s depletion scenario are shown in figures 5.1-5.3 for 3, 5 and 10 years, respectively. 610 NoSubeor KHMI SN Std Isotaelt COllO /----.... /.I / -, 610 NoSubeor KHtH SN Std Isotaeh COllO 610 NoSubeor KHt~l SN Stel Isotaeh COllO 610 610 610 610 610 610 V' 600 600 600 590 590 590 580 seo 580 "'" 570 570 570 56 9 10 2.20 130 240 250 260 270 180 290 56 910 220 130 240 250 260 270 280 290 56 910 220 230 240 250 260 270 280 290 Figure 5. 1 10 20 la 40 50 60 70 80 10 20 30 40 50 60 10 80 10 20 70 SO PGAIo,%, PGAro 1%1 PGA!q 1'19 1 PGA hazard maps for Ihe 3 years from 20 13 10 2016 wilh a {a} 2%, {b} 10% and {c} 50% chance of exceedance. The maximum PGA in each case is {a} 0.39g, {b} 0. 16g, and {c} 0.02g. 610 630 NoSubeor K Ht~ l SN Stel Isotaeh CmlD. 30 NoSubeor KHMI SN Std Isotaeh CmTD 61 0 610 610 610 610 610 600 600 600 590 590 590 560 580 580 >70 >70 S6 ~ 10 220 >30 240 250 260 170 lso 290 S6~10 220 230 240 250 260 270 180 290 10 20 Figure 5.2 304~ S06070 00 l0 20304~506070 8I'J 10 20 30 4hs060 10 80 PGAIo I Y..) PGAJI) (% ) PG A!q (% ) PGA hazard maps for Ihe 5 years from 20 13 1020 18 wilh a {a} 2%, {b} 10% and {c} 50% chance of exceedance. The maximum PGA in each case is {a} 0.52g, {b} 0.23g, and {c} 0. 04g. ' JO " 0 610 600 59 0 \ 580 \ 510 NoSubeor KHMI SN Stel Isotaeh CmlD NoSubeor K Ht~ l SN Std Isotaeh CmlD. 30 /-, "- "- " ~ 10 220 230 10 20 Figure 5.3 ~\., 0 \ 6JO.,0 NoSubeor KHt~ l SN Std 150taeh COll O (rz -::\, 610 610 600 600 \ 590 590 ) 580 5' 0 / ~<:J " / 510 510 -" -- 2'0 - >50 160 270 180 290 56 ~ I O 220 >30 2'0 250 160 270 180 290 " ~IO 220 >30 2 10 25 0 260 270 '80 290 \~,. : : ro _ ~ 60 M SO W 20 ro _ se W M 00 W 20 ro _ ~ 60 M SO PGNo ""'1 PGA/CJ 1%1 PGA!q 1%1 PGA hazard maps for Ihe 10 years from 2013 10 2023 wilh a {a} 2%, {b} 10% and {c} 50% chance of exceedance. The maximum PGA in each case is {a} 0.79g, {h} 0.40g, and {c} 0.08g. Supplementary information to the /lt echnical Addendum of the Winningsplan Groningen 201 3/1 14

Figure 5.4 compares the probabilities of PGA exceedance for the 10-, 5- and 3-year assessments at the location of maximum PGA. Nosubcor KHM1 SN Std Isotach CmTD 100~--~~~~~r---~~~~~'---' Ol u C ~ 10. 1 Ol u >< Ol... o - 2013-2023 - 2013 2018 -- 2013-2016 10.3 t..==i=~:::::'::"'~..j...-_~~~~j...l~ 10. 1 10 0 lol Peak ground acceleration [m/s 2 ) Figure 5.4 The probability of exceedance {or the maximum peak ground acceleration within the Groningen Field {or th ree different assessment intervals: 3, 5, and la years. A table comparing maximum PGA's for the different depletion scenarios, including the scenarios discussed in the "T echnical Addendum to the Winningsplan Groningen 2013", is provided in Appendix A. plots with the resulting subsidence for this scenario are provided in Appendix B. Supplementary information to the "T echnical Addendum of the Winningsplan Groningen 20 13" 15

5.2 Deptetion Scenario 2 Hazard mops (Peak Ground Acceleration - PGA-maps) for this depletion scenario are shown In figures 5.5-5.7 for 3, 5 and 10 years, respectively. 61~ osubcor KHMl 30bcm NoNorth Isotach CmTD 61~ osubcor KHMl 30bcm NoNorth Isotach CmTD ~osubcor KHMl 30bcm NoNorth Isotach CmTD 61. 620 620 620 610 600 590 580 510 610 ~ ' 590 590 600 ~ J 0 610 600 ~,' ~ 5' 0 580 ",. 510 510 56 56 210 no 230 2.10 250 260 270 280 290 910 220 >JO 240 )50 260 210 280 290 56 910 220 210 240 150 260 270 280 290 : : 10 lo 60 10 80 10 20 lo 40 50 60 10 80 10 20 lo 40 50 60 70 80 PGAlrJ I ~ J PGAJg 1%) Figure 5.5 PGA hazard maps for Ihe 3 years from 2073 102076 wilh a {a} 2%, {b} 70% and {c} 50% chance of exceedance. The maximum PGA in each case is {a} 0.339, {b} 0.739, and {c} 0.029. 61~oSubcor KHMl 30bcm NoNorth Isotach CmTD 6 NoSubcor KHMl 30bcm NoNorth Isotach CmTD 6l~oSubcor KHMl 30bcm NoNorth Isotach CmTD lo (/nl\. 620 620 620,.---. 610 610 610 I' [ 600 600 \~ 590 seo 510 'V J I j 600 590 ~ / 590 _ / seo 580 SlO SlO e 56 210 120 230 l m 2S0 260 no 280 290 56 9 10 no 230 2 10 150 260 210 280 290 56 910 220 730 240 2S0 260 210 280 290 10 20 30 40 50 60 70 80 10 20 30 40 50 60 10 80 10 20 30 40 SO 60 70 80 PGAlg ('!.:o l PGA/o (%) PGA,lg (% ) Figure 5.6 PGA hazard maps for Ihe 5 years from 2073 10 2078 wilh a {a} 2%, {b} 70% and {c} 50% chance of exceedance. The maximum PGA in each case is {a} 0.439, {b} 0. 7 9g, and {c} 0.03g. 6J~ osubcor KHMl 30bcm NoNorth Isotach CmTD 61~oSubcor KHMl 30bcm NoNorth Isotach CmTD 620 610 600 590 If:--'~::\ \\~1,,~, - _, /1 ) 580 h, ~,. 620 610 '-00 580 510 570 56 910 220 230 240 250 260 270 >BO 290 ~6910 220 230 2<10 250 160 270 280 290 Figure 5.7 10 20 30 40 50 60 70 80 10 20 30 ~o 50 60 70 80 10 20 30 40 50 60 10 80 PGA/g I''''' PGAIo ( o,;, l PGAIo 1%) PGA hazard maps for Ihe 70 years from 2073 10 2023 wilh a {a} 2%, {b} 70% and {c} 50% chance of exceedance. The maximum PGA in each case is {a} 0.65g, {b} 0.30g, and {c} 0.05g. Supplementary information to the "T ech nical Addendum of the Winningsplan Groningen 20 13" 16

Figure 5.8 compares the probabilities of PGA exceedance for the 10-, 5- and 3-year assessments at the Iocation of maximum PGA. The results of figure 5.8 and 5.4 are very similar. NoSubcor KHMl 30bcm NoNorth Isotac h CmlD 10 r-----~~~~.---~--~~~~--~ QI u C 10 '0 QI QI u x QI 0>- 0 g 10.1 :.ëi 10.2 10.c e 0.. 10 Peak ground acceleration [m/s 2 I Figure 5.8 The probabi/ity of exceedance for Ihe maximum peak ground acce/eralion wilhin Ihe Groningen Fie/d for Ihree differenl assessmenl inlerva/s: 3, 5, and 10 years. A table comparing maximum PGA's for the different depletion scenarios is provided in Appendix A. plots with the resulting subsidence for this scenario are provided in Appendix C. Supplementary information to the "T echnical Addendum of the Winningsplan Groningen 2013/1 17