Logisch Programmeren/Prolog
|
|
|
- Klaas Quinten Bauwens
- 10 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Logisch Programmeren/Prolog Jori Mur Center for Language and Cognition (CLCG) Rijksuniversiteit Groningen
2 1 Overzicht generatiegenoot/2 Lijsten
3 2 Huiswerkopgave % % truus % / \ % griet trina % / \ % marie klara maart % % hiske sasha %
4 3 Huiswerkopgave moeder(hiske,marie). moeder(marie,griet). moeder(klara,griet). moeder(griet,truus). moeder(trina,truus). moeder(maart,trina). moeder(sasha,maart).
5 4 Huiswerkopgave Twee voor de hand liggende base cases: generatiegenoot(x,x). of generatiegenoot(x,y):- moeder(x,z), moeder(y,z).
6 5 Huiswerkopgave Recursieve clause in beide gevallen: generatiegenoot(x,y):- moeder(x,x1), moeder(y,y1), generatiegenoot(x1,y1).
7 6 Huiswerkopgave versie 1 generatiegenoot(x,x). generatiegenoot(x,y):- moeder(x,x1), moeder(y,y1), generatiegenoot(x1,y1).
8 7 Huiswerkopgave versie 1?- generatiegenoot(truus,y). Y = truus?- generatiegenoot(klara,y). Y = klara; Y = marie; Y = marie; Y = klara; Y = klara; Y = maart?- generatiegenoot(x,klara). Y = klara; Y = marie; Y = marie; Y = klara; Y = klara; Y = maart
9 8 Huiswerkopgave versie 1?- generatiegenoot(x,y). Y = X; X = hiske, Y = hiske; X = hiske, Y = hiske; X = hiske, Y = hiske; X = hiske, Y = sasha; X = enz... (27 total)
10 9 Huiswerkopgave versie 2 generatiegenoot(x,y):- moeder(x,z), moeder(y,z). generatiegenoot(x,y):- moeder(x,x1), moeder(y,y1), generatiegenoot(x1,y1).
11 10 Huiswerkopgave versie 2?- generatiegenoot(truus,y). no?- generatiegenoot(klara,y). Y = marie; Y = marie; Y = klara; Y = klara; Y = maart?- generatiegenoot(x,klara). Y = marie; Y = marie; Y = klara; Y = klara; Y = maart
12 11 Huiswerkopgave versie 2?- generatiegenoot(x,y). X = hiske, Y = hiske; X = hiske, Y = hiske; X = hiske, Y = hiske; X = hiske, Y = sasha; X = enz... (26 total)
13 12 Huiswerkopgave Alternatieve goal-volgorde: generatiegenoot(x,y):- moeder(x,z), moeder(y,z). generatiegenoot(x,y):- generatiegenoot(x1,y1), moeder(x,x1), moeder(y,y1). Slaagt wanneer verwacht, maar faalt niet. Komt in lus op bijv. generatiegenoot(sasha,marie).
14 13 Huiswerkopgave Dezelfde oplossing op verschillende manieren bewezen kan je voorkomen door te zorgen dat er geen overlap is tussen de cases: generatiegenoot(x,y):- moeder(x,z), moeder(y,z). generatiegenoot(x,y):- moeder(x,x1), moeder(y,y1), X1 \= Y1, generatiegenoot(x1,y1).
15 14 Lijsten Vorig week successorfunctie als recursieve datastructuur. s(s(s(s(0)))) s/1 willekeurig lange reeksen, en daarmee willekeurig grote getallen.
16 15 Lijsten we kunnen ook meerplaatsige recursieve datastrukturen maken. Bijv:./2 heeft een willekeurige term als eerste argument en een term van eigen type als tweede de 0 van s/1 heet hier [].(a,.(b,.(c,[]))) willekeurig lange lijsten van elementen. zeer veel gebruikt in Prolog-praktijk (itt successor-functie).
17 16 Definitie lijst lijst([]). lijst(.(_head,tail)) :- lijst(tail).
18 17 Speciale Notatie Lijsten zijn dermate populair in Prolog dat er een speciale notatie voor bestaat: [] voor de lege lijst, [Head Tail] ipv.(head,tail), en [a,b,c] voor de lijst met precies de elementen a,b en c..(a,.(b,.(c,[]))) == [a,b,c] == [a [b,c]] == [a,b [c]] == [a,b,c []] Een goed lees- en schrijfbare notatie, maar voor Prolog is het gewoon./2
19 18 Definitie in speciale notatie lijst([]). lijst([_head Tail]) :- lijst(tail).
20 19 Lijsten [a,b,x,d(e,f)] [a,[b,x],d(e,f)] [a,b,c,d,[]] [a,b,c,d []] bevat 4 elementen bevat 3 elementen bevat 5 elementen bevat 4 elementen [a,b,c d] [a,b,c [d]] is niet goed gedefinieerd is wel goed gedefinieerd.
21 20 Matching en Lijsten Met matching kan je specifieke elementen van een lijst vinden:?- [_,_,X _] = [a,b,c,d,e,f]. X = c?- [_,_,_ X] = [a,b,c,d,e,f]. X = [d,e,f]?- [_,[_,_,_ Y] _] = [a,[b,c,d,e,f]]. Y = [e,f]?- [_,_,_,_] = [a,[b,c,d,e,f]]. no
22 21 Member member/2 is waar als het eerste argument een element is van het tweede argument: member(x,[x _]). member(x,[_ Y]) :- member(x,y). Member kan gebruikt worden om te testen, maar ook om Prolog om een element van die lijst te vragen.
23 22 Allemaal 1-en, Deelverzameling % allemaalenen/1?lijstvaneenen allemaalenen([1]). allemaalenen([1 X]):- allemaalenen(x). % deelverzameling/2 +DeelVz +Vz deelverzameling([],y). deelverzameling([x Y],Z):- member(x,z), deelverzameling(y,z).
24 23 Vertaal vertaling(x,y,v,u) is waar als alle voorkomens van X in V, Y in U zijn, en V en U verder identiek. vertaling(a,e,[b,l,a,b,l,a],u). U = [b,l,e,b,l,e].
25 24 Vertaal vertaling(_,_,[],[]). vertaling(x,y,[x Vt],[Y Ut]):- vertaling(x,y,vt,ut).
26 25 Vertaal vertaling(_,_,[],[]). vertaling(x,y,[x Vt],[Y Ut]):- vertaling(x,y,vt,ut). vertaling(x,y,[vh Vt],[Vh Ut]):- X \== Vh, vertaling(x,y,vt,ut).
Logisch Programmeren/Prolog
Logisch Programmeren/Prolog 2007-8 Jori Mur Rijksuniversiteit Groningen [email protected] 1 Overzicht Huishoudelijk Logisch programmeren Prolog als kennisbank Prolog syntax Matching Zoeken Praktisch: laden/listen/tracen
Modelleren en Programmeren: Prolog
Modelleren en Programmeren: Prolog Marijn Schraagen 13 januari 2016 Herhaling basiselementen Lijsten Trace Ingebouwde lijstpredicaten Feiten en regels aanpassen Herhaling basiselementen Feiten en regels
Modelleren en programmeren. Week 9: werken met incomplete datastructuren
Modelleren en programmeren Week 9: werken met incomplete datastructuren 1. Incomplete datastructuren Een krachtige programmeertechniek is het gebruik van incomplete datastructuren: datastructuren die variabelen
8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde
8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige
Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie
Kennisrepresentatie & Redeneren Piter Dykstra Instituut voor Informatica en Cognitie www.math.rug.nl/~piter [email protected] 30 april 2007 INLEIDING Kennisrepresentatie & Redeneren Week1: Introductie
V.2 Limieten van functies
V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de
Talen & Automaten. Wim Hesselink Piter Dykstra Opleidingsinstituut Informatica en Cognitie 9 mei 2008
Talen & Automaten Wim Hesselink Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.cs.rug.nl/~wim 9 mei 2008 Talen & automaten Week 1: Inleiding Dit college Talen Automaten Berekenbaarheid Weekoverzicht
Logica voor Informatica. Logica Toepassingen. PROLOG: Logische Programmeertaal. Mehdi Dastani
Logica voor Informatica Logica Toepassingen PROLOG: Logische Programmeertaal Mehdi Dastani [email protected] Intelligent Systems Utrecht University Programmeren met Logica Propositielogica is niet geschikt
I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.
I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk
Semantiek 1 college 10. Jan Koster
Semantiek 1 college 10 Jan Koster 1 Vandaag Vorige keer: conceptuele structuur en semantische decompositie Vandaag: inleiding in de formele semantiek Gebruikt notaties uit formele logica plus de daar gehanteerde
Meetkundige Ongelijkheden Groep 2
Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus
8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde
8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige
1 Coördinaten in het vlak
Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem
Kennisrepresentatie & Redeneren. Piter Dykstra Instituut voor Informatica en Cognitie
Kennisrepresentatie & Redeneren Piter Dykstra Instituut voor Informatica en Cognitie www.math.rug.nl/~piter [email protected] 8 oktober 2007 GRAMMATICA S Kennisrepresentatie & Redeneren Week6: Grammatica
Meetkundige ongelijkheden Groep A
Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor
inhoudsopgave juni 2005 handleiding haakjes 2
handleiding haakjes inhoudsopgave inhoudsopgave 2 de opzet van haakjes 3 bespreking per paragraaf 5 rekenen trek-af-van tegengestelde tweetermen merkwaardige producten tijdpad 6 materialen voor een klassengesprek
Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie
Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter [email protected] 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:
Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra
Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2
Een bekende eigenschap van de middens van de zijden van een driehoek is de volgende.
Cabri-werkblad Rond het zwaartepunt van een driehoek Een bekende eigenschap van de middens van de zijden van een driehoek is de volgende. Stelling De verbindingslijn van de middens van twee zijden van
Meetkunde. Trainingsweekend 23 25 januari 2009. 1 Gerichte hoeken. gerichte hoeken, driehoeksongelijkheid, Ravi
Meetkunde gerichte hoeken, driehoeksongelijkheid, Ravi Trainingsweekend 23 25 januari 2009 Als je een meetkundig probleem aan het oplossen bent, stuit je vaak op verschillende oplossingen voor de verschillende
Permutaties Combinaties Binomiaalcoëfficiënt Variaties. Combinatoriek. W. Oele. 27 januari 2014. W. Oele Combinatoriek
27 januari 2014 Deze les Inleiding combinatoriek: de faculteit permutaties combinaties variaties de binomiaalcoëfficiënt De faculteit Eenvoudige recursieve definitie: 0! = 1 n! = n(n 1)! Voorbeelden: 5!
Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008
Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.
1 Introductie. 2 Oppervlakteformules
Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus ook weergegeven met XY. Verder zullen we de volgende notatie
Logic for Computer Science
Logic for Computer Science 07 Predikatenlogica Wouter Swierstra University of Utrecht 1 Vrijdag Aanstaande vrijdag is geen hoorcollege of werkcollege. De tussentoets is uitgesteld tot volgende week dinsdag.
Opgaven Kangoeroe vrijdag 17 maart 2000
Opgaven Kangoeroe vrijdag 17 maart 2000 VBO en MAVO Klas 3 en 4 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)
Noordhoff Uitgevers bv
58 Voorkennis V-1a /A 5 74, /B 1 5 18 en /D 1 5 88 /A 1 /B 1 1 /D 1 5 74 1 18 1 88 5 180 c /B 2 5 104, /C 5 55 en /D 2 5 21 d /B 5 /B 1 1 /B 2 5 18 1 104 5 122 en /D 5 /D 1 1 /D 2 5 88 1 21 5 109, dus
Ter Leering ende Vermaeck
Ter Leering ende Vermaeck 15 december 2011 1 Caleidoscoop 1. Geef een relatie op Z die niet reflexief of symmetrisch is, maar wel transitief. 2. Geef een relatie op Z die niet symmetrisch is, maar wel
Inleiding Programmeren 2
Inleiding Programmeren 2 Gertjan van Noord November 26, 2018 Stof week 3 nogmaals Zelle hoofdstuk 8 en recursie Brookshear hoofdstuk 5: Algoritmes Datastructuren: tuples Een geheel andere manier om te
Matrixalgebra (het rekenen met matrices)
Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg
Antwoordmodel - Vlakke figuren
Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.
Noordhoff Uitgevers bv
Hoofdstuk - Gelijkvormigheid Voorkennis V-1a /A = 74, /B 1 = 18 en /D 1 = 88 /A + /B 1 + /D 1 = 74 + 18 + 88 = 180 c /B = 104, /C = 55 en /D = 1 d /B = /B 1 + /B = 18 + 104 = 1 en /D = /D 1 + /D = 88 +
2WO12: Optimalisering in Netwerken
2WO12: Optimalisering in Netwerken Leo van Iersel Technische Universiteit Eindhoven (TU/E) en Centrum Wiskunde & Informatica (CWI) 27 februari 2014 http://homepages.cwi.nl/~iersel/2wo12/ [email protected]
Uitwerkingen Rekenen met cijfers en letters
Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................
Analytische Meetkunde
Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs
1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12
Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal
Pascal en de negenpuntskegelsnede
Pascal en de negenpuntskegelsnede De zijden van driehoek ABC hierboven vatten we op als lijnen en niet als lijnstukken. De middens van de lijnstukken AB, BC en CA zijn D, E en F. De middens van de lijnstukken
Inhoudsopgave. Relaties geordend paar, cartesisch product, binaire relatie, inverse, functie, domein, bereik, karakteristieke functies
Inhoudsopgave Verzamelingen element, Venn-diagram, singleton, lege verzameling, gelijkheid, deelverzameling, machtsverzameling, vereniging, doorsnede, verschilverzameling Relaties geordend paar, cartesisch
Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)
Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER
We beginnen met de eigenschappen van de gehele getallen.
II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;
Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ²
1 Herhaling 1.1 Het vlak, punten, afstand, midden Opdracht: Teken in het vlak de punten: A ( 1, 2) B(3,6) C( 5,7) Bepaal de coördinaat van het midden van (lijnstuk) [A B]: M [B C ]: N Bepaal de afstand
De wissel-eigenschap voor vermenigvuldigen Vermenigvuldigen kan in omgekeerde volgorde gebeuren, want voor ieder paar getallen a enbgeldt: a b=b a.
98 Algebra 3.3 Variabelen 3.3.1 Inleiding F= 9 5 15+32= 27+32=59 15 C= 59 F In de inleidende tekst aan het begin van dit hoofdstuk staat een afkorting waarmee de temperatuur in graden Celsius in graden
VERZAMELINGEN EN AFBEELDINGEN
I VERZAMELINGEN EN AFBEELDINGEN Het begrip verzameling kennen we uit het dagelijks leven: een bibliotheek bevat een verzameling van boeken, een museum een verzameling van kunstvoorwerpen. We kennen verzamelingen
Examen Datastructuren en Algoritmen II
Tweede bachelor Informatica Academiejaar 2014 2015, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele
Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen!
Estafette-opgave 1 (20 punten, rest 480 punten) Zeven gebieden Drie cirkels omheinen zeven gebieden. We verdelen de getallen 1 tot en met 7 over de zeven gebieden, in elk gebied één getal. De getallen
Hoofdstuk 1. Inleiding. Lichamen
Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan
Opgaven Kangoeroe vrijdag 17 maart 2000
Opgaven Kangoeroe vrijdag 17 maart 2000 HAVO en VWO Klas 3, 4 en 5 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)
Automaten. Informatica, UvA. Yde Venema
Automaten Informatica, UvA Yde Venema i Inhoud Inleiding 1 1 Formele talen en reguliere expressies 2 1.1 Formele talen.................................... 2 1.2 Reguliere expressies................................
Discrete Wiskunde, College 7. Han Hoogeveen, Utrecht University
Discrete Wiskunde, College 7 Han Hoogeveen, Utrecht University Sommatiefactor methode (niet in boek) Doel: oplossen van RBs als Basisidee: f n a n = g n a n 1 + c n ; 1 Vermenigvuldig de RB met een factor
Driehoeken. Enkele speciale topics. Arne Smeets. Trainingsweekend Februari 2008
Driehoeken Enkele speciale topics Arne Smeets Trainingsweekend Februari 2008 Trilineaire en barycentrische coördinaten Definitie van trilineaire coördinaten Beschouw (in het vlak) een driehoek ABC en een
Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008
Katholieke Universiteit Leuven September 2008 (versie 27 juni 2008) Inleiding In deze module zullen we het gebruik van het sommatieteken en de faculteitsoperatie herhalen en bespreken adhv voorbeeldoefeningen
Combinatoriek groep 1
Combinatoriek groep 1 Recursie Trainingsdag 3, 2 april 2009 Getallenrijen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een directe formule geeft a n in
II.3 Equivalentierelaties en quotiënten
II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde
Notatie van verzamelingen. Lidmaatschap. Opgave. Verzamelingen specificeren
Overzicht TI1300: Redeneren en Logica College 10: Verzamelingenleer Tomas Klos Algoritmiek Groep Colleges 1 2: Bewijstechnieken Colleges 3 9: Propositielogica Vandaag en morgen: Verzamelingenleer Colleges
(iii) Enkel deze bundel afgeven; geen bladen toevoegen, deze worden toch niet gelezen!
Examen Wiskundige Basistechniek, reeks A 12 oktober 2013, 13:30 uur Naam en Voornaam: Lees eerst dit: (i) Naam en voornaam hierboven invullen. (ii) Nietje niet losmaken. (iii) Enkel deze bundel afgeven;
Mededelingen. TI1300: Redeneren en Logica. Waarheidstafels. Waarheidsfunctionele Connectieven
Mededelingen TI1300: Redeneren en Logica College 4: Waarheidstafels, Redeneringen, Syntaxis van PROP Tomas Klos Algoritmiek Groep Voor de Fibonacci getallen geldt f 0 = f 1 = 1 (niet 0) Practicum 1 Practicum
Verzamelingen deel 3. Derde college
1 Verzamelingen deel 3 Derde college rekenregels Een bewerking op A heet commutatief als voor alle x en y in A geldt dat x y = y x. Een bewerking op A heet associatief als voor alle x, y en z in A geldt
III.3 Supremum en infimum
III.3 Supremum en infimum Zowel de reële getallen als de rationale getallen vormen geordende lichamen. Deze geordende lichamen zijn echter principieel verschillend. De verzameling R is bijvoorbeeld aanzienlijk
STELLINGEN & BEWIJZEN 5VWO wiskunde B 1 e versie
STELLINGEN & BEWIJZEN 5VWO wiskunde B 1 e versie Euclides van Alexandrië (ca. 265-200 v.chr.) Thales van Milete (ca. 624 v.chr. - 547 v.chr.) INHOUDSOPGAVE Algemene begrippen..blz. 1-3 - Stelling en bewijs
De Stelling van Pascal Inhoud
De Stelling van Pascal Inhoud 1 Inleiding De stelling van Pascal voor een cirkel en ellips 3 De stelling van Pascal voor hyperbolen en parabolen 4 De stelling van Pappus 5 Een bewijs van Jan van IJzeren
Modelleren en Programmeren
Modelleren en Programmeren Deeltoets 2. Proefopgaven Het tentamen bestaat uit tien vragen, elk goed voor drie punten. minimaal 16.5 uit 30 punten haalt. Je bent geslaagd als je Opgave 1 Neem de volgende
inleiding theoretische informatica practicum 1 deadline woensdag 20 februari 2008 om uur
1 Inleiding inleiding theoretische informatica 2007-2008 practicum 1 deadline woensdag 20 februari 2008 om 14.00 uur Dit practicum is een kennismaking met functioneel programmeren. Twee belangrijke functionele
Oefenopgaven Stelling van Pythagoras.
Oefenopgaven Stelling van Pythagoras. 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en CD. B. Laat door middel van berekening zien dat hoek B van driehoek ABC
In de 4som-puzzel kun je de gegeven sommen variëren. Nog zo eentje.
4som kaart a In een 4som-puzzel moeten in vier hokjes getallen worden geschreven. Van de (horizontale) rijen en van de (verticale) kolommen is de som gegeven en ook van de diagonalen. Welke getallen moeten
Hoofdstuk 7 : Gelijkvormige figuren
Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor
Paragraaf 8.1 : Recursieve en directe formule
Hoofdstuk 8 Rijen en veranderingen (V5 Wis A) Pagina 1 van 11 Paragraaf 8.1 : Recursieve en directe formule Les 1 Rijen en recursievergelijking Definities : Wat is een rij Gegeven is de rij u = { 5,10,20,40
Tentamen Programmeren in C (EE1400)
TU Delft Tentamen Programmeren in C (EE1400) 3 feb. 2012, 9.00 12.00 Faculteit EWI - Zet op elk antwoordblad je naam en studienummer. - Beantwoord alle vragen zo nauwkeurig mogelijk. - Wanneer C code gevraagd
Eigenschap (Principe van welordening) Elke niet-lege deelverzameling V N bevat een kleinste element.
Hoofdstuk 2 De regels van het spel 2.1 De gehele getallen Grof gezegd kunnen we de (elementaire) getaltheorie omschrijven als de wiskunde van de getallen 1, 2, 3, 4,... die we ook de natuurlijke getallen
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: [email protected] studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 5 J.Keijsper (TUE)
Examen Datastructuren en Algoritmen II
Tweede bachelor Informatica Academiejaar 2012 2013, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele
Examen Datastructuren en Algoritmen II
Tweede bachelor Informatica Academiejaar 2008 2009, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke
1 Cartesische coördinaten
Cartesische coördinaten Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-d Analytische Meetkunde Cartesische coördinaten Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er
1 Junior Wiskunde Olympiade 2006-2007: eerste ronde
1 Junior Wiskunde Olympiade 2006-2007: eerste ronde 1 Welke ongelijkheid is juist? (A) 3 5 < 2 6 (C) 5 6 < 3 (B) 3 7 < 2 (D) 5 7 < 2 10 (E) 5 < 6 7 2 Hoeveel vierkante meter is 1600 vierkante centimeter?
Enkel-, Dubbelverhouding en Harmonische Objecten
januari 2008 Enkel-, Dubbelverhouding en Harmonische Objecten Inleiding In de meetkunde werkt men vaak met verhoudingen van de afstanden van één punt tot twee andere. In het bijzonder natuurlijk bij de
1 Vlaamse Wiskunde Olympiade : Tweede Ronde.
Vlaamse Wiskunde Olympiade 99-99 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination
1 Inleiding in Functioneel Programmeren
1 Inleiding in Functioneel Programmeren door Elroy Jumpertz 1.1 Inleiding Aangezien Informatica een populaire minor is voor wiskundestudenten, leek het mij nuttig om een stukje te schrijven over een onderwerp
Matrixoperaties. Definitie. Voorbeelden. Een matrix is een rechthoekig array van getallen, die kentallen of elementen heten.
Definitie Een matrix is een rechthoekig array van getallen, die kentallen of elementen heten. Voorbeelden De coëfficiëntenmatrix of aangevulde matrix bij een stelsel lineaire vergelijkingen. Een rij-echelonmatrix
Noordhoff Uitgevers bv
V-1a c d e 1 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rechthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 = 8 roostervierkantjes.
Paragraaf 4.1 : Gelijkvormigheid
Hoofdstuk 4 Meetkunde (V4 Wis B) Pagina 1 van 8 Paragraaf 4.1 : Gelijkvormigheid Les 1 : Gelijkvormigheid Definities sin( A) = Overstaande Schuine cos( A) = Aanliggende Schuine = O S = A S tan( A) = Overstaande
Babel fish. Opgave. Invoer. Uitvoer
Babel fish Nadat je noodgedwongen de aarde hebt verlaten wegens een aanval van een vijandig buitenaards ras Gia Duk, ben je terechtgekomen op een andere planeet. Uiteraard spreken de aliens een compleet
44 De stelling van Pythagoras
44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt
Hoofdstuk 1 - Eigenschappen
Wiskunde Leerjaar 2 - periode 2 Rekenen met letters Hoofdstuk 1 - Eigenschappen De commutatieve eigenschap 1. Tel de volgende getallen bij elkaar op: Maakt het uit in welke volgorde je twee getallen bij
Deeltoets Digitale technieken
Deeltoets Digitale technieken André Deutz 22 oktober, 2007 De opgaven kunnen uiteraard in een willekeurige volgorde gemaakt worden geef heel duidelijk aan op welke opgave een antwoord gegegeven wordt.
Aanvullingen bij Hoofdstuk 6
Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W
Wiskunde Opdrachten Pythagoras
Wiskunde Opdrachten Pythagoras Opdracht 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en AC. B. Laat door middel van berekening zien dat hoek B van driehoek
CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus
CEVA-DRIEHOEKEN Eindwerk wiskunde 010 Heilige-Drievuldigheidscollege 6WeWIi Soetemans Dokus Inhoud 1. Inleiding... 4 1.1. Info over Giovanni Ceva... 4 1.. Wat zijn Ceva-driehoeken?... 4 1.3. Enkele voorbeelden...
1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde.
Vlaamse Wiskunde Olympiade 989-990: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -
Reguliere Expressies
Reguliere Expressies Een reguliere expressie (regexp, regex, regxp) is een string (een woord) die, volgens bepaalde syntaxregels, een verzameling strings (een taal) beschrijft Reguliere expressies worden
Massa punten. Hector Mommaerts
Massa punten Hector Mommaerts 2 Hoofdstuk 1 Definities Een massa punt is een paar (n, P ), waarbij n een positief getal is en het gewicht genoemd wordt en waarbij P een punt is. Soms gebruikt men ook de
Getaltheorie groep 3: Primitieve wortels
Getaltheorie groep 3: Primitieve wortels Trainingsweek juni 2008 Inleiding Voor a relatief priem met m hebben we de orde van a modulo m gedefinieerd als ord m (a) = min { n Z + a n 1 (mod m) }. De verzameling
