Inhoudsopgave. I Theorie 1
|
|
|
- Leo Timmermans
- 9 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Inhoudsopgave I Theorie 1 1 Verzamelingen Inleiding Bewerkingen met verzamelingen Vereniging (unie) van twee verzamelingen Doorsnede (intersectie) van twee verzamelingen Verschil van twee verzamelingen Eigenschappen van bewerkingen met verzamelingen Eigenschappen van de unie Commutativiteit van de unie Associativiteit van de unie Eigenschappen van de doorsnede Commutativiteit van de doorsnede Associativiteit van de doorsnede Distributiviteit Distributiviteit van de doorsnede t.o.v. de unie Distributiviteit van de unie t.o.v. de doorsnede Partitie van een verzameling Product van verzamelingen Geordend paar of koppel Product van twee verzamelingen Kwadraat van een verzameling Getallenverzamelingen Verzameling van de natuurlijke getallen Verzameling van de gehele getallen Verzameling van de rationale getallen Verzameling van de reële getallen Rekentechnieken Tegengestelde en absolute waarde van een getal Ordening van de getallen Relaties tussen getallen Eigenschappen van relaties tussen getallen Intervallen en halfrechten Hoofdbewerkingen voor reële getallen Optelling
2 2.3.2 Aftrekking Vermenigvuldiging Inverse of omgekeerde van een getal Deling Verdere eigenschappen van de hoofdbewerkingen Machten en machtswortels Machten met een natuurlijke exponent Machten met een negatieve gehele exponent Machtswortels met een natuurlijke wortelexponent Machten met rationale exponenten Voorrangsregels Eigenschappen van natuurlijke getallen Deelbaarheid van natuurlijke getallen Priemgetallen Grootste gemene deler en kleinste gemeen veelvoud van natuurlijke getallen Rekenen met breuken Vergelijken van breuken Vereenvoudigen van breuken Breuken op gelijke noemers brengen Optellen en aftrekken van breuken Vermenigvuldigen en delen van breuken Machten en machtswortels van breuken Som- en productteken Sommatie Dubbele sommatie Productteken Veeltermen Inleiding Voorbeeld Basisbegrippen Bewerkingen met veeltermen Som van veeltermen Verschil van veeltermen Product van veeltermen Merkwaardige producten Quotiënt van veeltermen Algemene methode Deelbaarheid door x a Ontbinden in factoren Gemeenschappelijke factoren buiten haken brengen Gebruikmaken van merkwaardige producten Delers van het type x a Groeperen van termen Ontbinden van een kwadratische veelterm Samenvatting
3 4 Combinatieleer Faculteit van een natuurlijk getal Groeperingen Variaties Permutaties Combinaties Groeperingen met herhalingen Binomium van Newton Rijen en reeksen Rijen Rekenkundige rijen Basisbegrippen Partiële sommen Meetkundige rijen Basisbegrippen Partiële sommen Reeksen Convergentie van rekenkundige reeksen Convergentie van meetkundige rijen Relaties 101 Hoofdstuk I: Relaties - algemeen Denities, notaties, grasche voorstellingen Relaties van A naar B Relaties in A Eigenschappen van relaties Relaties van A naar B Functie van A naar B Afbeelding van A naar B Injectie van A naar B Surjectie van A naar B Bijectie van A naar B Samenvatting Relaties in A Reexieve en anti-reexieve relaties in A Symmetrische en anti-symmetrische relaties in A Transitieve relaties in A Orderelaties in A Equivalentierelaties in A Inverse en samengestelde relatie Inverse relatie Samengestelde relatie Hoofdstuk II: Relaties in R Denities, notaties, grasche voorstelling Coördinatenstelsels - Grasche voorstelling Vergelijkingen van bijzondere relaties in R
4 6.4.3 Afbeeldingen in het vlak Rechten Denitie Classicatie van de rechten Opstellen van de vergelijking van een rechte Rechte door twee gegeven punten Evenwijdige rechten Loodrechte rechten Cirkels en ellipsen Eenheidscirkel Cirkel met middelpunt (0, 0) en straal r Cirkel met middelpunt (a, b) en straal r Ellips met middelpunt (0, 0) en de coördinaatassen als symmetrie-assen Hyperbolen Standaardhyperbool Hyperbool met de coördinaatassen als asymptoten Hyperbool met middelpunt (a, b) en asymptoten evenwijdig aan de coördinaatassen Hyperbool met middelpunt (0, 0) en de coördinaatassen als symmetrieassen Parabolen Standaardparabool Parabool met top (0, 0) en de Y -as als symmetrie-as Parabool met top (a, b) en symmetrie-as evenwijdig aan de Y -as Parabool met top (a, b) en symmetrie-as evenwijdig aan de X-as Exponentiële en logaritmische functies Exponentiële functies Logaritmische functies Goniometrie Inleiding Georiënteerde hoek De goniometrische cirkel Maatgetallen van georiënteerde hoeken Zestigdelige graden Radialen Goniometrische getallen van een hoek Cosinus en sinus van een hoek Tangens van een hoek Cotangens, secans en cosecans van een hoek Goniometrische getallen van verwante hoeken Gelijke hoeken Tegengestelde hoeken Complementaire hoeken Supplementaire hoeken Antisupplementaire hoeken Opmerkingen
5 7.7 Enkele belangrijke functies Grondformule Formules met tan α Verdubbelingsformules Goniometrische functies De cosinusfunctie De sinusfunctie De tangensfunctie De cotangens-, secans- en cosecansfunctie Cyclometrische functies Inverse van goniometrische functies Cyclometrische functies Vergelijkingen en ongelijkheden Lineaire vergelijkingen Lineaire vergelijkingen in één onbekende Lineaire vergelijkingen in twee onbekenden Aanverwante vergelijkingen Kwadratische en bikwadratische vergelijkingen Kwadratische vergelijkingen Bikwadratische vergelijkingen Oplossen van hogere-graadsvergelijkingen Tekenonderzoek van functies Veeltermfuncties van de eerste graad Veeltermfuncties van de tweede graad Veeltermfuncties van graad hoger dan twee Ongelijkheden Ongelijkheden in één onbekende Ongelijkheden in twee onbekenden Stelsels lineaire vergelijkingen Combinatiemethode Substitutiemethode Voorbeelden Stelsel lineaire vergelijkingen in twee onbekenden: meetkundige voorstelling Stelsels algemene vergelijkingen Oplossen van stelsels algemene vergelijkingen Bepalen van snijpunten Stelsels ongelijkheden Stelsels ongelijkheden in één onbekende Stelsels ongelijkheden in twee onbekenden Matrixrekenen Basisbegrippen (m n)-matrices Gelijke matrices Getransponeerde van een matrix
6 9.1.4 Nulmatrix en nulvector Vierkante matrix Diagonaalmatrix Eenheidsmatrix Symmetrische matrix Bewerkingen met matrices Som van matrices Tegengestelde van een matrix en verschil van twee matrices Product van een matrix met een reëel getal Vermenigvuldiging van een matrix met een kolomvector Vermenigvuldiging van matrices Stelsels van vergelijkingen Determinanten Determinant van een (1 1)-matrix Determinant van een (2 2)-matrix Determinant van een (n n)-matrix II Oefeningen Verzamelingen - Oefeningen Rekentechnieken - Oefeningen Veeltermen - Oefeningen Combinatieleer - Oefeningen Rijen en reeksen - Oefeningen Relaties - Oefeningen 293 Hoofdstuk I: Relaties - algemeen Hoofdstuk II: Relaties in R Goniometrie - Oefeningen Vergelijkingen en ongelijkheden - Oefeningen Matrixrekenen - Oefeningen 317 III Oplossingen Verzamelingen - Oplossingen Rekentechnieken - Oplossingen Veeltermen - Oplossingen 343
7 4 Combinatieleer - Oplossingen Rijen en reeksen - Oplossingen Relaties - Oplossingen Goniometrie - Oplossingen Vergelijkingen en ongelijkheden - Oplossingen Matrixrekenen - Oplossingen 427
Voorkennis wiskunde voor Bio-ingenieurswetenschappen
Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt
Voorkennis wiskunde voor Biologie, Chemie, Geografie
Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt
voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen
Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt
Te kennen leerstof Wiskunde
- 1 - Te kennen leerstof Wiskunde Wiskundeproeven voor de faculteit sociale en militaire wetenschappen (SSMW) en voor de polytechnische faculteit (POL) De te kennen leerstof is gebaseerd op de richtingen
Schoolagenda 5e jaar, 8 wekelijkse lestijden
Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak
Schooljaar: Leerkracht: M. Smet Leervak: Wiskunde Leerplan: D/2002/0279/048
Blz: 1/5 04 09 09 1.1 STELLING VAN PYTHAGORAS ouwregel tot Pythagoras: formulering. 07 09 09 11 09 09 14 09 09 18 09 09 21 09 09 22 09 09 25 09 09 29 09 09 01 10 09 02 10 09 06 10 09 08 10 09 09 10 09
1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14
INHOUD 1 De cirkel 9 1.1 Definities en benamingen 9 Oefeningen 11 1.2 Cirkel door drie punten 13 Oefeningen 14 1.3 Onderlinge ligging van een rechte en een cirkel 20 1.3.1 Aantal snijpunten van een rechte
Schoolagenda klas 5d GWi8-WWi8
Schoolagenda klas 5d GWi8-WWi8 Koen De Naeghel Onze-Lieve-Vrouwecollege Assebroek schooljaar 2014-2015 Eerste trimester Toetsen 6 repetities en enkele kleine, aangekondigde testen (75% TTE) dag en datum
Wiskundige notaties. Afspraken. Associatie K.U.Leuven
Wiskundige notaties Afspraken Associatie K.U.Leuven Tim Neijens Katrien D haeseleer Annemie Vermeyen Maart 2011 Waarom? Wiskundetaal gebruikt veel woordenschat, dat weet elke student. Het is niet altijd
10e editie Inhoudsopgave leerjaar 5
10e editie Inhoudsopgave leerjaar 5 2 Inhoud 5 havo A Blok 1 Analyse Hoofdstuk 1 Allerlei formules 10 Voorkennis 12 1-1 Recht evenredig en omgekeerd evenredig 14 1-2 Formules met breuken 16 1-3 Formules
FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10
FORMULARIUM wwwbasiswiskundebe Inhoudsopgave Algebra 2 2 Lineaire algebra 4 3 Vlakke meetkunde 5 4 Goniometrie 7 5 Ruimtemeetkunde 0 6 Reële functies 2 7 Analyse 3 8 Logica en verzamelingen 6 9 Kansrekening
Een korte beschrijving van de inhoud
Een korte beschrijving van de inhoud Lineaire algebra maakt een betrekkelijk eenvoudige behandeling van de meetkunde in een vlak of de ruimte mogelijk. Omgekeerd illustreren meetkundige toepassingen op
Voorbereidende sessie toelatingsexamen
1/7 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Algebra en meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 25 april 2018 1 Presentatie en opgeloste oefeningen zijn digitaal beschikbaar
2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45
15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een
Voorbereidende sessie toelatingsexamen
1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal
Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Voorkennis Stelling van
Samenvatting wiskunde havo 4 hoofdstuk 5,7,8 en vaardigheden 3 en 4 en havo 5 hoofdstuk 3 en 5 Hoofdstuk 5 afstanden en hoeken Stelling van Kan alleen bij rechthoekige driehoeken pythagoras a 2 + b 2 =
Studiehandleiding Basiswiskunde cursus
Studiehandleiding Basiswiskunde cursus 2008 2009 Materiaal Bij dit college heb je nodig: Het boek Basisboek wiskunde van Jan van de Craats en Rob Bosch Isbn: 90 430 1156 8 De syllabus Aanvulling basiscursus
Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen
Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:
Leerplandoelstelling Delta Nova 4 hoofdstukken en paragrafen. I Meetkunde. M1 B Bewijzen dat door drie niet-collineaire punten juist één cirkel gaat.
Het gevolgde leerplan is D/2002/0279/047. In de onderstaande tabel vind je een overzicht van de doelstellingen en waar ze in Delta Nova 4a en 4b (leerweg 5) terug te vinden zijn. B = basisdoelstelling
Uitgewerkte oefeningen
Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4
VOORKENNIS WISKUNDE Inleidende begrippen
VOORKENNIS WISKUNDE Inleidende begrippen Voor studenten in de Toegepaste Economische Wetenschappen L.Motmans WOORD VOORAF In het eerste jaar van de bacheloropleiding toegepaste economische wetenschappen
Algebra, Les 18 Nadruk verboden 35
Algebra, Les 18 Nadruk verboden 35 18,1 Ingeklede vergelijkingen In de vorige lessen hebben we de vergelijkingen met één onbekende behandeld Deze vergelijkingen waren echter reeds opgesteld en behoefden
De beeldpunten P en P van gelijke hoeken vallen samen. y 1 P=P' cos α
65 5 VERWANTE HOEKEN - Afstandsleren Opdracht: Surf naar het wiskundewebje dat je vindt op http://home.scarlet.be/~greetvrh en kies voor het vijfde jaar en voor Goniometrie. Gebruik de applets, 2, 3, 4,
20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen
Onderwerp Lineaire verbanden H1 20 De leerling leert alleen en in samenwerking met anderen in praktische situaties wiskunde te herkennen en te gebruiken om problemen op te lossen 26 De leerling leert te
Didactische wenken bij het onderdeel analyse
Didactische wenken bij het onderdeel analyse Didactische wenken bij het onderdeel analyse 1/21 1. Eindtermen analyse Eindtermen ASO tweede graad ET 22 3 (4) aspecten van een functie ET 23 Standaardfuncties
Meetkunde en Algebra Een korte beschrijving van de inhoud
Meetkunde en Algebra Een korte beschrijving van de inhoud Lineaire algebra maakt een betrekkelijk eenvoudige behandeling van de meetkunde in een vlak of de ruimte mogelijk. Omgekeerd illustreren meetkundige
De 10 e editie havo-vwo OB
De 10 e editie havo-vwo OB Presentatie havo/vwo onderbouw 10 e editie 1 HAVO/VWO 1 VWO 2 HAVO 2 HAVO/VWO 2 VWO De delen 10 e editie onderbouw 3 HAVO deel 1 3 HAVO deel 2 3 VWO deel 1 3 VWO deel 2 Presentatie
Universiteit Gent. Academiejaar Discrete Wiskunde. 1ste kandidatuur Informatica. Collegenota s. Prof. Dr.
Universiteit Gent Academiejaar 2001 2002 Discrete Wiskunde 1ste kandidatuur Informatica Collegenota s Prof. Dr. Frank De Clerck Herhalingsoefeningen 1. Bepaal het quotiënt en de rest van de deling van
INLEIDENDE CURSUS WISKUNDE
INLEIDENDE CURSUS WISKUNDE Deze begeleidende tekst is een handleiding bij de inleidende cursus wiskunde in de opleiding Handelswetenschappen. Het gebruikte handboek [WBT] is: Verheyen, P. & Janssens, D.,
Deel 1: Getallenkennis
Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 100 000 10 Les 2: Natuurlijke getallen kleiner dan 1 000 000
1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling
Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil
Les 20: gelijknamige breuken, gelijkwaardige breuken en breuken vereenvoudigen
Getallenkennis Target 1 Les 1: getalbegrip to 10 000 000 wb. p. 1+2, sb 1 Les 5: kommagetallen tot 0,001 wb. p. 8-9, sb 5 Les 12: breuken vergelijken en sorteren wb. p. 15-16, sb 10 Les 13: breuk als operator,getal,verhouding,
2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een
Leerlijnen REKENEN WISKUNDE (BB)
Leerlijnen REKENEN WISKUNDE (BB) Domein : Bewerkingen Onderwerp: vervolg breuken B11 B11 B11 De leerlingen kunnen ongelijknamige breuken gelijknamig maken, optellen en aftrekken. De leerlingen kunnen bij
DE basis WISKUNDE VOOR DE LAGERE SCHOOL
Inhoud GETALLENKENNIS 13 1 Getallen 13 2 Het decimale talstelsel 14 3 Breuken 16 Begrippen 16 Soorten breuken 16 Een breuk vereenvoudigen 17 4 Breuken, percenten, kommagetallen 18 Breuk omzetten in een
Goniometrische functies - afstandsleren 48
Goniometrische functies - afstandsleren 48 9 GONIOMETRISCHE FUNCTIES De goniometrische functies leer je kennen via de tool exe-leren en applets die je vindt in de cursus op Blackboard. De applets zijn
M1 Wiskundig taalgebruik en notaties
M1 Wiskundig taalgebruik en notaties Verzamelingenleer Verzameling = aantal objecten samengebracht tot een geheel - Lege verzameling = verzameling die geen elementen bevat A = - Singleton verzameling =
1E HUISWERKOPDRACHT CONTINUE WISKUNDE
E HUISWERKOPDRACHT CONTINUE WISKUNDE Uiterste inleverdatum dinsdag oktober, voor het begin van het college N.B. Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je moet het huiswerk
VAKANTIEWERK WISKUNDE
A -> Hn 0 / 06 / 06 VAKANTIEWERK WISKUNDE NEEM UW MAP WISKUNDE!! Herhalingsoefening : Optellen in Q (60 ptn) gevallen : - voor twee rationale getallen met hetzelfde teken * behoud dit teken * maak de som
INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5
INHOUDSTABEL 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3 2. TEKENREGELS (fiche 2)... 5 2b. TEGENGESTELDE GETAL - TEGENGESTELDE SOM (verschil) - TEGENSTELDE PRODUCT (fiche 2b)... 6 2c. OMGEKEERDE
Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1
Inhoud Aan de student V Studiewijzer Aan de docent VII IX Over de auteurs XI Hoofdstuk 0 Basiswiskunde 1 Leereenheid 0.1 Elementaire algebra 3 0.1.1 Verzameling van getallen en het symbool 4 0.1.2 Merkwaardige
Deel 1: Getallenkennis
Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 10 000 10 Les 2: Natuurlijke getallen kleiner dan 100 000 13
WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE
WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS deel 1 LOTHAR PAPULA 2e druk > ACADEMIC SERVICE inhoud 1 Algemene grondbegrippen 1 1.1 Enkele basisbegrippen in de verzamelingenleer 1 1.1.1 Definitieenbeschrijvingvaneenverzameling
29,2 Enige cyclometrische betrekkingen Goniometrische vergelijkingen 58. (fonsvendrik.nl 2018)
Inhoud Goniometrie. Nadruk verboden 1.1 Inleiding blz. 1 1.2 Definities der goniometrische verhoudingen 1 2.1 De beide merkwaardige rechthoekige driehoeken 3 2.2 Betrekkingen tussen de goniometrische verhoudingen
Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...
Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een
INHOUDSTAFEL. inhoudstafel... 2
INHOUDSTAFEL inhoudstafel... 2 getallenkennis waarde van cijfers in een getal... 6 grote getallen... 7 rekentaal... 8 rekentaal deel 2... 9 soorten getallen... 9 rekentaal deel 3... 10 de ongelijke verdeling...
INTRODUCTIECURSUS BASIS- WETENSCHAPPEN
FACULTEIT INDUSTRIËLE INGENIEURSWETENSCHAPPEN CAMPUS GROEP T LEUVEN INTRODUCTIECURSUS BASIS- WETENSCHAPPEN WISKUNDE & CHEMIE Inhoud Algebra 1. Reële getallen 1.1 Machten van een reëel getal met gehele
Kameel 1 basiskennis algebra
A. Cooreman & M. Bringmans Kameel 1 basiskennis algebra 1ste graad SO Secundair onderwijs havo 1 1 2 3 2 3 4 4 5 6 5 6 digitaal Naam: Klas: ISBN 9 789 i.s.m Versie 201 Eureka Onderwijs Innovatief kennis-
11 e editie. Inhoudsopgaven VWO 5
11 e editie Inhoudsopgaven VWO 5 Inhoudsopgave 5 vwo A 1 Formules herleiden 1-1 Lineaire formules 1-2 Gebroken formules 1-3 Wortelformules 1-4 Machtsformules 1-5 Gemengde opdrachten 2 Statistiek (op computer)
Wiskunde voor relativiteitstheorie
Wiskunde voor relativiteitstheorie HOVO Utrecht Les 1: Goniometrie en vectoren Dr. Harm van der Lek [email protected] Natuurkunde hobbyist Overzicht colleges 1. College 1 1. Goniometrie 2. Vectoren 2. College
Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008
Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.
META-kaart vwo3 - domein Getallen en variabelen
META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek
2.1 Bewerkingen [1] Video Geschiedenis van het rekenen ( 15 x 3 = 45
15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een
Goniometrie. Dr. Caroline Danneels Dr. Paul Hellings
Goniometrie Dr. Caroline Danneels Dr. Paul Hellings 1 Hoeken 1.1 De goniometrische cirkel De goniometrische cirkel wordt steeds gedefinieerd in een orthonormaal assenkruis. Het is een cirkel met het middelpunt
Antwoordenboekje. Willem van Ravenstein
Antwoordenboekje Willem van Ravenstein 2006-2007 versie 2 herzien in 2010 1 Inhoudsopgave Inhoudsopgave... 2 Vermenigvuldigen, delen, optellen en aftrekken... 3 Breuken en haakjes... 4 Machten en wortels...
Vergelijkingen van cirkels en lijnen
Vergelijkingen van cirkels en lijnen Rechthoekig coördinatenstelsel! Cartesisch coördinatenstelsel! René Descartes (1596-1650) Van hem is de uitspraak: Ik denk, dus ik besta! September 12, 2009 1 Vergelijkingen
Domein A: Inzicht en handelen
Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het
Verloop van goniometrische en cyclometrische functies
Verloop van goniometrische en cyclometrische functies Meetkundige definitie Definities sin tan cos cos cot sin sec cos csc sin Hoofdformules sin + cos tan + sec cos cot + csc sin cot tan sin 0 cos tan
OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl
OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare
ASO. Bijzondere wetenschappelijke vorming. derde graad LEERPLAN SECUNDAIR ONDERWIJS. derde leerjaar. (vervangt 93251) Vak: AV Wiskunde 16 lt/w
LEERPLAN SECUNDAIR ONDERWIJS Vak: AV Wiskunde 16 lt/w Studierichting: Bijzondere wetenschappelijke vorming Onderwijsvorm: Graad: Leerjaar: ASO derde graad derde leerjaar Leerplannummer: 2007/093 (vervangt
Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)
Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De
Groepen, ringen en velden
Groepen, ringen en velden Groep Een groep G is een verzameling van elementen en een binaire operator met volgende eigenschappen: 1. closure (gesloten): als a en b tot G behoren, doet a b dat ook. 2. associativiteit:
Goniometrische functies
Goniometrische functies ) Hoeken - Grondbegrippen a) Definitie van een hoek Een hoek is een georiënteerd paar halfrechten die starten in hetzelfde punt (hoekpunt). Hierbij maken we de afspraak dat positieve
PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ...
PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE a) Begrippen uit de getallenleer Bewerking optelling aftrekking vermenigvuldiging Symbool deling : kwadratering... machtsverheffing...
= (antwoord )
Rekenkunde Nadruk verboden 1 Opgaven 1. 2. 3. 4. = (antwoord 10.) 10 10 10 = (antwoord: 10.) 10 10 = (antwoord: 10.).,,, = (antwoord 15. 10.),,, 5. 7 7 7 7 7 = (antwoord: 7.) 6. 10 10 10 10 10 10 = 7.
Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie
Deel 12 en 13 van De Wiskanjers Zorg: Curriculumdifferentiatie Deze mappen willen wegwijzers aanreiken om vanuit begrip en respect het beste te halen uit die leerlingen die de basis wiskundeleerstof uit
Deel 3 havo. Docentenhandleiding havo deel 3 CB
Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte
Deel 1: Getallenkennis
Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 10 000 10 Les 2: Natuurlijke getallen kleiner dan 100 000 13
Goniometrie. Les 23 Nadruk verboden 45 Tafels 1,1. Inleiding
Goniometrie. Les 23 Nadruk verboden 45 Tafels 1,1. Inleiding Met behulp van de hogere wiskunde is het mogelijk de goniometrische verhoudingen van een willekeurige scherpe hoek met iedere gewenste nauwkeurigheid
1BK2 1BK6 1BK7 1BK9 2BK1
Kern Subkern Leerdoel niveau BK begrippen vmbo waar in bettermarks 1.1.1. Je gebruikt positieve en negatieve getallen, breuken en decimale getallen in hun onderlinge samenhang en je ligt deze toe binnen
Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen
Referentieniveaus uitgelegd De beschrijvingen zijn gebaseerd op het Referentiekader taal en rekenen'. In 'Referentieniveaus uitgelegd' zijn de niveaus voor de verschillende sectoren goed zichtbaar. Door
1.5.1 Natuurlijke, gehele en rationale getallen
46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:
Naam:... ZELFEVALUATIE WISKUNDE A-STROOM (het 60-puntenplan) WAT KAN IK AL? / WAT MOET IK NOG HERHALEN? / WAT MOET IK NOG INOEFENEN?
ZELFEVALUATIE WISKUNDE A-STROOM (het 60-puntenplan) WAT KAN IK AL? / WAT MOET IK NOG HERHALEN? / WAT MOET IK NOG INOEFENEN? Voor de GETALLENLEER worden concreet volgende doelstellingen nagestreefd: Begripsvorming
P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).
Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie
Lineaire algebra en kegelsneden. Cursus voor de vrije ruimte
Lineaire algebra en kegelsneden Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk Reële vectorruimten. De reële vectorruimte van de reële n-tallen Definitie Een reëel
Wiskunde voor relativiteitstheorie
Wiskunde voor relativiteitstheorie Utrecht Les : Goniometrie en vectoren Dr. Harm van der Lek [email protected] Natuurkunde hobbyist verzicht colleges. College. Goniometrie 2. Vectoren 2. College 2. Matrixen
Hoofdstuk 3: NEGATIEVE GETALLEN
1-6 H3. Negatieve getallen Hoofdstuk 3: NEGATIEVE GETALLEN 1. Wat moet ik leren? (handboek p. 96 123) 3.1 Positieve en negatieve getallen Het verschil verwoorden tussen positieve en negatieve getallen.
Inhoud. Oefeningen Hoekberekeningen. 2
Inhoud 1 Hoekberekeningen. Basisvergelijkingen. 4.1 Vergelijkingen van het type sin u = sin v............. 4. Vergelijkingen van het type cos u = cos v............. 8. Vergelijkingen van het type tan u
Hoofdstuk 9: NEGATIEVE GETALLEN
1 H9. Negatieve getallen Hoofdstuk 9: NEGATIEVE GETALLEN 1. Wat moet ik leren? (handboek p. 53 57) 9.1 Getallen onder 0 Het verschil verwoorden tussen positieve en negatieve getallen. Weten dat we 0 zowel
toetswijzer wiskunde curriculumdifferentiatie 6de leerjaar *De waarde van natuurlijke getallen en kommagetallen, bv = 8 D + 5 H + 6 T + 0 E
toetswijzer wiskunde curriculumdifferentiatie 6de leerjaar naam:... Getallenkennis *De waarde van natuurlijke getallen en kommagetallen, bv. 8 560 = 8 D + 5 H + 6 T + 0 E *Getallen in de positietabel noteren
WI1808TH1/CiTG - Lineaire algebra deel 1
WI1808TH1/CiTG - Lineaire algebra deel 1 College 6 26 september 2016 1 Hoofdstuk 3.1 en 3.2 Matrix operaties Optellen van matrices Matrix vermenigvuldigen met een constante Matrices vermenigvuldigen Machten
Schoolagenda klas 4d W
Schoolagenda klas 4d W Koen De Naeghel Onze-Lieve-Vrouwecollege Assebroek schooljaar 2016-2017 Eerste trimester Toetsen wiskunde (80% TTE) 5 repetities en eventueel enkele kleine, aangekondigde testen
Instapcursus. Wiskunde. Introductiecursus Wiskunde voor de opleiding Bachelor Grafische en Digitale Media. Frans Vander Meiren
Instapcursus Wiskunde Introductiecursus Wiskunde voor de opleiding Bachelor Grafische en Digitale Media Frans Vander Meiren Inhoud Machten omzetten van eenheden Grafische eenheden Omvormen van formules
Rekensprong 5 boek A. Getallenkennis boek A sprong 1, 2 en 3
Rekensprong 5 boek A Getallenkennis boek A sprong 1, 2 en 3 Sprong 1 les 2 natuurlijke getallen tot 100 000 Sprong 1 les 6 kommagetallen Sprong 2 les 14 de breuk als operator Sprong 2 les 19 de breuk als
11.1 De parabool [1]
11.1 De parabool [1] Algemeen: Het punt F heet het brandpunt van de parabool. De lijn l heet de richtlijn van de parabool. De afstand van F tot l heet de parameter van de parabool. Defintie van een parabool:
DE basis. Wiskunde voor de lagere school. Jeroen Van Hijfte en Nathalie Vermeersch. Leuven / Den Haag
DE basis Wiskunde voor de lagere school Jeroen Van Hijfte en Nathalie Vermeersch Acco Leuven / Den Haag Inhoud GETALLENKENNIS 13 1 Getallen 13 2 Het decimale talstelsel 14 3 Breuken 16 Begrippen 16 Soorten
K.1 De substitutiemethode [1]
K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met
Paragraaf 11.0 : Voorkennis
Hoofdstuk 11 Verbanden en functies (H5 Wis B) Pagina 1 van 15 Paragraaf 11.0 : Voorkennis Les 1 : Stelsels, formules en afgeleide Los op. 3x + 5y = 7 a. { 2x + y = 0 2x + 5y = 38 b. { x = y + 5 a. 3x +
Tussendoelen wiskunde onderbouw vo vmbo
Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken
Hoofdstuk 6 : DEELBAARHEID
1 H6. Deelbaarheid Hoofdstuk 6 : DEELBAARHEID 1. Wat moet ik leren? (handboek p. 203-230 ) 6.1 Delers en veelvouden Verklaren waarom een natuurlijk getal (wel of geen) deler is van een ander natuurlijk
1 Overzicht voorkennis algebraïsch rekenen
1 Overzicht voorkennis algebraïsch rekenen 1 Merkwaardige producten, ontbinden in factoren 1.1 Merkwaardige producten ( ) ( ) a+ b = a + ab+ b a b = a ab+ b ( ) ( ) a+ b = a + ab+ ab + b a b = a ab+ ab
Matrices en Stelsel Lineaire Vergelijkingen
Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een
1 Vlaamse Wiskunde Olympiade : eerste ronde
1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan
INLEIDING FUNCTIES 1. COÖRDINATEN
INLEIDING FUNCTIES 1. COÖRDINATEN...1 2. FUNCTIES...2 3. ARGUMENT EN BEELD...3 4. HET FUNCTIEVOORSCHRIFT...4 5. DE FUNCTIEWAARDETABEL...5 6. DE GRAFIEK...6 7. FUNCTIES HERKENNEN...7 8. OPLOSSINGEN...9
HAVO wiskunde B checklist 5 HAVO wiskunde B
Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO wiskunde B checklist 5 HAVO wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan.
Niveau 1. Opgave 1. Als x 2 = x + 3, dan is x 3 gelijk aan. 1p. x + 6. 4x + 3. 4x 2 + 3. x 2 + 3x + 3. x 2 + 27
1p. Opgave 1. Als x 2 = x + 3, dan is x 3 gelijk aan x + 6 4x + 3 4x 2 + 3 x 2 + 3x + 3 Niveau 1 1p. 1p. 1p. x 2 + 27 Opgave 2. Als a log b = 64, dan is a2 log (b 3 ) gelijk aan 6 48 28/3 96 512 Opgave
Overzicht eigenschappen en formules meetkunde
Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules
