Wachten of niet wachten: Dat is de vraag

Maat: px
Weergave met pagina beginnen:

Download "Wachten of niet wachten: Dat is de vraag"

Transcriptie

1 Wachten of niet wachten: Dat is de vraag Sindo Núñez-Queija Centrum voor Wiskunde en Informatica Technische Universiteit Eindhoven

2 Wachten of niet wachten: Dat is de vraag Wanneer heeft u voor het laatst een dag lang niet gewacht? Postkantoor, supermarkt, bushalte, station, stoplicht, rotonde, snelweg, lift, douche, kantine... Water in stuwmeer Telefoongesprek, datapakketjes in het Internet telefonie, data- Wachtrijtheorie en telecommunicatie: communicatie, multimedia De wachtrijtheorie beschrijft, bestudeert en verklaart congestieverschijnselen m.b.v. wiskundige technieken Andere technieken voor bijvoorbeeld wegverkeer 1

3 Overzicht Wachttijdparadox: de klant in bediening heeft een meer dan gemiddelde bedieningstijd Basismodel van de wachtrijtheorie Braess paradox: capaciteitsuitbreiding leidt tot toename van de vertraging van alle klanten 2

4 De wachttijdparadox: een voorbeeld Shuttle bus rijdt dag en nacht een vast rondje Rondje duurt gemiddeld 20 minuten Gemiddelde wachttijd? 10 minuten... 3

5 wachttijdparadox als de bus precies 20 minuten over elk rondje doet! Cyclustijden fluctueren rond het gemiddelde Voorbeeld: 50% kans 30 minuten (brug open) en 50% kans 10 minuten Gemiddelde wachttijd 12.5 minuten 4

6 Illustratie wachttijdparadox... Gedurende 4 uur: 30-minuten intervallen: totaal 3 uur; 10-minuten intervallen: totaal 1 uur Met 75% kans een 30-minuten interval en met 25% kans een 10-minuten interval Gegeven 30-minuten (10-minuten) interval: resterende wachttijd gemiddeld 15 minuten (5 minuten) Gemiddelde wachttijd = 12.5 (ook voor oneindige periode) 5

7 Wachttijdparadox Algemeen Cyclustijd X = k minuten met kans p k, k=1 p k = 1 Verwachting E[X] = k=1 kp k ; tweede moment E[X 2 ] = k=1 k 2 p k q k = kans dat k-minuten cyclustijd gaande is = fractie die k-minuten cycli van de totale tijd vullen q k proportioneel met k en ook met p k q k = kp k k=1 kp k = kp k E[X] In een k-minuten cyclus: resterende wachttijd 1 2 k Gemiddelde wachttijd: k=1 1 2 kq k = E[X2 ] 2E[X] 6

8 De wachttijdparadox Gemiddelde wachttijd = k=1 1 2 kq k = E[X2 ] 2E[X] minstens zo groot is als de halve cyclustijd groter dan de gemiddelde (totale!) E[X 2 ] > 2E[X] 2 (grote variantie) cyclustijd als Voorbeeld 90%kans 10 minuten 10% kans 110 minuten gemiddelde cyclustijd blijft 20 minuten gemiddelde wachttijd is 32.5 minuten! 7

9 M/G/1 wachtrij Wachttijd van een klant vaak ook bepaald door bediening van eerdere klanten klanten bediende Aankomsten: Poisson proces, gemiddelde 1/λ (λ klanten per tijdseenheid) Bedieningstijden: algemene verdeling, gemiddelde E[B] 1 bediende Verkeersintensiteit: ρ := λe[b] < 1 Generalisaties... 8

10 Gemiddelde wachttijd E[W ] en rijlengte E[L] 1. Bediende aan het werk met kans ρ = λe[b] 2. Poisson Arrivals See Time Averages: kansverdelingen op aankomsttijdstippen en op willekeurige momenten zijn gelijk 3. Formule van Little: E[L] = λe[w ] 1&2: E[W ] = ρ E[B2 ] + E[L] E[B] 2E[B] want de klant in bediening heeft gemiddeld nog 1 2 E[B2 ]/E[B]! + Little: Pollaczek-Khintchine formule 9

11 Zware staarten en zware belasting Pollaczek-Khintchine formule Zware staarten: E[W ] = E[L] = ρe[b 2 ] 2(1 ρ)e[b] ρ 2 E[B 2 ] 2(1 ρ)e[b] 2 Variabiliteit leidt tot lange wachtrijen en -tijden Telecommunicatie: bestandsgrootte op het Internet hebben oneindige variantie! Zware belasting: Als ρ van 90% naar 95% (+5,6%) dan verdubbelen E[W ] en E[L]! 10

12 Braess paradox (1968) Capaciteitsuitbreiding kan leiden tot een toename van de vertraging van alle klanten Aankomsten: bij a, Poisson met intensiteit λ Via b of c naar d; wachtrijen ab, ac, bd en cd Identieke bedieningen (B 1 ) bij ab en cd Evenzo staat B 2 voor bedieningen bij ac en bd 11

13 11-1

14 ab en cd zijn M/M/1 wachtrijen, ONEINDIG veel bedienden bij ac en bd zijn Aankomsten λ ab = λ bd en λ ac = λ cd Verblijftijd ab: E[S ab ] = λ abe[b 1 ] 2 1 λ ab E[B 1 ] + E[B 1] = (gebruik E[(B 1 ) 2 ] = 2E[B 1 ] 2 ) E[B 1 ] 1 λ ab E[B 1 ]. 50%-50%: λ ab = λ ac = 1 2 λ 12

15 Stel λ = 0.8, E[B 1 ] = 1 en E[B 2 ] = 10: Reistijd (beide routes ) M/M/1 wachtrij bc, bedieningen E[B 3 ] = 1 Sluiproute wordt gebruikt want < Nieuw evenwicht als alle routes gelijke reistijd hebben, dit is zo als alle klanten van de sluiproute gebruik maken! De gemiddelde reistijd is voor alle klanten toegenomen tot 15 tijdseenheden! 13

16 Constructie In het begin ab sneller dan ac; dus E[B 1 ] λe[b 1] < E[B 2] Met sluiproute: fractie α naar ab en dus 1 α naar ac Evenwicht: fractie 1 α bij bd, fractie α bij cd en fractie 2α 1 bij bc (Als er bij bd minder dan 1 α komen, dan moet er bij cd meer dan α komen. Elke rij op de route a b d is dan minder belast en dus sneller dan de route a c d.) In het evenwicht moet gelden: E[B 1 ] 1 αλe[b 1 ] + E[B 3 ] 1 (2α 1)λE[B 3 ] = E[B 2] (elke route even lang) 14

17 Totale reistijd langer dan in oorspronkelijke netwerk (route a b d) E[B 1 ] 1 αλe[b 1 ] + E[B 2] > E[B 1 ] λe[b 1] + E[B 2] Dit geldt voor iedere 1 2 < α < 1/(λE[B 1]) Zo lang E[B 1 ] 1 αλe[b 1 ] < E[B 2] is er bij α een E[B 3 ] te vinden uit E[B 1 ] 1 αλe[b 1 ] + E[B 3 ] 1 (2α 1)λE[B 3 ] = E[B 2]

18 Bespreking Braess paradox berust op het feit dat de knooppunten die zwaarder belast worden sterker reageren dan de knooppunt die minder belast worden Zijn alle rijen M/M/1, dan is toevoeging van de sluiproute nooit een verslechtering: E[B 1 ] 1 αλe[b 1 ] + E[B 3 ] 1 (2α 1)λE[B 3 ] = E[B 2 ] 1 (1 α)λe[b 2 ] Dus: E[B 1 ] 1 αλe[b 1 ] E[B 2 ] 1 (1 α)λe[b 2 ] Voor α > 1 2 Dit impliceert is dit het geval als α ( 1 2λ E[B 1 ] 1 E[B 2 E[B 1 ] 1 αλe[b 1 ] + E[B 2 ] 1 (1 α)λe[b 2 ] E[B 1 ] λe[b 1] + E[B 2] λe[b 2] ) 15

19 Samenvatting Wachttijdparadox: Klanten in bediening hebben een meer dan gemiddelde bediening M/G/1 wachtrij; zware staarten en zware belasting Netwerk: Braess paradox; Capaciteitsuitbreiding kan leiden tot verslechtering van iedereen 16

20 Wachten of niet wachten: Dat is de vraag Sindo Núñez-Queija sindo

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms Stochastische Modellen in Operations Management (153088) R1 S0 240 ms Ack Internet R2 L1 R3 L2 10 ms 1 10 ms D1 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Operations Management (53088) S S Ack X ms X ms S0 40 ms R R R3 L L 0 ms 0 ms D0 Internet D D Richard Boucherie Stochastische Operations Research TW, Ravelijn H 9 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/53088/53088.html

Nadere informatie

We zullen de volgende modellen bekijken: Het M/M/ model 1/14

We zullen de volgende modellen bekijken: Het M/M/ model 1/14 De analyse en resultaten van de voorgaande twee modellen (het M/M/1/K model en het M/M/1 model) kunnen uitgebreid worden naar modellen met meerdere bediendes. We zullen de volgende modellen bekijken: Het

Nadere informatie

Benaderingen voor wachttijden in k-gelimiteerde polling modellen

Benaderingen voor wachttijden in k-gelimiteerde polling modellen TU/e Technische Universiteit Eindhoven Bachelor technische wiskunde Bachelor project 28 januari 2016 Benaderingen voor wachttijden in k-gelimiteerde polling modellen Auteur: Iris Theeuwes 0828283, i.theeuwes@student.tue.nl

Nadere informatie

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. VERNIEUWINGSPROCESSEN In hoofdstuk 3 hebben we gezien wat een Poisson proces is. Definitie van een Poisson proces: Een Poisson proces met intensiteit λ (notatie P P (λ)) is een stochastisch proces {N(t),

Nadere informatie

Model: Er is één bediende en de capaciteit van de wachtrij is onbegrensd. 1/19. 1 ) = σ 2 + τ 2 = s 2.

Model: Er is één bediende en de capaciteit van de wachtrij is onbegrensd. 1/19. 1 ) = σ 2 + τ 2 = s 2. Het M/G/1 model In veel toepassingen is de aanname van exponentiële bedieningstijden niet realistisch (denk bijv. aan produktietijden). Daarom zullen we nu naar het model kijken met willekeurig verdeelde

Nadere informatie

WACHTRIJMODELLEN. aankomstproces van klanten; wachtruimte (met eindige of oneindige capaciteit); bedieningsstation (met één of meerdere bediendes).

WACHTRIJMODELLEN. aankomstproces van klanten; wachtruimte (met eindige of oneindige capaciteit); bedieningsstation (met één of meerdere bediendes). Verschillende soorten toepassingen WACHTRIJMODELLEN alledaagse toepassingen; toepassingen uit produktieomgeving; toepassingen in de communicatiesfeer. Typische onderdelen van een wachtrijmodel aankomstproces

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Operations Management (53088) S S Ack X ms X ms S0 40 ms R R R3 L L 0 ms 0 ms D0 Internet D D Richard Boucherie Stochastische Operations Research TW, Ravelijn H 9 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/53088/53088.html

Nadere informatie

WACHTRIJMODELLEN. aankomstproces van klanten; wachtruimte (met eindige of oneindige capaciteit); bedieningsstation (met één of meerdere bediendes).

WACHTRIJMODELLEN. aankomstproces van klanten; wachtruimte (met eindige of oneindige capaciteit); bedieningsstation (met één of meerdere bediendes). Verschillende soorten toepassingen WACHTRIJMODELLEN alledaagse toepassingen; toepassingen uit produktieomgeving; toepassingen in de communicatiesfeer. Typische onderdelen van een wachtrijmodel aankomstproces

Nadere informatie

Inleiding Modelmatige beschrijving Kansverdelingen Het overgangsdiagram De stellingen van Little M/M/1 M/M/1/N Afsluiti.

Inleiding Modelmatige beschrijving Kansverdelingen Het overgangsdiagram De stellingen van Little M/M/1 M/M/1/N Afsluiti. 11 juni 2013 Maartje van de Vrugt, CHOIR Wat is het belang van wachtrijtheorie? Inleiding Modelmatige beschrijving Kansverdelingen Het overgangsdiagram De stellingen van Little M/M/1 Evenwichtskansen Wachtrij

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms Stochastische Modellen in Operations Management (153088) R1 S0 240 ms Ack Internet R2 L1 R3 L2 10 ms 1 10 ms D1 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

Waarom wachten voor verkeerslichten? Inhoud 2/16/2010. Introductie Wachtrijtheorie Simpel model: een opengebroken weg

Waarom wachten voor verkeerslichten? Inhoud 2/16/2010. Introductie Wachtrijtheorie Simpel model: een opengebroken weg Waarom wachten voor verkeerslichten? Marko Boon Nationale Wiskunde Dagen 2010 Inhoud Introductie Simpel model: een opengebroken weg Met vaste afstellingen Met dynamische afstellingen Ingewikkeldere kruispunten

Nadere informatie

Wachten in de supermarkt

Wachten in de supermarkt Wachten in de supermarkt Rik Schepens 0772841 Rob Wu 0787817 22 juni 2012 Begeleider: Marko Boon Modelleren A Vakcode: 2WH01 Inhoudsopgave Samenvatting 1 1 Inleiding 1 2 Theorie 1 3 Model 3 4 Resultaten

Nadere informatie

Reserveringssystemen

Reserveringssystemen I. Verstraten Reserveringssystemen Bachelorscriptie, 26 juli 203 Scriptiebegeleider: Dr. F.M. Spieksma Mathematisch Instituut, Universiteit Leiden Inhoudsopgave Inleiding 3 2 Twee systemen 4 2. Zonder

Nadere informatie

De Wachttijd-paradox

De Wachttijd-paradox De Wachttijd-paradox Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam Mastercourse 15 november 25 Peter Spreij spreij@science.uva.nl 1 Het probleem In deze mastercourse behandelen

Nadere informatie

Wachtrijtheorie op verkeersmodellen

Wachtrijtheorie op verkeersmodellen Wachtrijtheorie op verkeersmodellen Jan Jelle de Wit 20 juli 202 Bachelorscriptie Begeleiding: prof.dr. R. Núñez Queija KdV Instituut voor wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Nadere informatie

Guus kom naar huus... of over koeienstallen, robots en wachtrijen

Guus kom naar huus... of over koeienstallen, robots en wachtrijen Guus kom naar huus... of over koeienstallen, robots en wachtrijen Ivo Adan Faculteit Wiskunde en Informatice TU Eindhoven 31 januari 2003 / department of mathematics and computer science 1/20 Nieuwe ontwikkeling

Nadere informatie

Waarom kleintjes niet altijd voor moeten gaan (maar vaak wel)

Waarom kleintjes niet altijd voor moeten gaan (maar vaak wel) Waarom kleintjes niet altijd voor moeten gaan (maar vaak wel) Sindo Núñez Queija Universiteit van Amsterdam & Centrum voor Wiskunde en Informatica + Maaike Verloop en Sem Borst OVERZICHT: Wachtrijen en

Nadere informatie

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door APP.1 Appendix A.1 Erlang verdeling verdeling met parameters n en λ Voor o.o. discrete s.v.-en X en Y geldt P (X + Y = z) =P (X = x 1 en Y = z x 1 )+P(X = x en Y = z x )+... = P (X = x 1 )P (Y = z x 1

Nadere informatie

Hoofdstuk 20 Wachtrijentheorie

Hoofdstuk 20 Wachtrijentheorie Hoofdstuk 20 Wachtrijentheorie Beschrijving Iedereen van ons heeft al tijd gespendeerd in een wachtrij: b.v. aanschuiven in de Alma restaurants. In dit hoofdstuk onwikkelen we mathematische modellen voor

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

b. de aantallen aankomsten in disjuncte tijdsintervallen zijn onafhankelijk van elkaar

b. de aantallen aankomsten in disjuncte tijdsintervallen zijn onafhankelijk van elkaar APPENDIX: HET POISSON PROCES Een stochastisch proces dat onlosmakelijk verbonden is met de Poisson verdeling is het Poisson proces. Dit is een telproces dat het aantal optredens van een bepaalde gebeurtenis

Nadere informatie

Personeelsplanning in een schoolkantine

Personeelsplanning in een schoolkantine Personeelsplanning in een schoolkantine BWI werkstuk Januari 212 Petra Vis Begeleider: prof. dr. R.D. van der Mei Vrije Universiteit Faculteit der Exacte Wetenschappen Bedrijfswiskunde en Informatica De

Nadere informatie

Practicum wachtrijtheorie

Practicum wachtrijtheorie SPM0001 1e week Technische Bestuurskunde Woensdag 5 september 2012, 10:30 12:30 uur Plaats: TBM begane grond (zalen B, C, D1, D2, computerzaal A en studielandschap) Practicum wachtrijtheorie Het practicum

Nadere informatie

Wachtrijtheorie. Hester Vogels en Franziska van Dalen. 11 juni 2013

Wachtrijtheorie. Hester Vogels en Franziska van Dalen. 11 juni 2013 Wachtrijtheorie Hester Vogels en Franziska van Dalen 11 juni 2013 1 1 Inleiding Een mens wacht gemiddeld 15.000 uur in zijn leven. Dit is bijvoorbeeld in de rij bij de kassa van een winkel, aan de telefoon

Nadere informatie

p j r j = LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS Hoofdstelling over het limietgedrag van continue-tijd Markov ketens formuleren.

p j r j = LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS Hoofdstelling over het limietgedrag van continue-tijd Markov ketens formuleren. LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS Hoofdstelling over het limietgedrag van continue-tijd Markov ketens formuleren. Stelling: Een irreducibele, continue-tijd Markov keten met toestandsruimte S

Nadere informatie

Tentamen Inleiding Kansrekening wi juni 2010, uur

Tentamen Inleiding Kansrekening wi juni 2010, uur Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische

Nadere informatie

Kansrekening en stochastische processen 2DE18

Kansrekening en stochastische processen 2DE18 Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: resing@win.tue.nl 1/23 Voor een verzameling stochastische variabelen X 1,..., X n, de verwachting van W n = X 1 + + X n is

Nadere informatie

Deeltentamen Vraag 1 (0.25 punten) Vraag 2 (0.25 punten) Vraag 3 (0.25 punten) Vraag 4 (0.25 punten) *-vragen ( relatief simpel 2 punten)

Deeltentamen Vraag 1 (0.25 punten) Vraag 2 (0.25 punten) Vraag 3 (0.25 punten) Vraag 4 (0.25 punten) *-vragen ( relatief simpel 2 punten) Deeltentamen 2013 *-vragen ( relatief simpel 2 punten) Vraag 1 (0.25 punten) In wachtrijtheorie (blz. 226) wordt het symbool λ gebruikt voor: A. De gemiddelde tijd tussen twee aankomsten B. Het gemiddeld

Nadere informatie

o Dit tentamen bestaat uit vier opgaven o Beantwoord de opgaven 1 en 2 enerzijds, en de opgaven 3 en 4 anderzijds op aparte vellen papier

o Dit tentamen bestaat uit vier opgaven o Beantwoord de opgaven 1 en 2 enerzijds, en de opgaven 3 en 4 anderzijds op aparte vellen papier Toets Stochastic Models (theorie) Maandag 22 rnei 2OL7 van 8.45-1-1-.45 uur Onderdeel van de modules: o Modelling and analysis of stochastic processes for MATH (20L400434) o Modelling and analysis of stochastic

Nadere informatie

LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS

LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS Hoofdstelling over limietgedrag van continue-tijd Markov ketens. Stelling: Een irreducibele, continue-tijd Markov keten met toestandsruimte S = {1, 2,..., N}

Nadere informatie

Hoofdstuk 7 : Continue distributies als stochastische modellen. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 7 : Continue distributies als stochastische modellen. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 7 : Continue distributies als stochastische modellen Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Continue distributies als stochastische

Nadere informatie

Wachttijdtheorie. Prof. dr N.M. van Dijk Dr H.J. van der Sluis

Wachttijdtheorie. Prof. dr N.M. van Dijk Dr H.J. van der Sluis Wachttijdtheorie Beo-cases Prof. dr N.M. van Dijk Dr H.J. van der Sluis Een ogenblik geduld a.u.b. Een ogenblik geduld... (Uit Trouw artikel, 26 augustus 1998) Zeker een jaar van ons leven verdoen we onze

Nadere informatie

BESLISKUNDE A. Najaar 2017 Deel 2. L.C.M. KALLENBERG en F.M. SPIEKSMA

BESLISKUNDE A. Najaar 2017 Deel 2. L.C.M. KALLENBERG en F.M. SPIEKSMA BESLISKUNDE A Najaar 2017 Deel 2 L.C.M. KALLENBERG en F.M. SPIEKSMA UNIVERSITEIT LEIDEN Inhoudsopgave 5 WACHTTIJDTHEORIE 1 5.1 Inleiding.......................................... 1 5.2 Wachttijdparadox.....................................

Nadere informatie

BESLISKUNDE A. Najaar 2016 Deel 2. L.C.M. KALLENBERG en F.M. SPIEKSMA

BESLISKUNDE A. Najaar 2016 Deel 2. L.C.M. KALLENBERG en F.M. SPIEKSMA BESLISKUNDE A Najaar 016 Deel L.C.M. KALLENBERG en F.M. SPIEKSMA UNIVERSITEIT LEIDEN Inhoudsopgave 5 WACHTTIJDTHEORIE 1 5.1 Inleiding.......................................... 1 5. Wachttijdparadox.....................................

Nadere informatie

Milieustraat Project Modelleren C

Milieustraat Project Modelleren C Den Dolech 2, 5612 AZ Eindhoven Postbus 513, 5600 MB Eindhoven www.tue.nl Auteur Wouter van der Heide & Thomas Beekenkamp ID (resp.): 0739052 & 0743557 Begeleider: J.A.C. Resing Opdrachtgever: M. Boon

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/28 Schatten van de verwachting We hebben een stochast X en

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek 2DD71: UITWERKINGEN 1. Stroopwafels a De som S van de 12 gewichten is X 1 + X 2 + + X 12. Deze is normaal

Nadere informatie

OefenDeeltentamen 2 Kansrekening 2011/ Beschouw een continue stochast X met kansdichtheidsfunctie cx 4, 0 x 1 f X (x) = f(x) = 0, anders.

OefenDeeltentamen 2 Kansrekening 2011/ Beschouw een continue stochast X met kansdichtheidsfunctie cx 4, 0 x 1 f X (x) = f(x) = 0, anders. Universiteit Utrecht *=Universiteit-Utrecht Boedapestlaan 6 Mathematisch Instituut 3584 CD Utrecht OefenDeeltentamen Kansrekening 11/1 1. Beschouw een continue stochast X met kansdichtheidsfunctie c 4,

Nadere informatie

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. HET POISSON PROCES In veel praktische toepassingen kan het aaankomstproces van personen, orders,..., gemodelleerd worden door een zogenaamd Poisson proces. Definitie van een Poisson proces: Een Poisson

Nadere informatie

NETWERKEN VAN WACHTRIJEN

NETWERKEN VAN WACHTRIJEN NETWERKEN VAN WACHTRIJEN Tot nog toe keken we naar wachtrijmodellen bestaande uit 1 station. Klanten komen aan bij het station,... staan (al dan niet) een tijdje in de wachtrij,... worden bediend door

Nadere informatie

Vragen die je wilt beantwoorden zijn:

Vragen die je wilt beantwoorden zijn: Net als bij een discrete-tijd Markov keten is men bij de bestudering van een continue-tijd Markov keten zowel geïnteresseerd in het korte-termijn gedrag als in het lange-termijn gedrag. Vragen die je wilt

Nadere informatie

Milieustraat Project Modelleren C

Milieustraat Project Modelleren C Den Dolech 2, 562 AZ Eindhoven Postbus 53, 5600 MB Eindhoven www.tue.nl Auteur Wouter van der Heide & Thomas Beekenkamp ID (resp.): 0739052 & 0743557 Begeleider: J.A.C. Resing Opdrachtgever: M. Boon Faculteit:

Nadere informatie

Eindhoven University of Technology BACHELOR. Wachtrijsystemen met toestandsafhankelijke bedieningssnelheid. Schutte, Mattijn.

Eindhoven University of Technology BACHELOR. Wachtrijsystemen met toestandsafhankelijke bedieningssnelheid. Schutte, Mattijn. Eindhoven University of Technology BACHELOR Wachtrijsystemen met toestandsafhankelijke bedieningssnelheid Schutte, Mattijn Award date: 2008 Link to publication Disclaimer This document contains a student

Nadere informatie

1 kraan: dit is een M/G/1/ / rij. P 0 = 1 ρ = = 0.2 (3 pnt) e) = (4 2. = (3 pnt) E r (t) = Er(n) = = uur.

1 kraan: dit is een M/G/1/ / rij. P 0 = 1 ρ = = 0.2 (3 pnt) e) = (4 2. = (3 pnt) E r (t) = Er(n) = = uur. Contact Dit document is samengesteld door onderwijsbureau Bijles en Training. Wij zijn DE expert op het gebied van bijlessen en trainingen in de exacte vakken, van VMBO tot universiteit. Zowel voor individuele

Nadere informatie

Eindhoven University of Technology BACHELOR. Wachtrij- en verzekeringsmodellen. Bink, H.L.J. Award date: Link to publication

Eindhoven University of Technology BACHELOR. Wachtrij- en verzekeringsmodellen. Bink, H.L.J. Award date: Link to publication Eindhoven University of Technology BACHELOR Bink, H.L.J. Award date: 203 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven

Nadere informatie

Uitwerkingen oefenopdrachten WEX6

Uitwerkingen oefenopdrachten WEX6 Uitwerkingen oefenopdrachten WEX6 Marc Bremer August 9, 2009 Serie : Wachttijdtheorie Contact Dit document is samengesteld door onderwijsbureau Bijles en Training. Wij zijn DE expert op het gebied van

Nadere informatie

Attractielogistiek. Bachelorproject. Where innovation starts. Faculteit Wiskunde en Informatica

Attractielogistiek. Bachelorproject. Where innovation starts. Faculteit Wiskunde en Informatica Faculteit Wiskunde en Informatica Den Dolech 2, 5612 AZ Eindhoven Postbus 513, 5600 MB Eindhoven Auteur Yves Houben Opdrachtgever prof.dr.ir. O.J. Boxma, dr.ir. M.A.A. Boon Datum 14 juni 2011 Attractielogistiek

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica september 2018: algemene feedback

IJkingstoets Wiskunde-Informatica-Fysica september 2018: algemene feedback IJkingstoets wiskunde-informatica-fysica september 8 - reeks - p. IJkingstoets Wiskunde-Informatica-Fysica september 8: algemene feedback Positionering ten opzichte van andere deelnemers In totaal namen

Nadere informatie

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i).

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). MARKOV PROCESSEN Continue-tijd Markov ketens (CTMCs) In de voorafgaande colleges hebben we uitgebreid gekeken naar discrete-tijd Markov ketens (DTMCs). Definitie van discrete-tijd Markov keten: Een stochastisch

Nadere informatie

Strategisch kassa s inzetten in supermarkten. Lydia van t Veer. BWI-werkstuk

Strategisch kassa s inzetten in supermarkten. Lydia van t Veer. BWI-werkstuk Lydia van t Veer BWI-werkstuk Lydia van t Veer BWI-werkstuk Vrije Universiteit Faculteit der Exacte Wetenschappen Studierichting Bedrijfswiskunde en Informatica De Boelelaan 1081a 1081 HV Amsterdam Maart

Nadere informatie

Optimale regeling van de bedieningscapaciteit van een wachtlijnsysteem

Optimale regeling van de bedieningscapaciteit van een wachtlijnsysteem UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 200 Optimale regeling van de bedieningscapaciteit van een wachtlijnsysteem Masterproef voorgedragen tot het bekomen van de graad

Nadere informatie

f) (9 pnt) Wat is bij Wachtebeke de gemiddelde wachttijd voor een vrachtwagen voordat hij gelost wordt?

f) (9 pnt) Wat is bij Wachtebeke de gemiddelde wachttijd voor een vrachtwagen voordat hij gelost wordt? Contact Dit document is samengesteld door onderwijsbureau Bijles en Training. Wij zijn DE expert op het gebied van bijlessen en trainingen in de exacte vakken, van VMBO tot universiteit. Zowel voor individuele

Nadere informatie

Opslag strategieën in een multi-deep magazijn

Opslag strategieën in een multi-deep magazijn Opslag strategieën in een multi-deep magazijn J. Manders Universiteit Twente. Technische Wiskunde 18 juli 2016 Samenvatting In dit onderzoek wordt het gebruik van een multi-deep automatisch magazijn inclusief

Nadere informatie

Hoofdstuk 6 : Projectie en Stelling van Thales

Hoofdstuk 6 : Projectie en Stelling van Thales Hoofdstuk 6 : Projectie en Stelling van Thales - 127 1. Projectie op een rechte (boek pag 175) x en y zijn twee... rechten. We trekken door het punt A een evenwijdige rechte met de rechte y en noemen het

Nadere informatie

Publieke Database. Verslag modelleren 4 (2H144) Finbar Bogerd (s474580) & Judy van Sambeek (s476368)

Publieke Database. Verslag modelleren 4 (2H144) Finbar Bogerd (s474580) & Judy van Sambeek (s476368) Publieke Database Verslag modelleren 4 (2H144) Finbar Bogerd (s474580) & Judy van Sambeek (s476368) Technische Universiteit Eindhoven Faculteit: Technische Wiskunde & Informatica 28 augustus 2002 Inhoudsopgave

Nadere informatie

Deeltentamen 2 Algemene Statistiek Vrije Universiteit 18 december 2013

Deeltentamen 2 Algemene Statistiek Vrije Universiteit 18 december 2013 Afdeling Wiskunde Volledig tentamen Algemene Statistiek Deeltentamen 2 Algemene Statistiek Vrije Universiteit 18 december 2013 Gebruik van een (niet-grafische) rekenmachine is toegestaan. Geheel tentamen:

Nadere informatie

Verkeerslichten. Ton Godtschalk 13 juni Lengte van de wachtrij Inleiding Variabelen Aannames... 3

Verkeerslichten. Ton Godtschalk 13 juni Lengte van de wachtrij Inleiding Variabelen Aannames... 3 Verkeerslichten Ton Godtschalk 13 juni 2008 Inhoudsopgave 1 Lengte van de wachtrij 2 1.1 Inleiding..................................... 2 1.2 Variabelen.................................... 3 1.3 Aannames....................................

Nadere informatie

Eindexamen wiskunde A 1-2 havo 2002-II

Eindexamen wiskunde A 1-2 havo 2002-II Wereldrecords nattigheid Wie loopt de 5000 meter in de kortste tijd? Die atleet mag zich wereldrecordhouder op de 5000 meter noemen. Op welke plaats op aarde valt in een regenbui van 7 uur het meeste water?

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking tentamen Kansrekening en Stochastische Processen (2S61) op woensdag 27 april 25, 14. 17. uur. 1. Gegeven zijn twee onafhankelijke

Nadere informatie

Verkeerstellingen Martini Ziekenhuis Groningen Kruispunttellingen en wachtrijmetingen - Gemeente Groningen

Verkeerstellingen Martini Ziekenhuis Groningen Kruispunttellingen en wachtrijmetingen - Gemeente Groningen Verkeerstellingen Martini Ziekenhuis Groningen 2016 - Kruispunttellingen en wachtrijmetingen - Verkeerstellingen Martini Ziekenhuis Groningen 2016 - Kruispunttellingen en wachtrijmetingen- Projectomschrijving

Nadere informatie

Verkeersafwikkeling Oegstgeest a/d Rijn en Frederiksoord Zuid

Verkeersafwikkeling Oegstgeest a/d Rijn en Frederiksoord Zuid Deventer Den Haag Eindhoven Snipperlingsdijk 4 Casuariestraat 9a Flight Forum 92-94 7417 BJ Deventer 2521 VB Den Haag 5657 DC Eindhoven T +31 (0)570 666 222 F +31 (0)570 666 888 Leeuwarden Amsterdam Postbus

Nadere informatie

In deze notitie wordt gereageerd op het tracévoorstel van GNR van 9 januari 2014 om de HOV-route langs het ziekenhuis in Hilversum te leiden.

In deze notitie wordt gereageerd op het tracévoorstel van GNR van 9 januari 2014 om de HOV-route langs het ziekenhuis in Hilversum te leiden. Deventer Den Haag Eindhoven Snipperlingsdijk 4 Verheeskade 197 Flight Forum 92-94 7417 BJ Deventer 2521 DD Den Haag 5657 DC Eindhoven T +31 (0)570666222 F +31 (0)570666888 Leeuwarden Amsterdam Postbus

Nadere informatie

We zullen in deze les kijken hoe we netwerken kunnen analyseren, om bijvoorbeeld de volgende vragen te kunnen beantwoorden:

We zullen in deze les kijken hoe we netwerken kunnen analyseren, om bijvoorbeeld de volgende vragen te kunnen beantwoorden: Wiskunde voor kunstmatige intelligentie, 24 Les 5 Proces analyse Veel processen laten zich door netwerken beschrijven, waarin een aantal knopen acties aangeeft en opdrachten langs verbindingen tussen de

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 29 juli 2013 Tijd: 14.00-17.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

Definitie van continue-tijd Markov keten:

Definitie van continue-tijd Markov keten: Definitie van continue-tijd Markov keten: Een stochastisch proces {X(t), t 0} met toestandsruimte S heet een continue-tijd Markov keten (CTMC) als voor alle i en j in S en voor alle tijden s, t 0 geldt

Nadere informatie

Vrije Universiteit Amsterdam Opleiding Wiskunde Vak Poisson Processen. Poisson Processen. Arno Weber.

Vrije Universiteit Amsterdam Opleiding Wiskunde Vak Poisson Processen. Poisson Processen. Arno Weber. Vrije Universiteit Amsterdam Opleiding Wiskunde Vak Poisson Processen Poisson Processen Arno Weber email: aeweber@cs.vu.nl Januari 2003 1 Inhoudsopgave 1. Computersimulaties 3 2. Wachttijd-paradox 6 3.

Nadere informatie

Opgaven voor Kansrekening - Oplossingen

Opgaven voor Kansrekening - Oplossingen Wiskunde voor kunstmatige intelligentie Opgaven voor Kansrekening - Opgave. Een oneerlijke dobbelsteen is zo gemaakt dat drie keer zo vaak valt als 4 en twee keer zo vaak als 5. Verder vallen,, en even

Nadere informatie

WACHTTIJDTHEORIE. Rob Bosch. Jan van de Craats

WACHTTIJDTHEORIE. Rob Bosch. Jan van de Craats WACHTTIJDTHEORIE Rob Bosch Jan van de Craats Inhoudsopgave 1 Het Poissonproces 1 1.1 De Poissonverdeling......................... 2 1.2 Voorbeelden.............................. 4 1.3 Van binomiaal naar

Nadere informatie

Wachtrijmodellen voor optimalisatie in het dagelijks leven

Wachtrijmodellen voor optimalisatie in het dagelijks leven Wachtrijmodellen voor optimalisatie in het dagelijks leven Richard J. Boucherie Stochastische Operationele Research Abstract Wachten doen we allemaal: bij de kassa van de supermarkt, in het verkeer, maar

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2, Vrijdag 23 januari 25, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven dienen

Nadere informatie

MEMO. NoLogo. : Arcadis, mevrouw Yvonne Sanders : ing. Sander Hoen : drs. ing. Albert Erhardt. : Verkeerskundige toets Uitbreiding Makado, Beek

MEMO. NoLogo. : Arcadis, mevrouw Yvonne Sanders : ing. Sander Hoen : drs. ing. Albert Erhardt. : Verkeerskundige toets Uitbreiding Makado, Beek NoLogo MEMO Aan Van Kopie Dossier Project Betreft : Arcadis, mevrouw Yvonne Sanders : ing. Sander Hoen : drs. ing. Albert Erhardt : AC3423-053-001 : Verkeerskundige toets Uitbreiding Makado, Beek : Resultaten

Nadere informatie

Stochastiek 2. Inleiding in the Mathematische Statistiek. staff.fnwi.uva.nl/j.h.vanzanten

Stochastiek 2. Inleiding in the Mathematische Statistiek. staff.fnwi.uva.nl/j.h.vanzanten Stochastiek 2 Inleiding in the Mathematische Statistiek staff.fnwi.uva.nl/j.h.vanzanten 1 / 12 H.1 Introductie 2 / 12 Wat is statistiek? - 2 Statistiek is de kunst van het (wiskundig) modelleren van situaties

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur.

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (WS4), woensdag 3 juni, van 9.. uur. Dit is een tentamen met gesloten boek. De uitwerkingen van de

Nadere informatie

Examen HAVO. Wiskunde A1,2 (nieuwe stijl)

Examen HAVO. Wiskunde A1,2 (nieuwe stijl) Wiskunde A1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 19 juni 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 90 punten te behalen; het examen bestaat uit

Nadere informatie

wiskunde C vwo 2018-I

wiskunde C vwo 2018-I Windenergie maximumscore 5 Het aflezen van twee punten, bijvoorbeeld (0,8) en (2,8) De richtingscoëfficiënt is 8 8 = 0,83... 2 0 De formule kz = 0,83... t+ 8 Beschrijven hoe de vergelijking 0,83... t+

Nadere informatie

Naast het Centraal Museum is een beperkte mogelijkheid tot (betaald) parkeren.

Naast het Centraal Museum is een beperkte mogelijkheid tot (betaald) parkeren. Bereikbaarheid Adresgegevens Centraal Museum De Tuinzaal De Nicolaïkerk Nicolaaskerkhof 10 Nicolaasdwarsstraat 14 Nicolaaskerkhof 8 3512 XC Utrecht 3512 XH Utrecht 3512 XC Utrecht Bereikbaarheid: Per auto

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen

Nadere informatie

Eindexamen wiskunde A 1-2 havo 2002-II

Eindexamen wiskunde A 1-2 havo 2002-II Eindexamen wiskunde A - havo 00-II 4 Antwoordmodel Wereldrecords nattigheid De bui duurde 5 minuten De hoeveelheid regen is ongeveer 8 inch het antwoord 0 ( 0,3 0,3) Bij 000 minuten hoort volgens de grafiek

Nadere informatie

Voorbeeld Tentamenvragen Verkeer & Vervoer (Deel Thomas) Ontleend aan deeltoets 1 uit 2014.

Voorbeeld Tentamenvragen Verkeer & Vervoer (Deel Thomas) Ontleend aan deeltoets 1 uit 2014. Voorbeeld Tentamenvragen Verkeer & Vervoer (Deel Thomas) Ontleend aan deeltoets 1 uit 2014. 1. In welk(e) model(len) geclassificeerd naar functie ontbreekt de inductie stap? a. Fundamentele theorie van

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10)

TECHNISCHE UNIVERSITEIT EINDHOVEN. Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) TECHNISCHE UNIVERSITEIT EINDHOVEN Tentamen OGO Fysisch Experimenteren voor minor AP (3MN10) en Tentamen Inleiding Experimentele Fysica voor Combi s (3NA10) d.d. 31 oktober 2011 van 9:00 12:00 uur Vul de

Nadere informatie

In de 4som-puzzel kun je de gegeven sommen variëren. Nog zo eentje.

In de 4som-puzzel kun je de gegeven sommen variëren. Nog zo eentje. 4som kaart a In een 4som-puzzel moeten in vier hokjes getallen worden geschreven. Van de (horizontale) rijen en van de (verticale) kolommen is de som gegeven en ook van de diagonalen. Welke getallen moeten

Nadere informatie

Eindexamen wiskunde A 1-2 havo 2002-II

Eindexamen wiskunde A 1-2 havo 2002-II Wereldrecords nattigheid Wie loopt de 5000 meter in de kortste tijd? Die atleet mag zich wereldrecordhouder op de 5000 meter noemen. Op welke plaats op aarde valt in een regenbui van 7 uur het meeste water?

Nadere informatie

Verbeterde afsprakenplanning voor patiënt en gipsverbandmeester

Verbeterde afsprakenplanning voor patiënt en gipsverbandmeester Verbeterde afsprakenplanning voor patiënt en gipsverbandmeester Maartje van de Vrugt, Petra Matel, Richard J. Boucherie, Peter van Engelen, Tiny Beukman en John de Laat. De gipsverbandmeesters van het

Nadere informatie

module SC 12 Inleiding Risicotheorie donderdag 7 november uur

module SC 12 Inleiding Risicotheorie donderdag 7 november uur module SC 1 Inleiding Risicotheorie donderdag 7 november 013 13.30-16.30 uur Examen module SC 1 Inleiding Risicotheorie donderdag 7 november 013 Voordat u met de beantwoording van de vragen van dit examen

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

De hoofdstuknummers in deze bundel corresponderen met de hoofdstukken in het diktaat 1 VERKEERSSTROOMTHEORIE OF: HOE ONTSTAAN FILES?

De hoofdstuknummers in deze bundel corresponderen met de hoofdstukken in het diktaat 1 VERKEERSSTROOMTHEORIE OF: HOE ONTSTAAN FILES? CTB1420 Oefenopgaven Deel 4 - Antwoorden De hoofdstuknummers in deze bundel corresponderen met de hoofdstukken in het diktaat 1 VERKEERSSTROOMTHEORIE OF: HOE ONTSTAAN FILES? 1. Eenheden a) Dichtheid: k,

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 1 dinsdag 2 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 1 dinsdag 2 juni uur. Bij dit examen hoort een uitwerkbijlage. amen VWO 2009 tijdvak dinsdag 2 juni 3.30-6.30 uur wiskunde B,2 Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 9 vragen. Voor dit eamen zijn maimaal 80 punten te behalen. Voor elk vraagnummer

Nadere informatie

Definitie van continue-tijd Markov keten:

Definitie van continue-tijd Markov keten: Definitie van continue-tijd Markov keten: Een stochastisch proces {X(t), t 0} met toestandsruimte S heet een continue-tijd Markov keten (CTMC) als voor alle i en j in S en voor alle tijden s, t 0 geldt

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2005-I

Eindexamen wiskunde B1-2 vwo 2005-I Inademen Bij controlemetingen aan de ademhaling wordt men gevraagd om diep uit te ademen en vervolgens gedurende vijf seconden zo diep mogelijk in te ademen. Tijdens het inademen is de hoeveelheid verse

Nadere informatie

Hoofdstuk 6 Discrete distributies

Hoofdstuk 6 Discrete distributies Hoofdstuk 6 Discrete distributies Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Discrete distributies p 1/33 Discrete distributies binomiale verdeling

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 11 juni 2012 Tijd: 19.00-22.00 uur Aantal opgaven: 8 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 2010

EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 2010 EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 010 Datum: 13 januari 010 Aantal opgaven: 6 Beschikbare tijd: 100 minuten De maximale score is 90 punten, vooraf 10 punten: totaal 100 punten. Aantal

Nadere informatie

WISKUNDE-ESTAFETTE 2012 Uitwerkingen. a b. e f g

WISKUNDE-ESTAFETTE 2012 Uitwerkingen. a b. e f g WISKUNDE-ESTAFETTE 202 Uitwerkingen Noem de zeven cijfers even a t/m g. a b c d + e f g Omdat de twee getallen die we optellen beide kleiner zijn dan 00 moet het resultaat kleiner dan 200 zijn. Dus e =.

Nadere informatie

Hoofdstuk 3 : Determinanten

Hoofdstuk 3 : Determinanten (A5D) Hoofdstuk 3 : Determinanten Les : Determinanten Definitie 3. De determinant van de [2 x 2]-matrix A = ( a c det(a) = ad bc. b ) is een getal met waarde d a b Notatie : det(a) = = ad bc c d Voorbeeld

Nadere informatie

Resultaten IJkingstoets Bio-ingenieur 1 september Nummer vragenreeks: 1

Resultaten IJkingstoets Bio-ingenieur 1 september Nummer vragenreeks: 1 Resultaten IJkingstoets Bio-ingenieur september 8 Nummer vragenreeks: Resultaten IJkingstoets Bio-ingenieur september 8 - p. / Aan de KU Leuven namen in totaal 8 aspirant-studenten deel aan de ijkingstoets

Nadere informatie

Even geduld a.u.b. 3 maart 2003

Even geduld a.u.b. 3 maart 2003 Even geduld a.u.b. 3 maart 2003 In het dagelijks leven hebben we vaak te maken met wachten. Denk bijvoorbeeld aan het wachten bij de kassa in de supermarkt, voor het downloaden van een file op het internet

Nadere informatie

Voor afmetingen waarvoor geen bewerkingsprijs staat vermeld gelden de prijzen op aanvraag

Voor afmetingen waarvoor geen bewerkingsprijs staat vermeld gelden de prijzen op aanvraag 19 x 13 x 19 x 1,5 mm 0,57 314,00 324,00 344,00 364,00 20 x 15 x 20 x 1,5 mm 0,61 314,00 324,00 344,00 364,00 25 x 15 x 25x 2 mm 0,96 227,00 237,00 257,00 277,00 10 x 20 x 10 x 2 mm 0,56 227,00 237,00

Nadere informatie

Vandaag. Onderzoeksmethoden: Statistiek 3. Recap 2. Recap 1. Recap Centrale limietstelling T-verdeling Toetsen van hypotheses

Vandaag. Onderzoeksmethoden: Statistiek 3. Recap 2. Recap 1. Recap Centrale limietstelling T-verdeling Toetsen van hypotheses Vandaag Onderzoeksmethoden: Statistiek 3 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Recap Centrale limietstelling

Nadere informatie