Prof. Dr. Paul G. Igodt K.U.Leuven Campus Kortrijk

Maat: px
Weergave met pagina beginnen:

Download "Prof. Dr. Paul G. Igodt K.U.Leuven Campus Kortrijk"

Transcriptie

1 Prof Dr Paul G Igodt KULeuven Campus Kortrijk PaulIgodt@kuleuven-kortrijkbe

2 Proloog Voorwoord Deze cursusnota s vormen eerder een werkdocument dan een naslagwerk, bedoeld voor studenten die hun studies in de Toegepaste Economische Wetenschappen aanvatten Over het geheel gezien en samenvattend gesteld komen de volgende zaken aan bod: de elementaire lineaire algebra en de functieleer (of analyse) waarbij zowel functies van één als van meerdere variabelen aan bod komen Alhoewel deze cursus zich zeker niet specifiek toelegt op het wiskundig bewijzen, trachten we - binnen het toegemeten tijdsbestek - op zijn minst het zorgvuldig redeneren te bevorderen Zoveel als mogelijk is er aandacht voor economisch getinte toepassingen en probleem-oplossend denken Zowel het bouwen van een wiskundig model voor het vraagstuk als het behandelen en oplossen van dat gemodelleerd probleem zijn hierbij belangrijk Niemand zal ontkennen dat de economische wetenschappen trouwens, zoals nog andere jonge disciplines de laatste decennia in toenemende mate beroep doen op wiskunde als taal en middel: als taal om er (economische) problemen en vraagstukken in te formaliseren, om er (economische) modellen en theorieën in te beschrijven en op te bouwen; als middel in de hoop diezelfde problemen met gepaste technieken te kunnen oplossen of beheersen, in de hoop van gebaseerd op die modellen en theorieën te verwachten economische evoluties te kennen, te begrijpen of, wie weet, te voorspellen Alhoewel deze nota s zich eerder toeleggen op de wiskunde als middel, willen we op zijn minst bij de formulering van opgaven en resultaten en bij de oplossing van de vraagstukken ook het grote belang van de preciese taal onderlijnen Dit aspect van de vorming is, helaas, maar al te vaak het eerste slachtoffer in programmareducties, terwijl het net datgene is waaruit dieper inzicht of grondiger werken blijkt Een bijzonder woord van dank gaat naar medewerker Rein Duyck, die als kritische lezer en inspirator voor talrijke oefeningen een wezenlijke bijdrage leverde September 2010 Kortrijk Paul Igodt PaulIgodt@kuleuven-kortrijkbe π Academiejaar Pagina 2

3 Hoofdstuk I Bouwstenen In het voorwoord hebben we opgemerkt dat heel wat problemen, uit de reële wereld gegrepen, via het opstellen van een wiskundig model kunnen vertaald worden naar een wiskundig probleem Dit vertalen veronderstelt natuurlijk dat we beschikken over een zekere taal In dit hoofdstuk beschrijven we de primaire woordenschat van deze taal: verzamelingen, relaties en functies Onontbeerlijke verzamelingen bij het kwantitatief beschrijven van tal van fenomenen zijn uiteraard de getallenverzamelingen Hun structuur en typische eigenschappen willen we hier ook even kort belichten 1 Wiskundige beweringen De wiskunde houdt zich bezig met het beschrijven en ontwikkelen van concepten die voortgekomen zijn uit de studie van ruimte en getallen Om wiskundige ideeën te formuleren moeten we beweringen kunnen doen over wiskundige objecten Een groot deel van de activiteit van een wiskundige kan gezien worden als het formuleren van wiskundige beweringen en het onderzoeken of deze beweringen waar of niet waar zijn We zullen geen preciese formulering geven van wat een wiskundige bewering is Aan de hand van eenvoudige voorbeelden zullen we de lezer met wiskundige beweringen vertrouwd maken We beginnen met het begrip propositie Een propositie is een zin die ofwel waar is of ofwel niet waar is (maar niet allebei) Voor het moment speelt het geen rol of de propositie waar is of niet Hier zijn wat voorbeelden (1) 1+1 = 2 (2) π = 3 (3) 14 kan geschreven worden als de som van twee priemgetallen (4) Elk even getal groter dan 2 kan geschreven worden als de som van twee priemgetallen (5) Het kwadraat van een oneven getal is oneven (6) n is een priemgetal (7) n 2 > 2n (8) a < b (9)

4 Hoofdstuk II Analyse van functies f : R R 1 Enkele belangrijke types functies R R 11 Veeltermfuncties Een veeltermfunctie f : R R : x f(x), is een functie van het type f(x) = a n x n +a n 1 x n 1 ++a 1 x+a 0, waarin de coëfficiënten a i R Als a n 0, spreken we van een veeltermfunctie van graad n Merk op dat de som, het product en de samenstelling van veeltermfuncties opnieuw veeltermfuncties zijn Ga in elk van deze gevallen na, wat er gebeurt met de graad Enkele bijzondere gevallen van veeltermfuncties worden in het secundair onderwijs ruim onder de aandacht gebracht We beperken ons hier tot een zeer bondige herhaling (1) De constante functies f : R R : x f(x) = a 0, zijn veeltermfuncties van graad 0 (2) Veeltermfuncties van de eerste graad zijn van de vorm f : R R : x f(x) = ax+b De grafiek van dergelijke functies wordt gegeven door een rechte Wat is de betekenis van de coëfficiënten a en b? (3) Veeltermfuncties van de tweede graad hebben een grafiek die bekend staat als een parabool Herhaal hoe die grafiek eruit ziet als f : R R : x f(x) = ax 2 +bx+c Welke is de rol van a, b en c? 12 Exponentiële en logaritmische functies 121 Inleidende voorbeelden: groei- en vervalprocessen 1211 Voorbeeld: bevolkingsaangroei De bevolking van een zeker ontwikkelingsland verdubbelt om de 20 jaar We nemen aan dat de relatieve aangroei van de bevolking over een bepaalde tijdspanne T constant blijft Dit wil zeggen dat, voor elke T > 0, de verhouding bevolkingsgrootte op ogenblik t + T bevolkingsgrootte op ogenblik t niet afhangt van t We gaan op zoek naar een functie p : R R + : t p(t) zo dat de grootte van de bevolking op het ogenblik t (gemeten in perioden van 20 jaar) gegeven wordt door P 0 p(t) waarbij P 0 de huidige populatiegrootte is In elk geval hebben we reeds volgende informatie over p: t p(t)

5 Hoofdstuk III Analyse van functies f : R n R 1 Inleidende begrippen over functies f : R n R 11 Motiverende voorbeelden In zeer veel concrete situaties krijgt men te maken met een grootheid die van meerdere variabelen afhangt of/en zelf meerdere componenten heeft Deze grootheden kunnen dan wiskundig beschreven worden als functies op R n (= R R R (n factoren)) waarbij n het aantal variabelen is waarvan de beschouwde grootheid afhangt We geven enkele voorbeelden grootheid hangt af van functie hoogte aardoppervlak plaats h : R 2 R : (x,y) h(x,y) temperatuur plaats T : R 2 R : (x,y) T(x,y) luchtdruk plaats p : R 2 R : (x,y) p(x,y) wind (richting en snelheid) plaats W : R 2 R 2 : (x,y) W(x,y) grootheid positie bewegend deeltje in de ruimte vraag naar boter productiehoeveelheid hangt af van functie tijd s : R R 3 : t s(t) prijs boter prijs margarine V : R2 R : (p b,p m ) V(p b,p m ) kapitaal, arbeid Q : R 2 R : (K,A) Q(K,A) In elk van deze gevallen krijgen we te maken met functies f : R n R m Een functie f : R n R m komt eigenlijk overeen met het geven van m componentfuncties f j : R n R (j = 1,2,,m) Dit wordt duidelijker als volgt: f : R n R m (x 1,x 2,,x n ) ( f 1 (x 1,x 2,,x n ),f 2 (x 1,x 2,,x n ),,f m (x 1,x 2,,x n ) ) Om deze reden zal het vaak voldoende zijn functies f : R n R te bestuderen 12 Over de voorstelling van functies van meerdere variabelen 121 Grafiek van een functie f : R 2 R De grafiek van een functie g : R R was een handig middel om heel wat informatie over g te visualiseren De grafiek van g is eigenlijk niets anders dan de functie g zelf als deelverzameling van R 2 maarwaarbijwenur 2 identificerenmeteen vlakwaarinweeenrechthoekigassenstelselhebben 103

6 Hoofdstuk IV Basisbegrippen uit de meetkunde 1 Euclidische structuur van R n Naast zijn algebraische structuur nuttig om te rekenen, zie ook hoofdstuk VII heeft R n nog een structuur die ons zal toelaten om te spreken over afstand en hoeken, maw over meetkunde Dit is de zogenaamde Euclidische 1 structuur Het voornaamste ingrediënt hiervoor is het scalair product Elementen van R n noteren we kortweg x (resp y, ), waarbij x staat voor het n tal (x 1,x 2,,x n ) (resp (y 1,,y n )) We spreken van vectoren x en y Later zal ook de kolomnotatie x 1 x 2 x = x n vaak gebruikt worden 11 Definitie Het scalair product (of inproduct) op R n is de afbeelding gedefinieerd door, : R n R n R : (x,y) x,y x,y = x 1 y 1 +x 2 y 2 ++x n y n voor x = (x 1,x 2,,x n ), y = (y 1,y 2,,y n ) R n Het getal x,y noemen we het scalair product van x met y Wanneer we expliciet het scalair product op R n veronderstellen, spreken we kortweg van de Euclidische ruimte R n Een andere notatie voor het scalair product is x y Vaak schrijft men ook y 1 y 2 < x,y >= x y = (x 1,x 2,,x n ) y n Een meetkundige betekenis van het scalair product is niet onmiddellijk duidelijk We komen er straks op terug Volgende eigenschappen zijn alvast eenvoudig als oefening na te gaan 1 Naar Euclides, Alexandrië (Egypte), ca voor Christus 119

7 Hoofdstuk V Aanvullende topics analyse voor functies R n R 1 Totale afgeleide (differentiaal) 11 Inleiding De partiële afgeleiden van een functie f in een punt a geven enkel informatie over de mate van verandering van f als we a variëren in de richting van één van de coördinaatassen Er wordt helemaal niets gezegd over wat er gebeurt als we a in een andere richting variëren Daarom geven de partiële afgeleiden slechts een zeer gedeeltelijke informatie over het gedrag van f in a Het kan bijvoorbeeld gebeuren dat alle partiële afgeleiden van f in a bestaan maar dat f toch niet continu is in a (iets wat zich niet voordeed bij functies R R) Een concreet voorbeeld hiervan (met een niet eens zo wild functievoorschrift) is de functie { xy f : R 2 R : (x,y) x 2 +y 2 als (x,y) (0,0), 0 als (x,y) = (0,0), waarvan de grafiek hieronder gegeven wordt 0 z 1-1 x y Deze functie is niet continu in (0,0) want f(0,0) = 0 terwijl er in elke omgeving van (0,0), hoe klein die omgeving ook is, punten zijn die als beeld 1/2 krijgen Immers, voor alle t 0 is f(t,t) = 1/2 Nochtans is deze functie partieel afleidbaar in (0,0) Zo is (D 1 f)(0,0) = lim h 0 f(h,0) f(0,0) h en analoog toont men aan dat (D 2 f)(0,0) = = lim h h = 0

8 Aanvullende topics analyse voor functies R R Hoofdstuk VI 1 Integratie van functies R R 11 Begripsstichting en definitie van de Riemannintegraal 111 Motiverende problemen Beschouw volgende problemen (1) Zij f : [a,b] R + een begrensde functie Wat is de oppervlakte S begrensd door de rechten met vergelijking x = a, x = b, de X-as en de grafiek van de functie? a b f X Y S =? (2) Veronderstel dat we op elk ogenblik de snelheid van een rijdende auto kennen We kennen dus de functie v : R R : t v(t) met v(t) = snelheid op ogenblik t τ T t v Wat is de afstand s die de auto aflegt in het tijdsinterval [τ,t]? (3) Veronderstel dat het management van een bedrijf de marginale kostfunctie k : R + 0 R : q k(q) van het bedrijf kent Dergelijke functie heeft typisch volgende grafiek 165

9 Hoofdstuk VII Lineaire algebra 1 Economische problemen en lineaire stelsels (1) Een veevoederhandelaarmaaktmet 5basisgrondstoffen, G 1, G 2, G 3, G 4 en G 5, veevoedersdie moeten voldoen aan bepaalde kenmerken qua voedingswaarde Veronderstel dat de hoeveelheid vitaminen van type A, B en C in één zak van de basisgrondstoffen, gemeten in de gepaste eenheid, beschreven wordt door volgende tabel: G 1 G 2 G 3 G 4 G 5 A B C Zo bevat bv 1 zak van basisgrondstof G 1 1 eenheid vitamine A, 3 eenheden vitamine B en 4 eenheden vitamine C Een afnemer wil een mengsel krijgen waarin in totaal resp 11, 9 en 20 eenheden vitamine A, B en C zitten Kan de handelaar zulk een mengsel samenstellen als hij bij het uitvoeren van elke bestelling enkel een geheel aantal zakken van elke basisgrondstof wil gebruiken? Zijn er meerdere mogelijke combinaties van de verschillende beschikbare grondstoffen mogelijk, die dit zullen realiseren? We bekijken de vraag van de klant Zij x, y, z, s en t het aantal zakken dat de handelaar respectievelijk van basisgrondstof G 1, G 2, G 3, G 4 en G 5 nodig heeft om het gevraagde mengsel M 1 te maken Dan moet: x + 2y + 3z + 2s + 4t = 11 3x + 3y + s + 4t = 9 4x + 5y + 3z + 2s + t = 20 of nog, in matrixvorm, x y z s t = Het probleem kunnen we dus opsplitsen in twee deelproblemen: (1 ) Bestaan er x,y,z,s,t R die voldoen aan (11)? (11) (1 ) Zoja, kunnenwe dande verzamelingbeschrijvenvanallemogelijke5-tallen(x,y,z,s,t) R 5 die aandie vergelijkingvoldoen? Zijn erin die verzameling5-tallen waarvoorx,y,z,s,t N? Bovendien kan het voor dit bedrijf dat ongetwijfeld meerdere klanten heeft voordelig zijn, om meteen een antwoord te bestuderen voor het probleem (1 ) Voor welke drietallen (a,b,c) R 3 kan het bedrijf een mengsel van de beschikbare grondstoffen maken(eventueel met gehele aantallen zakken van elke grondstof) zodat voldaan 193

10 Inhoudsopgave I Bouwstenen 1 1 Wiskundige beweringen 1 2 De taal van verzamelingen 7 3 Kwantoren 17 4 Relaties (algemeen) 20 5 Orde- en equivalentierelaties 22 6 Functies 25 7 Rijen 33 8 Getallenverzamelingen 36 II Analyse van functies f : R R 45 1 Enkele belangrijke types functies R R Veeltermfuncties Exponentiële en logaritmische functies Goniometrische functies 54 2 Continuïteit en limieten van functies R R 57 3 Afgeleiden van functies R R Begripsstichting, definitie en betekenis van afgeleide Definitie Eigenschappen en rekenregels voor afgeleiden Extrema Definitie Middelwaardestellingen van Rolle en Lagrange Hogere orde afgeleiden Definitie Taylorontwikkeling Economische toepassingen 99 III Analyse van functies f : R n R Inleidende begrippen over functies f : R n R

11 2 Partiële afgeleiden van functies f : R n R 109 IV Basisbegrippen uit de meetkunde Euclidische structuur van R n (Euclidische) meetkunde in R 2 ( vlakke meetkunde) (Euclidische) meetkunde in R 3 (ruimtemeetkunde) 129 V Aanvullende topics analyse voor functies R n R Totale afgeleide (differentiaal) Homogene functies Richtingsafgeleiden en gradiënt van functies f : R n R Impliciet gedefinieerde functies Vrije extrema van functies f : R 2 R Extrema van functies f : R 2 R onder randvoorwaarden 155 VI Aanvullende topics analyse voor functies R R Integratie van functies R R 165 VIILineaire algebra Economische problemen en lineaire stelsels Algemene probleemstelling, lineaire afbeeldingen en matrices Praktische oplossingsmethode voor stelsels Een evolutievraagstuk, machten van matrices, eigenwaarden en eigenvectoren 218 π Academiejaar Pagina 230

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

Bespreking Examen Analyse 1 (Augustus 2007)

Bespreking Examen Analyse 1 (Augustus 2007) Bespreking Examen Analyse 1 (Augustus 2007) Vooraf: Zoals het stilletjes aan een traditie is geworden, geef ik hier bedenkingen bij het examen van deze septemberzittijd. Ik zorg ervoor dat deze tekst op

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Wiskunde met (bedrijfs)economische toepassingen

Wiskunde met (bedrijfs)economische toepassingen FACULTEIT TEW Wiskunde met (bedrijfs)economische toepassingen Oefenexamens 1ste Bachelor TEW Eerste deel (januari) Academiejaar 2013-2014 Het examen vindt voor iedereen plaats in twee delen : het eerste

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

Wiskunde in het eerste bachelorjaar handelsingenieur

Wiskunde in het eerste bachelorjaar handelsingenieur Positie van wiskunde in de opleiding HIR Wiskunde in het eerste bachelorjaar handelsingenieur Wat en hoe? Departement Wiskunde, K.U.Leuven Lerarendag Wiskunde FEB, 6 mei 2010 Positie van wiskunde in de

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen

Vector-en matrixvergelijkingen. Figuur: Vectoren, optellen Vector-en matrixvergelijkingen (a) Parallellogramconstructie (b) Kop aan staartmethode Figuur: Vectoren, optellen (a) Kop aan staartmethode, optellen (b) Kop aan staart methode, aftrekken Figuur: Het optellen

Nadere informatie

M1 Wiskundig taalgebruik en notaties

M1 Wiskundig taalgebruik en notaties M1 Wiskundig taalgebruik en notaties Verzamelingenleer Verzameling = aantal objecten samengebracht tot een geheel - Lege verzameling = verzameling die geen elementen bevat A = - Singleton verzameling =

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

(iii) Enkel deze bundel afgeven; geen bladen toevoegen, deze worden toch niet gelezen!

(iii) Enkel deze bundel afgeven; geen bladen toevoegen, deze worden toch niet gelezen! Examen Wiskundige Basistechniek, reeks A 12 oktober 2013, 13:30 uur Naam en Voornaam: Lees eerst dit: (i) Naam en voornaam hierboven invullen. (ii) Nietje niet losmaken. (iii) Enkel deze bundel afgeven;

Nadere informatie

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat.

Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat. Het gevolgde leerplan is D/2002/0279/047. In de onderstaande tabel vind je een overzicht van de doelstellingen en waar ze in Delta Nova 4a en 4b (leerweg 5) terug te vinden zijn. B = basisdoelstelling

Nadere informatie

(x x 1 ) + y 1. x x k+1 x k x k+1

(x x 1 ) + y 1. x x k+1 x k x k+1 Les Talor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen

Nadere informatie

Faculteit Industriële Wetenschappen

Faculteit Industriële Wetenschappen Faculteit Industriële Wetenschappen Campus Geel Vakantiecursussen Wiskunde en Chemie 2013 Algemene informatie De vakantiecursussen zijn opgesplitst in modules. Je hoeft niet voor al deze modules in te

Nadere informatie

Schoolagenda klas 5d GWi8-WWi8

Schoolagenda klas 5d GWi8-WWi8 Schoolagenda klas 5d GWi8-WWi8 Koen De Naeghel Onze-Lieve-Vrouwecollege Assebroek schooljaar 2014-2015 Eerste trimester Toetsen 6 repetities en enkele kleine, aangekondigde testen (75% TTE) dag en datum

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS deel 1 LOTHAR PAPULA 2e druk > ACADEMIC SERVICE inhoud 1 Algemene grondbegrippen 1 1.1 Enkele basisbegrippen in de verzamelingenleer 1 1.1.1 Definitieenbeschrijvingvaneenverzameling

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules. I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk

Nadere informatie

b + b c + c d + d a + a

b + b c + c d + d a + a Voorwoord De wiskundige vorming die in de wiskundig sterke richtingen van het Vlaamse secundair onderwijs wordt aangeboden, vormt een zeer degelijke basis voor hogere studies in wetenschappelijke, technologische

Nadere informatie

Schooljaar: Leerkracht: M. Smet Leervak: Wiskunde Leerplan: D/2002/0279/048

Schooljaar: Leerkracht: M. Smet Leervak: Wiskunde Leerplan: D/2002/0279/048 Blz: 1/5 04 09 09 1.1 STELLING VAN PYTHAGORAS ouwregel tot Pythagoras: formulering. 07 09 09 11 09 09 14 09 09 18 09 09 21 09 09 22 09 09 25 09 09 29 09 09 01 10 09 02 10 09 06 10 09 08 10 09 09 10 09

Nadere informatie

1 Continuïteit en differentieerbaarheid.

1 Continuïteit en differentieerbaarheid. 1 1 Continuïteit en differentieerbaarheid. In dit hoofdstuk bekijken we continuiteit en differentieerbaarheid voor functies van meerdere variabelen. Ter orientatie repeteren we eerst hoe het zat met functies

Nadere informatie

Modulen voor Calculus- en Analysevakken

Modulen voor Calculus- en Analysevakken Modulen voor Calculus- en Analysevakken Versie juni 2005 Deze indeling in modulen is zoveel mogelijk onafhankelijk van enig leerboek. Echter, om de invulling ervan concreet te maken is er aangegeven waar

Nadere informatie

Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1

Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1 Inhoud Aan de student V Studiewijzer Aan de docent VII IX Over de auteurs XI Hoofdstuk 0 Basiswiskunde 1 Leereenheid 0.1 Elementaire algebra 3 0.1.1 Verzameling van getallen en het symbool 4 0.1.2 Merkwaardige

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Examen Wiskundige Basistechniek 15 oktober 2011

Examen Wiskundige Basistechniek 15 oktober 2011 Examen Wiskundige Basistechniek 15 oktober 2011 vraag 1: Gegeven is het complex getal ω = exp(i π 5 ). vraag 1.1: Als we in het complexe vlak het punt P met cartesiaanse coördinaten (x, y) vereenzelvigen

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS deel 2 LOTHAR PAPULA 2e druk > ACADEMIC 5 E R V I C Inhoud 1 Lineaire algebra 1 1.1 Vectoren I 1.2 Matrices 4 1.2.1 Een inleidend voorbeeld 4 1.2.2 Definitie

Nadere informatie

Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30)

Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30) Examen Lineaire Algebra en Meetkunde Tweede zit 2016-2017 (13:30-17:30) 1 Deel gesloten boek (theorie) (5.5pt) - indienen voor 14u30 (0.5pt) Geef de kleinste kwadratenoplossing van het stelsel AX = d,

Nadere informatie

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville. Academiejaar 006-007 1ste semester februari 007 Analyse I 1. Toon aan dat elke begrensde rij een convergente deelrij heeft. Geef de definitie van een Cauchy rij, en toon aan dat elke Cauchy rij begrensd

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen 1ste Bachelor Fysica en Sterrenkunde Academiejaar 014-015 1ste semester 1 oktober 014 Wiskundige Technieken 1. Beschouw een scalaire functie f : R R en een vectorveld

Nadere informatie

Opgaven Inleiding Analyse

Opgaven Inleiding Analyse Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van iet dat y 0 y = 0. (b) Bewijs y 0 y 3 = 0 uit de definitie van iet. (c) Bewijs y 0 y 3

Nadere informatie

Zomercursussen Wiskunde en Chemie 2016

Zomercursussen Wiskunde en Chemie 2016 FACULTEIT INDUSTRIËLE INGENIEURSWETENSCHAPPEN Campus Geel Zomercursussen Wiskunde en Chemie 2016 Voor de opleidingen Industrieel Ingenieur: Bachelor en Master in de biowetenschappen Bachelor en Master

Nadere informatie

(x x 1 ) + y 1. x x 1 x k x x x k 1

(x x 1 ) + y 1. x x 1 x k x x x k 1 Les Taylor reeksen We hebben in Wiskunde een aantal belangrijke reële functies gezien, bijvoorbeeld de exponentiële functie exp(x) of de trigonometrische functies sin(x) en cos(x) Toen hebben we wel eigenschappen

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie HOVO Utrecht Les 1: Goniometrie en vectoren Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Overzicht colleges 1. College 1 1. Goniometrie 2. Vectoren 2. College

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking

Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking Tentamen Grondslagen van de Wiskunde A Met beknopte uitwerking 10 december 2013, 09:30 12:30 Dit tentamen bevat 5 opgaven; zie ook de ommezijde. Alle opgaven tellen even zwaar (10 punten); je cijfer is

Nadere informatie

Inleiding Analyse 2009

Inleiding Analyse 2009 Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn

Nadere informatie

WI1708TH Analyse 3. College 2 12 februari Challenge the future

WI1708TH Analyse 3. College 2 12 februari Challenge the future WI1708TH Analyse 3 College 2 12 februari 2015 1 Programma Vandaag Partiële afgeleiden (14.3) Hogere orde partiële afgeleiden (14.3) Partiële differentiaal vergelijkingen (14.3) 2 Functies van twee variabelen

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Les 2 Lineaire afbeeldingen Als een robot bij de robocup (het voetbaltoernooi voor robots een doelpunt wil maken moet hij eerst in de goede positie komen, d.w.z. geschikt achter de bal staan. Hiervoor

Nadere informatie

Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren

Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren a = (a 1,..., a s ) en b = (b 1,..., b s ). Toepassing van deze Cauchy Schwarz-ongelijkheid levert

Nadere informatie

2014-2015 Naam Vak Wiskunde Niveau Mavo geldend voor klas 10. Jaar Toetsnaam Type Omschrijving Afnamemoment Weegfactor PTA

2014-2015 Naam Vak Wiskunde Niveau Mavo geldend voor klas 10. Jaar Toetsnaam Type Omschrijving Afnamemoment Weegfactor PTA 2014-2015 Naam Vak Wiskunde Niveau Mavo klas 10 Jaar naam Type Omschrijving Afnamemoment Weegfactor PTA Herkansbaar Weegfactor Rapportcijfer 9 toets 1 Analyse-I trim1/tw1 Nee 33% 9 toets 2 Analyse -II

Nadere informatie

Signalen 4CA00 (1) Gedeelte Signalen, docent M.J.G. van de Molengraft. Gedeelte Wiskunde, docent F.J.L. Martens

Signalen 4CA00 (1) Gedeelte Signalen, docent M.J.G. van de Molengraft. Gedeelte Wiskunde, docent F.J.L. Martens Signalen 4CA00 (1) Gedeelte Signalen, docent M.J.G. van de Molengraft Gedeelte Wiskunde, docent F.J.L. Martens Inhoud wiskundedeel Functies van meer variabelen Partiële afgeleiden Extrema Eigenwaarden

Nadere informatie

Didactische wenken bij het onderdeel analyse

Didactische wenken bij het onderdeel analyse Didactische wenken bij het onderdeel analyse Didactische wenken bij het onderdeel analyse 1/21 1. Eindtermen analyse Eindtermen ASO tweede graad ET 22 3 (4) aspecten van een functie ET 23 Standaardfuncties

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

WI1708TH Analyse 3. College 5 23 februari Challenge the future

WI1708TH Analyse 3. College 5 23 februari Challenge the future WI1708TH Analyse 3 College 5 23 februari 2015 1 Programma Vandaag Richtingsafgeleide (14.6) Gradiënt (14.6) Maximalisatie richtingsafgeleide (14.6) Raakvlak voor niveauoppervlakken (14.6) 2 Richtingsafgeleide

Nadere informatie

RESULTATEN BEVRAGING KSO/TSO

RESULTATEN BEVRAGING KSO/TSO Pagina 1 van 5 (19 scholen hebben de bevraging ingevuld) 1 Overzicht studierichtingen en complementaire uren Ingericht 6 uur 8 uur Andere (*) Architecturale Vorming Biotechnische Techniek Industriële 10

Nadere informatie

Samen slaan we de brug naar het onderwijs van morgen.

Samen slaan we de brug naar het onderwijs van morgen. Samen slaan we de brug naar het onderwijs van morgen. Pienter 3DE GRAAD TSO 2017-2018 en 2018-2019 Vernieuwing Pienter 2 de graad tso 2019-2020 Vernieuwing Pienter 3 de graad tso (deel 1) Wat houdt de

Nadere informatie

HANDREIKINGEN VANUIT WISKUNDIG- DIDACTISCH ONDERZOEK: LOGARITMEN EN HET INPRODUCT TOM COENEN EN MARK TIMMER

HANDREIKINGEN VANUIT WISKUNDIG- DIDACTISCH ONDERZOEK: LOGARITMEN EN HET INPRODUCT TOM COENEN EN MARK TIMMER HANDREIKINGEN VANUIT WISKUNDIG- DIDACTISCH ONDERZOEK: LOGARITMEN EN HET INPRODUCT TOM COENEN EN MARK TIMMER INHOUDSOPGAVE WAT GAAN WE VANDAAG ALLEMAAL DOEN? Logaritmen De setting Geschiedenis van de logaritme

Nadere informatie

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening vwo A deel 4 13 Mathematische statistiek 13.1 Kansberekeningen 13.2 Kansmodellen 13.3 De normale verdeling 13.4 De n -wet 13.5 Discrete en continue verdelingen 13.6 Diagnostische toets 14 Algebraïsche

Nadere informatie

Een korte beschrijving van de inhoud

Een korte beschrijving van de inhoud Een korte beschrijving van de inhoud Lineaire algebra maakt een betrekkelijk eenvoudige behandeling van de meetkunde in een vlak of de ruimte mogelijk. Omgekeerd illustreren meetkundige toepassingen op

Nadere informatie

Tussentoets Analyse 2. Natuur- en sterrenkunde.

Tussentoets Analyse 2. Natuur- en sterrenkunde. Tussentoets Analyse 2. Natuur- en sterrenkunde. Dinsdag 9 maart 2010, 9.00-11.00. Het gebruik van een rekenmachine is toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een berekening of redenering.

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Lineaire algebra I (wiskundigen)

Lineaire algebra I (wiskundigen) Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Inhoudsopgave. I Theorie 1

Inhoudsopgave. I Theorie 1 Inhoudsopgave I Theorie 1 1 Verzamelingen 3 1.1 Inleiding........................................ 3 1.2 Bewerkingen met verzamelingen........................... 6 1.2.1 Vereniging (unie) van twee verzamelingen.................

Nadere informatie

Tentamen Lineaire Algebra B

Tentamen Lineaire Algebra B Tentamen Lineaire Algebra B 29 juni 2012, 9-12 uur OPGAVEN Uitwerkingen volgen na de opgaven 1. Gegeven is de vectorruimte V = R[x] 2 van polynomen met reële coefficienten en graad 2. Op V hebben we een

Nadere informatie

2015-2016 Naam Vak Wiskunde Niveau Mavo. Jaar Toetsnaam Type Omschrijving Afnamemoment Weegfactor PTA. Rapportcijfer

2015-2016 Naam Vak Wiskunde Niveau Mavo. Jaar Toetsnaam Type Omschrijving Afnamemoment Weegfactor PTA. Rapportcijfer 2015-2016 Naam Vak Wiskunde Niveau Mavo Jaar Toetsnaam Type Omschrijving Afnamemoment PTA Herkansbaar Rapportcijfer 9 toets 1 Toets Verbanden I 9/trim1/TW1 Nee 33% 9 toets 2 Toets Verbanden II 9/trim2/TW2

Nadere informatie

Dag van GeoGebra Probleemoplossende vaardigheden en onderzoekscompetentie wiskunde 28 mei 2011 Gent

Dag van GeoGebra Probleemoplossende vaardigheden en onderzoekscompetentie wiskunde 28 mei 2011 Gent 1 VERBORGEN FIGUREN 1.1 OPGAVE In heel wat klassieke opdrachten uit de meetkunde is het de bedoeling om een bepaalde figuur te tekenen indien een aantal punten gegeven zijn. De eigenschappen van deze figuur

Nadere informatie

Sint-Jan Berchmanscollege

Sint-Jan Berchmanscollege Sint-Jan Berchmanscollege Infobrochure Wiskunde (3de graad ASO) Leerlingprofiel Ben je een leerling die: goed is in het rekenen en redeneren met getallen? gemotiveerd is om elke dag voor wiskunde te studeren?

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015 Je hebt twee uur de tijd voor het oplossen van de vraagstukken. Elk vraagstuk is maximaal 10 punten waard. Begin elke opgave op een nieuw vel papier. µkw uitwerkingen 12 juni 2015 Vraagstuk 1. We kunnen

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 4 en raakvlakken collegejaar : 16-17 college : 4 build : 19 september 2016 slides : 30 Vandaag Snowdon Mountain Railway (Wales) 1 De richtingsafgeleide 2 aan een grafiek 3 Differentieerbaarheid

Nadere informatie

Naam Vak Wiskunde Niveau Mavo geldend voor klas 9 en 10. Jaar Toetsnaam Type Omschrijving Afnamemoment Weegfactor PTA.

Naam Vak Wiskunde Niveau Mavo geldend voor klas 9 en 10. Jaar Toetsnaam Type Omschrijving Afnamemoment Weegfactor PTA. 2017-2018 Naam Vak Wiskunde Niveau Mavo klas 9 en 10 Jaar naam Type Omschrijving Afnamemoment Herkansbaar Rapportcijfer 9 toets 1 Verbanden I 9/trim1/TW1 Nee 20% 9 toets 2 Verbanden II 9/trim2/TW2 Nee

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07

Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde. vrijdag 31 januari 2014, 8:30 12:30. Auditorium L.00.07 Examen G0U13 Bewijzen en Redeneren Bachelor 1ste fase Wiskunde vrijdag 31 januari 2014, 8:30 12:30 Auditorium L.00.07 Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen.

Nadere informatie

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of Enkelvoudige integralen Kernbegrippen Onbepaalde integralen Van onbepaalde naar bepaalde integraal Bepaalde integralen Integratiemethoden Standaardintegralen Integratie door splitsing Integratie door substitutie

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1 IJkingstoets Wiskunde-Informatica-Fysica 29 juni 206 Nummer vragenreeks: IJkingstoets wiskunde-informatica-fysica 29 juni 206 - reeks - p. /0 Oefening Welke studierichting wil je graag volgen? (vraag

Nadere informatie

Schoolagenda klas 6aMTWi-6bEcWi-6dWWi6

Schoolagenda klas 6aMTWi-6bEcWi-6dWWi6 Schoolagenda klas 6aMTWi-6bEcWi-6dWWi6 Koen De Naeghel Onze-Lieve-Vrouwecollege Assebroek schooljaar 2014-2015 Eerste trimester Toetsen 4 repetities en enkele kleine, aangekondigde toetsen (80% TTE) dag

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters, stelsels. 16 september dr.

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters, stelsels. 16 september dr. Voorbereiding toelatingsexamen arts/tandarts Wiskunde: veeltermfuncties en berekening parameters, stelsels 16 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating)

Nadere informatie

V Kegelsneden en Kwadratische Vormen in R. IV.0 Inleiding

V Kegelsneden en Kwadratische Vormen in R. IV.0 Inleiding V Kegelsneden en Kwadratische Vormen in R IV.0 Inleiding V. Homogene kwadratische vormen Een vorm als H (, ) = 5 4 + 8 heet een homogene kwadratische vorm naar de twee variabelen en. Een vorm als K (,

Nadere informatie

Wiskunde voor relativiteitstheorie

Wiskunde voor relativiteitstheorie Wiskunde voor relativiteitstheorie Utrecht Les : Goniometrie en vectoren Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist verzicht colleges. College. Goniometrie 2. Vectoren 2. College 2. Matrixen

Nadere informatie

Delta Nova 5. Didactische wenken. Analyse deel lesuren. N. Deloddere N. De Wilde R. Op de Beeck Y. Paduwat P. Tytgat

Delta Nova 5. Didactische wenken. Analyse deel lesuren. N. Deloddere N. De Wilde R. Op de Beeck Y. Paduwat P. Tytgat Delta Nova 5 Analyse deel 2 6-8 lesuren Didactische wenken N. Deloddere N. De Wilde R. Op de Beeck Y. Paduwat P. Tytgat Algemeen De structuur van de hoofdstukken biedt kansen om leerlingen actiever bij

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen 0

Nadere informatie

Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie

Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Tentamen: Convexe Analyse en Optimalisering Opleiding: Bacheloropleiding Econometrie Vakcode: 64200 Datum:

Nadere informatie

Algebra groep 2 & 3: Standaardtechnieken kwadratische functies

Algebra groep 2 & 3: Standaardtechnieken kwadratische functies Algebra groep 2 & 3: Standaardtechnieken kwadratische functies Trainingsweek juni 2008 Kwadraat afsplitsen Een kwadratische functie oftewel tweedegraads polynoom) px) = ax 2 + bx + c a 0) kan in verschillende

Nadere informatie

Modelvragen ijkingstoets. 1 Redeneren

Modelvragen ijkingstoets. 1 Redeneren Modelvragen ijkingtoets - KU Leuven, Groep W&T - versie 26 juni 2012 1 Modelvragen ijkingstoets Onderstaande vragen staan model voor de ijkingstoets georganiseerd door de groep wetenschap en technologie

Nadere informatie

Meetkunde en Algebra Een korte beschrijving van de inhoud

Meetkunde en Algebra Een korte beschrijving van de inhoud Meetkunde en Algebra Een korte beschrijving van de inhoud Lineaire algebra maakt een betrekkelijk eenvoudige behandeling van de meetkunde in een vlak of de ruimte mogelijk. Omgekeerd illustreren meetkundige

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Overzicht Fourier-theorie

Overzicht Fourier-theorie B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van

Nadere informatie

INLEIDENDE CURSUS WISKUNDE

INLEIDENDE CURSUS WISKUNDE INLEIDENDE CURSUS WISKUNDE Deze begeleidende tekst is een handleiding bij de inleidende cursus wiskunde in de opleiding Handelswetenschappen. Het gebruikte handboek [WBT] is: Verheyen, P. & Janssens, D.,

Nadere informatie

REËLE FUNCTIES BESPREKEN

REËLE FUNCTIES BESPREKEN INLEIDING FUNCTIES 1. DEFINITIE...3 2. ARGUMENT EN BEELD...4 3. HET FUNCTIEVOORSCHRIFT...5 4. DE FUNCTIEWAARDETABEL...7 5. DE GRAFIEK...9 6. FUNCTIES HERKENNEN...12 7. OEFENINGEN...14 8. OPLOSSINGEN...18

Nadere informatie

Het Wiskunde A1,2 examen

Het Wiskunde A1,2 examen 166 NAW 5/3 nr. 2 juni 2002 Het Wiskunde A1,2 examen Bert Zwaneveld Bert Zwaneveld afdeling Natuur- en Technische Wetenschappen Open Universiteit Nederland Postbus 2960, 6401 DL Heerlen bert.zwaneveld@ou.nl

Nadere informatie

OPLOSSINGEN VAN DE OEFENINGEN

OPLOSSINGEN VAN DE OEFENINGEN OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

INLEIDING FUNCTIES 1. COÖRDINATEN

INLEIDING FUNCTIES 1. COÖRDINATEN INLEIDING FUNCTIES 1. COÖRDINATEN...1 2. FUNCTIES...2 3. ARGUMENT EN BEELD...3 4. HET FUNCTIEVOORSCHRIFT...4 5. DE FUNCTIEWAARDETABEL...5 6. DE GRAFIEK...6 7. FUNCTIES HERKENNEN...7 8. OPLOSSINGEN...9

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen. Overzicht bestaande content. Deliverable 3.6. Hans Cuypers. ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen. Overzicht bestaande content. Deliverable 3.6. Hans Cuypers. ONBETWIST Deliverable 3. Overzicht bestaande content Deliverable 3.6 Hans Cuypers Inleiding Binnen het ONBETWIST project worden toetsen en items voor verschillende deelgebieden van de wiskunde gemaakt. In voorgaande projecten,

Nadere informatie

Vak Wiskunde Niveau Mavo. Jaar Toetsnaam Type Omschrijving Afnamemoment Weegfactor Herkansbaar Examendomein

Vak Wiskunde Niveau Mavo. Jaar Toetsnaam Type Omschrijving Afnamemoment Weegfactor Herkansbaar Examendomein 2018-2019 Vak Wiskunde Niveau Mavo Klas 9 en Jaar Toetsnaam Type Omschrijving Afnamemoment 9 Toets 1 Toets Verbanden I trim1/tw 1 5% ja K4 9 Toets 2 Toets Meetkunde I trim2 / TW 2 5% ja K5, K6 9 Toets

Nadere informatie

HANDBOEK Pienter 5/6 TSO 2/3/4u Exponentiële en logaritmische functies Pienter 6 TSO 2/3/4u Integralen STUDIERICHTING

HANDBOEK Pienter 5/6 TSO 2/3/4u Exponentiële en logaritmische functies Pienter 6 TSO 2/3/4u Integralen STUDIERICHTING JAARPLANNING GRAAD 3 VAK Wiskunde LEERJAAR 2 U/W 3+1 SCHOOLJAAR 2011-2012 HANDBOEK Pienter 5/6 TSO 2/3/4u Exponentiële en logaritmische functies Pienter 6 TSO 2/3/4u Integralen STUDIERICHTING 6BV LP NR

Nadere informatie

INLEIDING TOT DE HOGERE WISKUNDE

INLEIDING TOT DE HOGERE WISKUNDE INLEIDING TOT DE HOGERE WISKUNDE DEEL : Analyse van functies van één veranderlijke Arno KUIJLAARS Stefaan POEDTS Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 300 Heverlee

Nadere informatie

x a k of.x 1 a 1 / 2 + ::+.x n a n / 2 k 2 bol om a, straal k

x a k of.x 1 a 1 / 2 + ::+.x n a n / 2 k 2 bol om a, straal k Punten, Vectoren in de R n Punten: a =.a 1 ; a 2 ; : : : ; a n / ; b =.b 1 ; b 2 ; : : : ; b n / Vectoren: a = a 1 ; a 2 ; : : : ; a n ; b = b 1 ; b 2 ; : : : ; b n lengte van a : a = a 2 1 + : : : + a2

Nadere informatie