Op zeker moment blijkt dat het middelste blok met massa m eenparig versneld naar rechts beweegt met versnelling a.



Vergelijkbare documenten
Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard.

Dit tentamen bestaat uit vier opgaven. Iedere opgave bestaat uit meerdere onderdelen. Ieder onderdeel is zes punten waard.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Mechanica 1 voor N en Wsk (3AA40) maandag 13 maart 2006 van

Uitwerkingen Tentamen Natuurkunde-1

Technische Universiteit Eindhoven Bachelor College

Tentamen Fysica in de Fysiologie (8N070) deel AB herkansing, blad 1/5

4. Maak een tekening:

Tentamen Mechanica ( )

Naam:... Studentnummer:...

TENTAMEN DYNAMICA (140302) 29 januari 2010, 9:00-12:30

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica

jaar: 1989 nummer: 25

Samenvatting Natuurkunde Hoofdstuk 8, Bewegen in functies

Mkv Dynamica. 1. Bereken de versnelling van het wagentje in de volgende figuur. Wrijving is te verwaarlozen. 10 kg

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt.

Examen mechanica: oefeningen

Toets Algemene natuurkunde 1

De hoogte tijd grafiek is ook gegeven. d. Bepaal met deze grafiek de grootste snelheid van de vuurpijl.

TECHNISCHE UNIVERSITEIT DELFT Faculteit der Civiele Techniek en Geowetenschappen

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica

BIOFYSICA: Toets I.4. Dynamica: Oplossing

m C Trillingen Harmonische trilling Wiskundig intermezzo

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

NATUURKUNDE. Figuur 1

Naam:... Studentnummer:...

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt.

Tentamen Natuurkunde A uur uur woensdag 10 januari 2007 Docent Drs.J.B. Vrijdaghs. Vul Uw gegevens op het deelnameformulier in

RBEID 16/5/2011. Een rond voorwerp met een massa van 3,5 kg hangt stil aan twee touwtjes (zie bijlage figuur 2).

Eindexamen vwo wiskunde B pilot 2014-I

Leerstof: Hoofdstukken 1, 2, 4, 9 en 10. Hulpmiddelen: Niet grafische rekenmachine, binas 6 de druk. Let op dat je alle vragen beantwoordt.

Theory Dutch (Netherlands) Lees eerst de algemene instructies uit de aparte enveloppe voordat je begint met deze opgave.

TENTAMEN DYNAMICA ( )

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Mechanica 2 voor N (3AA42) woensdag 24 juni 2009 van

Samenvatting Natuurkunde Syllabus domein C: beweging en energie

Examen Algemene natuurkunde 1, oplossing

EXAMEN CONCEPTUELE NATUURKUNDE MET TECHNISCHE TOEPASSINGEN

Toegepaste wiskunde. voor het hoger beroepsonderwijs. Deel 2 Derde, herziene druk. Uitwerking herhalingsopgaven hoofdstuk 7.

Examen VWO. Wiskunde B1,2 (nieuwe stijl)

5.1 De numerieke rekenmethode

Klassieke Mechanica a (Tentamen 11 mei 2012) Uitwerkingen

Kracht en beweging (Mechanics Baseline Test)

Arbeid & Energie. Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be. Assistent: Erik Lambrechts

a) Beargumenteer of behoud van impuls en behoud van mechanische energie van toepassing is op de schansspringer.

ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen.

VAK: natuurkunde KLAS: Havo 4 DATUM: 20 juni TIJD: uur TOETS: T1 STOF: Hfd 1 t/m 4. Opmerkingen voor surveillant XXXXXXXXXXXXXXXXXXX

TECHNISCHE UNIVERSITEIT EINDHOVEN. Eindtoets Experimentele Fysica 1 (3A1X1) - Deel november 2016 van 14:30 16:30 uur

T G6202. Info: auteur: Examencommissie Toelatingsexamen Arts en Tandarts, bron: Juli 2015, id: 11941

Een kogel die van een helling afrolt, ondervindt een constante versnelling. Deze versnelling kan berekend worden met de formule:

jaar: 1990 nummer: 06

Uitwerking Oefeningen Speciale Relativiteitstheorie. Galileitransformaties. versie 1.3, januari 2003

Trillingen en geluid wiskundig. 1 De sinus van een hoek 2 Uitwijking van een trilling berekenen 3 Macht en logaritme 4 Geluidsniveau en amplitude

Toegepaste mechanica 1. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven

Naam : F. Outloos Nummer : 1302

Deel 4: Krachten. 4.1 De grootheid kracht Soorten krachten

Examen VWO. Wiskunde B1 (nieuwe stijl)

Relativiteitstheorie met de computer

KeCo-opgaven mechanica (arbeid en energie) HAVO4

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1

Snelle glijbanen. Masterclass VWO-leerlingen juni Emiel van Elderen en Joost de Groot NWD Faculteit EWI, Toegepaste Wiskunde

Samenvatting Natuurkunde Samenvatting 4 Hoofdstuk 4 Trillingen en cirkelbewegingen

Bal in de sloot. Hierbij zijn x en f ( x ) in centimeters. Zie figuur 2.

- KLAS 5. a) Bereken de hellingshoek met de horizontaal. (2p) Heb je bij a) geen antwoord gevonden, reken dan verder met een hellingshoek van 15.

VAK: Mechanica - Sterkteleer HWTK

Advanced Creative Enigneering Skills

Theorie: Snelheid (Herhaling klas 2)

Nationale Natuurkunde Olympiade

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni uur. Bij dit examen hoort een uitwerkbijlage.

Mooie samenvatting: Stencil%20V4%20samenvatting.doc.

Hoofdstuk 3 Kracht en beweging. Gemaakt als toevoeging op methode Natuurkunde Overal

SCHRIFTELIJK TENTAMEN VAN 22 JANUARI Dit tentamen bevat verschillende soorten vragen of deelvragen:

Botsingen. N.G. Schultheiss

Inleiding kracht en energie 3hv

Tentamen Fysica in de Fysiologie (8N070) deel AB herkansing, blad 1/5

Eindexamen wiskunde B1-2 vwo 2002-I

UITWERKINGEN OEFENVRAAGSTUKKEN 5 HAVO. natuurkunde

Welk van de onderstaande reeks vormt een stel van drie krachten die elkaar in evenwicht kunnen houden?

Uitwerkingen opgaven hoofdstuk 4

TENTAMEN NATUURKUNDE

Impuls en stoot. De grootheid stoot Op basis van de tweede wet van Newton kan onderstaand verband worden afgeleid. F = m a = m Δv Δt.

Tentamen Natuurkunde I Herkansing uur uur donderdag 7 juli 2005 Docent Drs.J.B. Vrijdaghs

Krachten (4VWO)

Mechanica - Sterkteleer - HWTK PROEFTOETS versie C - OPGAVEN en UITWERKINGEN.doc 1/16

Topic: Fysica. Dr. Pieter Neyskens Monitoraat Wetenschappen Assistent: Erik Lambrechts

Fysica: mechanica, golven en thermodynamica PROEFEXAMEN VAN 12 NOVEMBER 2008

Begripsvragen: Elektrisch veld

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2014 TOETS APRIL uur

Klassieke en Kwantummechanica (EE1P11)

Examen VWO. wiskunde B1. tijdvak 1 dinsdag 2 juni uur. Bij dit examen hoort een uitwerkbijlage.

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl)

Opgave 2 Een sprong bij volleyball 2015 I

Tentamen Klassieke Mechanica, 29 Augustus 2007

Kracht en Energie Inhoud

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei uur. Bij dit examen hoort een uitwerkbijlage.

Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1

Het tentamen levert maximaal 30 punten op, waarvan de verdeling hieronder is aangegeven.

Nationale Natuurkunde Olympiade. Eerste ronde januari Beschikbare tijd: 2 klokuren

7 College 01/12: Electrische velden, Wet van Gauss

CRUESLI. Een pak Cruesli heeft een massa van 375 gram. De bodem van het pak is 4,5 cm breed en 14 cm lang. 1. Bereken de oppervlakte van de bodem.

Examen HAVO en VHBO. Wiskunde B

Transcriptie:

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Mechanica voor N en Wsk (3AA40) vrijdag 8 januari 008 van 4.00-7.00 uur Dit tentamen bestaat uit de opgaven t/m 5. evenveel punten waard. Iedere deelvraag van elk van deze vragen is Bij dit tentamen hoeft geen rekenmachine gebruikt te worden. Grafische rekenmachines, gewone rekenmachines en Notebooks mogen niet gebruikt worden. Vermeld zowel op de presentiekaart als op het aanwezige doorslagpapier naast de gangbare gegevens zoals uw naam, identiteitsnummer, adres etc. in de rechterbovenhoek ook bij welke faculteit u bent ingeschreven (TN, W&I,...), of dat u een VWO student bent. Maak uw werk bij voorkeur op het doorslagpapier. Lever het origineel in en neem de doorslag mee naar huis, zodat u aan de hand daarvan uw eigen werk kunt beoordelen via de na afloop van het tentamen uit te reiken antwoorden. De uitslag wor uiterlijk vrijdag 8 februari 008 bekendgemaakt op de publicatieborden van de studentenadministraties van Natuurkunde en Wiskunde. Als u het niet eens bent met uw cijfer, neem dan vóór 8 februari per e-mail contact op met de bij de uitslag vermelde docent om het tentamen te bespreken. Bij de bespreking dient u de eigen beoordeling mee te brengen.. a. Een systeem bestaat uit twee voorwerpen A en B die weliswaar onderlinge krachten op elkaar uitoefenen, maar waarop geen externe krachten werken. Laat zien dat uit de wetten van Newton volgt dat de totale impuls van dit systeem constant is. b. De baan van een voorwerp ziet er uit als een cirkel beschreven door de plaatsvector r(t) = R cos α(t) î + R sin α(t) ĵ waarin R een constante is en α(t) één of andere functie van de tijd t. Leid een uitdrukking af voor de versnellingsvector a van het voorwerp, en laat vervolgens zien dat de radiële component van a gelijk is aan v /R waarin v de grootte van de snelheid van het voorwerp is. c. Stanley bevin zich volgens zijn waarneming op een constante afstand L vanaf een zekere planeet. Mavis bevin zich aan boord van een ruimteschip dat ten opzichte van Stanley met een snelheid v in de richting van de planeet beweegt. Precies op het moment dat Mavis Stanley rakelings voorbijvliegt, schiet zij een raket af in de richting van de planeet. De raket heeft volgens haar waarneming een snelheid w ten opzichte van haar ruimteschip. Bereken de tijd die verloopt tussen het afschieten en de inslag op de planeet gemeten door een klok aan boord van de raket, uitgedrukt in v, w, L en de lichtsnelheid c.

. Een kraal met massa m kan bewegen langs een dunne en rechte geleider (de x-as in de figuur). De kraal is vastgemaakt aan twee identieke veren met veerconstante k, die aan de andere kant weer vastzitten aan een wand. Als de kraal zich tussen de bevestigingspunten van de veren bevin (positie x=0 in de figuur) hebben beide veren precies hun onbelaste lengte, l 0. Bij de beweging over de geleider ondervin de kraal een constante wrijvingskracht ter grootte F w. Op een zeker moment wor de kraal op positie < 0 gebracht en dan losgelaten. a. Laat zien dat de kracht F v die de twee veren in de beginsituatie samen uitoefenen op de kraal gelijk is aan F v = k ( + (x0 /l 0 ) )î. b. Bereken de snelheid waarmee de kraal na het loslaten de positie x = 0 passeert. Geef duidelijk aan op welke wetten of principes de berekening is gebaseerd. 0 l 0 l 0 x 3. Een blok met massa m ligt stil op een horizontale tafel zoals getekend in de figuur. De coëfficiënten van statische en kinetische wrijving tussen tafel en blok zijn respectievelijk µ s en µ k. Het blok zit aan m de linkerkant, via een touw dat over een katrol loopt, vast aan een vrijhangend blok met massa m l. Aan de rechterkant zit ook een touw, dat via twee katrollen m l g m r uiteindelijk vastzit aan het plafond. Aan één van deze katrollen hangt weer een blok met massa m r. De massa van de touwen en katrollen is verwaarloosbaar klein, en de katrollen kunnen draaien zonder wrijving. De versnelling van de zwaartekracht is g. a. Teken voor elk van de drie blokken apart een vrij-lichaamsdiagram (free body diagram) en geef van iedere getekende kracht een korte beschrijving. b. Bepaal voor welke waarden van de massa m van het middelste blok dit systeem niet gaat schuiven. Op zeker moment blijkt dat het middelste blok met massa m eenparig versneld naar rechts beweegt met versnelling a. c. Geef een uitdrukking voor a in termen van de gegeven grootheden.

4. Een cylindervormig blikje met hoogte h en straal r staat met zijn bodem op het XY -vlak zoals getekend in de figuur. Zowel de bodem als de zijwand van het blikje zijn gemaakt van een materiaal met constante massadichtheid ρ; het blikje heeft geen deksel en is dus aan de bovenkant open. De dikte van de bodem heeft de constante waarde d 0 ; de dikte van de zijwand neemt naar boven toe af volgens de formule d(z) = d 0 az waarin a een positieve constante is. De wanddikte d is overal verwaarloosbaar klein ten opzichte van de straal r en de hoogte h. d x r z h y a. Bereken de positie van het massamiddelpunt van het blikje. Het blikje wor nu gevuld met zand, waardoor de massa van blikje en zand samen gelijk wor aan M. Het blikje wor vervolgens opgehangen aan een sterke staalkabel van verwaarloosbare massa zoals getekend in de figuur. Dan wor een kogel met massa m op het blikje afgeschoten, die in het zand blijft steken. Net voordat de kogel het zand raakt beweegt de kogel met snelheid v onder een hoek β met de verticaal (zie figuur) terwijl het blikje dan stilhangt. Het blikje, dat hier opgevat kan worden als een puntmassa, gaat nu een zwaaibeweging maken met punt P als centrum. De valversnelling is g. m P v g b. Bereken de maximale hoogte die het blikje bereikt tijdens de zwaaibeweging. Geef duidelijk aan op welke wetten of principes de berekening is gebaseerd. M 5. Een golfer slaat vanaf de tee een bal weg. Tijdens de resulterende beweging blijkt de bal gedurende een tijdsduur t boven een hoogte h uit te komen. De wrijving die de golfbal van de lucht ondervin kan worden verwaarloosd. a. Druk de maximale hoogte die de bal bereikt uit in h, t en de valversnelling g. Nadat de golfbal weer is geland moet de golfer de bal op een horizontaal liggende green nog in een hole krijgen. Daarvoor geeft de golfer de bal op tijdstip t = 0 een horizontale beginsnelheid v 0. Tijdens de beweging op de green ondervin de bal een wrijvingskracht ter grootte F w = k v, waarbij k een positieve constante is en v de instantane snelheid van de bal. De massa van de bal is m. b. Bereken het tijdstip waarop de bal op de green weer tot stilstand komt, uitgedrukt in k, v 0 en m. EINDE 3

B E O O R D E L I N G S F O R M U L I E R van het tentamen Mechanica (3AA40) van 8 januari 008 In principe is het cijfer gelijk aan het totaal behaalde aantal punten gedeeld door 7,. Voor een goede berekening die berust op een principieel fout uitgangspunt worden geen punten gegeven. De voorlopige cijfers zullen uiterlijk vrijdag 8 februari 008 bekend gemaakt worden, samen met de bonus. Als u het niet eens bent met uw cijfer, neem dan vóór 8 februari per e-mail contact op met de bij de uitslag vermelde docent om het tentamen te bespreken. Indien u gebruik wilt maken van het bespreken dan dient u dit formulier ingevuld mee te brengen voor het onderhoud met de corrector. Naam: Identiteitsnr.: Groep: Te behalen Toegekend door Toegekend door Vraagstuk: punten: corrector: student:. a) 6...... c) 6...... 8....... a) 6............ 3. a) 6...... c) 6...... 8...... 4. a) 6............ 5. a) 6............ Totaal te behalen punten: 7 Behaald:... Behaald:... 4

FORMULEBLAD MECHANICA Uitwendig product: A B = (A y B z A z B y )î + (A zb x A x B z )ĵ + (A xb y A y B x )ˆk Rotatie: rot F = F = ( F z y F y z ) î + ( F x z F z x ) ĵ + ( F y x F x y ) ˆk Goniometrische formules: Cosinusregel: a = b + c bc cos α Sinusregel: sin α a = sin β b = sin γ c sin (α ± β) = sin α cos β ± cos α sin β cos (α ± β) = cos α cos β sin α sin β sin 30 o = cos 60 o =, sin 45o = cos 45 o =, sin 60 o = cos 30 o = 3 Speciale relativiteitstheorie: t = γ t 0, l = l 0 /γ, γ = u /c x = γ(x ut), y = y, z = z, t = γ(t ux c ) v = v u, v = uv/c v +u +uv /c p = γm v, E = K + mc = γmc, E = (mc ) + (pc) 5

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Mechanica voor N en Wsk (3AA40) vrijdag 8 januari 008 van 4.00-7.00 uur. a. Volgens de e wet van Newton gel d p A = F B A en d p B = F A B zodat d( p A+ p B ) = F B A + F A B. Volgens de 3e wet van Newton gel F B A = F A B zodat het rechterlid van de vorige vergelijking nul is: d( p A+ p B ) = 0. Hieruit volgt dat de impuls van het systeem P = p A + p B constant is. b. v(t) = d r dα = R sin(α) = R d α dα dα î + R cos(α) ĵ en dus v = R ( sin(α)î + cos(α)ĵ) + R( dα Dan a(t) = d v Daarmee a r = a r /R = R( dα ) = v /R. c. De raket beweegt t.o.v. Stanley met een snelheid w = (w + v)/( + wv/c ). Stanley meet voor de gevraagde tijd dus t = L/w. De klok aan boord van de raket meet de corresponderende eigentijd t 0 = t/γ(w ) = L = L w+v ( ) w γ(w ) c +wv/c +wv/c. w+v. ) ( cos(α)î sin(α)ĵ). Alternatief: de raket beweegt t.o.v. Stanley met een snelheid w = (w+v)/(+wv/c ). De raket ziet eigenlengte L daarom verkort tot L = L/γ(w ). Deze lengte legt de raket af met snelheid w, dus de klok aan boord van de raket meet als tijd t 0 = L/(w γ(w )) wat hetzelfde antwoord levert.. a. Als de kraal zich op bevin dan is de lengte van iedere veer l = (x 0 + l 0). De kracht uitgeoefend door één veer in de positieve x-richting van de geleider is dan k(l l 0 ) /l = k( )( l 0 /l) waaruit het gestelde volgt. b. Volgens de wet van Arbeid en Kinetische energie moet gelden (/)mv 0 = 0 (F v F w ) dx. Voor de integralen volgt 0 F v dx = k(x 0+l 0 l 0 x 0 + l 0) (dit is positief) en 0 ( F w ) dx = F w (dit is negatief). Daarmee v = {(/m)[k(x 0 +l 0 l 0 x 0 + l 0)+ F w ]} /. 3. a. Free-body diagrams: T l N W T r T r m l Z l T l m Z T r m r Z r Beschrijving krachten: W : de wrijving door de tafel (kan ook andersom staan) T l,r : de kracht uitgeoefend door linker- en rechtertouw Z, Z l,r : de zwaartekracht op midden-, linker- en rechterblok N: de normaalkracht door de tafel b. Als het systeem niet gaat schuiven dan moet volgens de e WvN voor het middenblok gelden W = T l T r. Uit de e WvN voor het linkerblok volgt T l = Z l = m l g en voor het rechterblok T r = Z r = m r g, dus W = (m l m r)g. Nu gel tevens W µ s N = µ s mg, zodat µ s mg (m l m r)g +µ s mg. Herschrijven levert m (m l m r)/µ s én m ( m r m l )/µ s. c. W staat nu naar links, en het rechterblok heeft versnelling a/. Pas nu de e WvN toe op alledrie de blokken apart: linkerblok: T l m l g = m l a (); middenblok: T r T l W = ma (); rechterblok: T r +m r g = (/)m r a (3). Deel (3) door, tel dan op bij () en (), en gebruik W = µ k mg, dan volgt m l g µ k mg+m r g/ = (m l +m+m r /4)a waaruit a = ( m l µ k m + m r /)g/(m l + m + m r /4).

4. a. Vanwege symmetrie gel x cm = y cm = 0. Verdeel het blikje vervolgens in dunne ringen op positie z met hoogte dz. De massa van zo n ring is dan dm = πrρ d(z) dz. Voor de massa van het hele blikje volgt dan M = m 0 + h 0 0 az) dz waarin m 0 = πρr d 0 de massa van de bodem is. Er volgt dat M = πρr(rd 0 +hd 0 ah ). De z- positie van het massamiddelpunt wor z cm = h M 0 M 0h 3 ah3 ). Vereenvoudigen geeft tenslotte z cm = (d 0 h ah 3 /3)/(rd 0 + hd 0 ah ). b. Er is behoud van impuls in horizontale richting maar niet in verticale richting. Als w de snelheid van blik+kogel direkt na inslag is dan moet dus gelden mv sin β = (m + M)w zodat w = mv sin β/(m + M). Bij de beweging naar boven is er behoud van mechanische energie. Als de bereikte hoogte gelijk is aan h, dan moet dus gelden (m + M)gh = (/)(m + M)w. Er volgt h = (/g){mv sin β/(m + M)}. 5. a. De beweging in de x-richting is hier niet van belang. Noem de beginsnelheid in de y-richting v 0, dan is y(t) = v 0 t gt. De maximale hoogte wor bereikt als dy/ = v 0 gt = 0 dus op t = v 0 /g, waar y = y max = v 0/g. Om v 0 te elimineren zoeken we een uitdrukking voor t. Als y(t) = h dan h = v 0 t gt met als oplossing t, = g (v 0 ± v 0 gh). Daaruit t = t t = g v 0 gh zodat v 0 = (g t/) + gh. Substitutie hiervan in de maximale hoogte geeft y max = {(g t/) + gh}/g = g( t) /8 + h. b. De tweede wet van Newton zegt hier m dv = k v. Oplossen d.m.v. scheiden van variabelen levert v dv v 0 v = k t. Hieruit volgt v = v m 0 0 k t. De bal ligt dus m weer stil op t = m v0. k