Stochastische Modellen in Operations Management (153088)

Maat: px
Weergave met pagina beginnen:

Download "Stochastische Modellen in Operations Management (153088)"

Transcriptie

1 S1 S2 X ms X ms Stochastische Modellen in Operations Management (153088) R1 S0 240 ms Ack Internet R2 L1 R3 L2 10 ms 1 10 ms D1 Richard Boucherie Stochastische Operations Research TW, Ravelijn H D2

2 Definitie Poisson proces (1) indien aankomstproces een vernieuwingsproces is en de tussenaankomsttijden exponentieel verdeeld zijn, dan is het aankomstproces een Poisson proces Telprocess aantal aankomsten N(t) in (0,t]

3 Eigenschappen Poisson proces (3) de aankomstenprocessen in twee willekeurige disjuncte intervallen zijn onderling onafhankelijk, en alleen afhankelijk van lengte intervallen De superpositie van twee Poisson processen met intensiteiten λ 1 en λ 2, levert wederom een Poisson proces, met intensiteit λ 1 + λ 2 het willekeurig uitdunnen van een Poisson proces met intensiteit λ (klanten gaan met kans p<1 het systeem binnen) levert wederom een Poisson proces met intensiteit p λ.

4 4 Een eenvoudig wachtsysteem Klanten arriveren volgens Poisson proces Klanten wachten op hun beurt Bedieningsduur is exponentieel verdeelde variabele Een bediende Gemiddelde wachttijd? Kans op wachten? Dimensionering systeem?

5 5 Wachttijdtheorie Herhaling: aankomstproces Notatie M/M/1 queue of Single server queue Wachttijden en de Formule van Little

6 Algemeen : A B S N Notatie voor wachtsystemen wijkt af van Winston, zie dictaat OR II A de tussenaankomsttijdverdeling, B de bedieningsduurverdeling, S het aantal (parallelle) servers, en N de capaciteit van de wachtruimte (indien N < ) Standaardsymbolen voor A en B M : exponentiële verdeling (Markov) D : deterministische verdeling (constant) E n : Erlang verdeling met n fasen GI : niet nader gespecificeerde verdeling (GI = General Independent), aankomstproces is vernieuwingsproces G : niet nader gespecificeerde (bedieningsduur)verdeling

7 7 Wachttijdtheorie Herhaling: aankomstproces Notatie M/M/1 queue of Single server queue Wachttijden en de Formule van Little

8 aankomsten (Poisson λ) Het M M 1 model (1) oneindige Wachtruimte FCFS vertrekken (exponentieel µ)

9 aankomsten (Poisson λ) Het M M 1 model (2) oneindige Wachtruimte FCFS vertrekken (exponentieel µ)

10 Het M M 1 model (3)

11 Het M M 1 model (4)

12 Het M M 1 model (5)

13 Het M M 1 model (6)

14 Het M M 1 model (7) Kolmogorov s diff. vergelijkingen d P (t) = λ P (t) + µ P (t) dt d P dt n(t) = λ P n 1 (t) (λ + µ) P n (t) + µ P n +1 (t) waarbij P n (t) =1, t 0 n= 0 Stationaire verdeling P n = lim t P n (t) stationariteitsvoorwaarde ρ = λ µ <1

15 Het M M 1 model (8) Globale evenwichtsvergelijkingen interpretatie Stationaire verdeling µ P n +1 = λ P n P n = ρ n P 0 = (1 ρ) ρ n n = 0,1,2,...

16 Transitiediagram 0 Het M M 1 model (9) λ 1 µ λ P 0 = µ P 1 λ λ 2 3 µ µ λ µ λ P 1 = µ P 2 λ P 2 = µ P 3 λ P 3 = µ P 4 (etcetera)

17 Het M M 1 model (10) Bezettingsgraad Aantal klanten in het systeem n=1 P n =1 P 0 = ρ Aantal klanten in de wachtrij Gemiddelde wachttijd?

18 18 Wachttijdtheorie Herhaling: aankomstproces Notatie M/M/1 queue of Single server queue Wachttijden en de Formule van Little

19 Notatie Formule van Little (1) E{L} : gemiddelde aantal klanten in systeem E{L w } : gemiddelde aantal klanten in wachtrij E{F} : gemiddelde verblijftijd per klant E{W} : gemiddelde wachttijd per klant Onderlinge relaties

20 Formule van Little (2) de formule van Little geldt ongeacht de volgorde waarin klanten worden bediend Intuitieve verklaring veronderstel dat iedere klant 1 euro betaalt voor iedere tijdseenheid dat hij in het systeem resp. in de wachtrij is Betaling per tijdseenheid van verblijf E{L} per tijdseenheid bij binnenkomst voor gehele verblijftijd: E{F} per klant aantal aankomsten per tijdseenheid λ Betaling binnenkomst voor geh verbftijd λ E{F} per tijdseenh

21 21 Wachttijdtheorie Herhaling: aankomstproces Notatie M/M/1 queue of Single server queue Wachttijden en de Formule van Little

22 Het M M 1 model (11) Aantal klanten in wachtrij ; in systeem Verblijftijd en wachttijd (Little)

23 Het M M 1 model (12) Verdeling van de verblijftijd µ (1 ρ ) t P(F t) =1 e E{F} = 1 µ (1 ρ) Verdeling van de wachttijd µ (1 ρ ) t P(W t) =1 ρ e E{W } = ρ µ (1 ρ) Formule van Little

24 Wachttijdtheorie Hoe hoog mag de belasting van een machine zijn? EF/EB=1/(1- ) F= verblijftijd B = bedieningsduur = bezettingsgraad En hier al 100 x je staat hier 10 x je bedieningstijd te wachten

25 25 Een eenvoudig wachtsysteem Klanten arriveren volgens Poisson proces Klanten wachten op hun beurt Bedieningsduur is exponentieel verdeelde variabele Een bediende Gemiddelde wachttijd? Kans op wachten? Dimensionering systeem? Andere wachtsystemen?

26 26 Geboorte sterfte processen M M 1 M M 1 K M M s M M s 0 M M Geboorte sterfte processen PASTA Wachttijdverdeling M M 1

27 Het M M 1 model (1) aankomsten (Poisson λ) oneindige wachtruimte server vertrekken (exponentieel µ)

28 Het M M 1 model (2) Transitiediagram 0 λ 1 µ λ P 0 = µ P 1 λ 2 µ λ P 1 = µ P 2 λ 3 µ λ P 2 = µ P 3 λ µ λ P 3 = µ P 4 µ P n +1 = λ P n P n = ρ n P 0 = (1 ρ) ρ n n = 0,1,2,...

29 Situatieschets Een netwerkprinter bij een netwerk-printer arriveren jobs volgens een Poisson proces met een gemiddelde van 1 per minuut de lengte van een job is bij benadering exponentieel verdeeld met een gemiddelde van 10 pagina s de verwerkingscapaciteit van de printer bedraagt 20 ppm Interessante grootheden de aankomst- en vertrekintensiteit zijn resp. λ = 1 en µ = 2 de bezettingsgraad bedraagt ρ = λ/µ = ½ het gem aantal jobs bij de printer bedraagt ρ / (1-ρ) = 1, de gemiddelde verblijftijd 1/λ = 1 minuut per job (Little) het gem aantal jobs in de wachtrij bedraagt ρ 2 / (1-ρ) = ½, de gemiddelde wachttijd ½/λ = ½ minuut per job (Little) de kans dat een job niet binnen twee minuten is afgedrukt is e -2µ(1-ρ) = e

30 30 Geboorte sterfte processen M M 1 M M 1 K M M s M M s 0 M M Geboorte sterfte processen PASTA Wachttijdverdeling M M 1

31 Het M M 1 K model (1) aankomsten (Poisson λ) eindige wachtruimte (capaciteit K) server vertrekken (exponentieel µ)

32 Transitiediagram 0 Het M M 1 K model (2) λ 1 µ λ P 0 = µ P 1 λ λ µ K λ 1 K+1 µ µ λ P 1 = µ P 2 λ P K 1 = µ P K λ P K = µ P K +1

33 Het M M 1 K model (3) Stationaire verdeling (ρ=λ/µ) Aantal klanten in het systeem Verblijftijd en wachttijd (Little) Aantal binnengekomen klanten E{W } = E{F} 1 µ

34 Situatieschets Een wasstraat bij een wasstraat arriveren auto s voor een (eventuele) wasbeurt met een gemiddelde van 12 per uur een auto rijdt door indien er drie auto s staan te wachten de lengte van een wasbeurt bezit een exponentiële verdeling met een gemiddelde van 4 minuten Interessante grootheden de aankomst- en vertrekintensiteiten bedragen resp. λ = 12 en µ = 15, de capaciteit van de wachtruimte K=3 de bezettingsgraad van de wasstraat bedraagt 1-P 0 =0.70 de blokkeringskans d.w.z. de kans op een volle wasserette bedraagt P 4 = 0.12 er zijn gemiddeld 1.56 auto s in de wasstraat aanwezig dit komt overeen met =0.86 wachtenden gemiddelde doorlooptijd bedraagt 1.56/(0.20*0.88) = 8.90 min

35 35 Geboorte sterfte processen M M 1 M M 1 K M M s M M s 0 M M Geboorte sterfte processen PASTA Wachttijdverdeling M M 1

36 Het M M s model (1) aankomsten (Poisson λ) oneindige wachtruimte server server vertrekken (exponentieel µ) vertrekken (exponentieel µ)

37 Het M M s model (2) Transitiediagram λ λ µ 2 µ λ P 0 = µ P 1 λ P 1 = 2 µ P 2 λ s-1 (s-1) µ λ P s 1 = s µ P s λ s s µ λ 1 s µ λ P s = s µ P s+1 (etcetera)

38 Stationaire verdeling (ρ=λ/µ<s) : Het M M s model (3) Kans alle servers bezet Gem aantal bezette servers Aantal in wachtrij P(Z s) = P n = P 0 (s ρ) (s 1)! s 1 n= 0 E{N w } = (n s) P n = ρ P(Z s) s ρ n= s+1 n= s n P n ρ s + s P(Z s) = ρ

39 Situatieschets 1 Euro per minuut bij een 0900-informatienummer, waar maar liefst 12 telefonistes werken, komen klanten aan volgens een Poisson proces met een gemiddelde van 600 per uur de bedieningsduur per klant bezit een exponentiële verdeling met een gemiddelde van 1 minuut, gesprekskosten E 1 / min Interessante grootheden de aankomst- en vertrekintensiteit bedragen λ = 10 en µ = 1 het aantal servers is s=12 het gem aantal bezette telefonistes is gelijk aan ρ=λ/µ=10 kans alle telefonistes bezet 0.45, kans op directe bediening =0.55 er zijn gem 2.25 wachtenden voor u; de gemiddelde wachttijd bedraagt daarmee minuut 13.5 seconden per klant inkomsten bedragen gemiddeld 600 ( ) is 735 euro per uur; dit komt overeen met E per telefoniste

40 40 Geboorte sterfte processen M M 1 M M 1 K M M s M M s 0 M M Geboorte sterfte processen PASTA Wachttijdverdeling M M 1

41 Het M M s 0 model (1) aankomsten (Poisson λ) geen wachtruimte server server vertrekken (exponentieel µ) vertrekken (exponentieel µ)

42 Transitiediagram 0 Het M M s 0 model (2) λ 1 µ λ P 0 = µ P 1 λ 1 2 µ λ P 1 = 2 µ P 2 λ s-1 (s-1) µ λ P s 2 = (s 1) µ P s 1 λ s s µ λ P s 1 = s µ P s

43 Het M M s 0 model (3) Stationaire verdeling : Erlang verlies formule

44 Situatieschets GSM een GSM cel op de campus met 2 frequenties heeft 15 kanalen beschikbaar voor communicatie; in de pauze tussen hoorcolleges komen gesprekken aan volgens een Poisson proces met een gemiddelde van 600 per uur de gespreksduur per gesprek bezit een exponentiële verdeling met een gemiddelde van 1 minuut Interessante grootheden Blokkeringskans voor een nieuw gesprek: 3.6% het gemiddelde aantal bezette kanalen=10*(1-3.6%)=9.64

45 45 Geboorte sterfte processen M M 1 M M 1 K M M s M M s 0 M M Geboorte sterfte processen PASTA Wachttijdverdeling M M 1

46 Het M M model (1) aankomsten (Poisson λ) geen wachtruimte nodig server server vertrekken (exponentieel µ) vertrekken (exponentieel µ)

47 Het M M model (2) Transitiediagram λ 0 1 µ λ P 0 = µ P 1 λ 1 2 µ λ P 1 = 2 µ P 2 λ s-1 (s-1) µ λ P s 2 = (s 1) µ P s 1 λ s s µ λ P s 1 = s µ P s λ (s+1) µ (etcetera)

48 Stationaire verdeling : Het M M model (3) Bijvoorbeeld via limiet s Gemiddelde aantal bezette servers Uitdunningsargument

49 49 Geboorte sterfte processen M M 1 M M 1 K M M s M M s 0 M M Geboorte sterfte processen

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms Stochastische Modellen in Operations Management (153088) R1 S0 240 ms Ack Internet R2 L1 R3 L2 10 ms 1 10 ms D1 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Operations Management (53088) S S Ack X ms X ms S0 40 ms R R R3 L L 0 ms 0 ms D0 Internet D D Richard Boucherie Stochastische Operations Research TW, Ravelijn H 9 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/53088/53088.html

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Operations Management (53088) S S Ack X ms X ms S0 40 ms R R R3 L L 0 ms 0 ms D0 Internet D D Richard Boucherie Stochastische Operations Research TW, Ravelijn H 9 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/53088/53088.html

Nadere informatie

We zullen de volgende modellen bekijken: Het M/M/ model 1/14

We zullen de volgende modellen bekijken: Het M/M/ model 1/14 De analyse en resultaten van de voorgaande twee modellen (het M/M/1/K model en het M/M/1 model) kunnen uitgebreid worden naar modellen met meerdere bediendes. We zullen de volgende modellen bekijken: Het

Nadere informatie

WACHTRIJMODELLEN. aankomstproces van klanten; wachtruimte (met eindige of oneindige capaciteit); bedieningsstation (met één of meerdere bediendes).

WACHTRIJMODELLEN. aankomstproces van klanten; wachtruimte (met eindige of oneindige capaciteit); bedieningsstation (met één of meerdere bediendes). Verschillende soorten toepassingen WACHTRIJMODELLEN alledaagse toepassingen; toepassingen uit produktieomgeving; toepassingen in de communicatiesfeer. Typische onderdelen van een wachtrijmodel aankomstproces

Nadere informatie

WACHTRIJMODELLEN. aankomstproces van klanten; wachtruimte (met eindige of oneindige capaciteit); bedieningsstation (met één of meerdere bediendes).

WACHTRIJMODELLEN. aankomstproces van klanten; wachtruimte (met eindige of oneindige capaciteit); bedieningsstation (met één of meerdere bediendes). Verschillende soorten toepassingen WACHTRIJMODELLEN alledaagse toepassingen; toepassingen uit produktieomgeving; toepassingen in de communicatiesfeer. Typische onderdelen van een wachtrijmodel aankomstproces

Nadere informatie

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. VERNIEUWINGSPROCESSEN In hoofdstuk 3 hebben we gezien wat een Poisson proces is. Definitie van een Poisson proces: Een Poisson proces met intensiteit λ (notatie P P (λ)) is een stochastisch proces {N(t),

Nadere informatie

Vragen die je wilt beantwoorden zijn:

Vragen die je wilt beantwoorden zijn: Net als bij een discrete-tijd Markov keten is men bij de bestudering van een continue-tijd Markov keten zowel geïnteresseerd in het korte-termijn gedrag als in het lange-termijn gedrag. Vragen die je wilt

Nadere informatie

Model: Er is één bediende en de capaciteit van de wachtrij is onbegrensd. 1/19. 1 ) = σ 2 + τ 2 = s 2.

Model: Er is één bediende en de capaciteit van de wachtrij is onbegrensd. 1/19. 1 ) = σ 2 + τ 2 = s 2. Het M/G/1 model In veel toepassingen is de aanname van exponentiële bedieningstijden niet realistisch (denk bijv. aan produktietijden). Daarom zullen we nu naar het model kijken met willekeurig verdeelde

Nadere informatie

LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS

LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS Hoofdstelling over limietgedrag van continue-tijd Markov ketens. Stelling: Een irreducibele, continue-tijd Markov keten met toestandsruimte S = {1, 2,..., N}

Nadere informatie

Hoofdstuk 20 Wachtrijentheorie

Hoofdstuk 20 Wachtrijentheorie Hoofdstuk 20 Wachtrijentheorie Beschrijving Iedereen van ons heeft al tijd gespendeerd in een wachtrij: b.v. aanschuiven in de Alma restaurants. In dit hoofdstuk onwikkelen we mathematische modellen voor

Nadere informatie

Definitie van continue-tijd Markov keten:

Definitie van continue-tijd Markov keten: Definitie van continue-tijd Markov keten: Een stochastisch proces {X(t), t 0} met toestandsruimte S heet een continue-tijd Markov keten (CTMC) als voor alle i en j in S en voor alle tijden s, t 0 geldt

Nadere informatie

p j r j = LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS Hoofdstelling over het limietgedrag van continue-tijd Markov ketens formuleren.

p j r j = LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS Hoofdstelling over het limietgedrag van continue-tijd Markov ketens formuleren. LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS Hoofdstelling over het limietgedrag van continue-tijd Markov ketens formuleren. Stelling: Een irreducibele, continue-tijd Markov keten met toestandsruimte S

Nadere informatie

Definitie van continue-tijd Markov keten:

Definitie van continue-tijd Markov keten: Definitie van continue-tijd Markov keten: Een stochastisch proces {X(t), t 0} met toestandsruimte S heet een continue-tijd Markov keten (CTMC) als voor alle i en j in S en voor alle tijden s, t 0 geldt

Nadere informatie

Reserveringssystemen

Reserveringssystemen I. Verstraten Reserveringssystemen Bachelorscriptie, 26 juli 203 Scriptiebegeleider: Dr. F.M. Spieksma Mathematisch Instituut, Universiteit Leiden Inhoudsopgave Inleiding 3 2 Twee systemen 4 2. Zonder

Nadere informatie

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.

S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. HET POISSON PROCES In veel praktische toepassingen kan het aaankomstproces van personen, orders,..., gemodelleerd worden door een zogenaamd Poisson proces. Definitie van een Poisson proces: Een Poisson

Nadere informatie

Inleiding Modelmatige beschrijving Kansverdelingen Het overgangsdiagram De stellingen van Little M/M/1 M/M/1/N Afsluiti.

Inleiding Modelmatige beschrijving Kansverdelingen Het overgangsdiagram De stellingen van Little M/M/1 M/M/1/N Afsluiti. 11 juni 2013 Maartje van de Vrugt, CHOIR Wat is het belang van wachtrijtheorie? Inleiding Modelmatige beschrijving Kansverdelingen Het overgangsdiagram De stellingen van Little M/M/1 Evenwichtskansen Wachtrij

Nadere informatie

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i).

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). MARKOV PROCESSEN Continue-tijd Markov ketens (CTMCs) In de voorafgaande colleges hebben we uitgebreid gekeken naar discrete-tijd Markov ketens (DTMCs). Definitie van discrete-tijd Markov keten: Een stochastisch

Nadere informatie

Q is het deel van de overgangsmatrix dat correspondeert met overgangen

Q is het deel van de overgangsmatrix dat correspondeert met overgangen COHORTE MODELLEN Stel we hebben een groep personen, waarvan het gedrag van ieder persoon afzonderlijk beschreven wordt door een Markov keten met toestandsruimte S = {0, 1, 2,..., N} en overgangsmatrix

Nadere informatie

Mobiele communicatie: reken maar!

Mobiele communicatie: reken maar! Mobiele communicatie: reken maar! Richard J. Boucherie Stochastische Operationele Research Toen : telefooncentrale Erlang verliesmodel Nu : GSM Straks : Video on demand Toen : CPU Processor sharing model

Nadere informatie

NETWERKEN VAN WACHTRIJEN

NETWERKEN VAN WACHTRIJEN NETWERKEN VAN WACHTRIJEN Tot nog toe keken we naar wachtrijmodellen bestaande uit 1 station. Klanten komen aan bij het station,... staan (al dan niet) een tijdje in de wachtrij,... worden bediend door

Nadere informatie

b. de aantallen aankomsten in disjuncte tijdsintervallen zijn onafhankelijk van elkaar

b. de aantallen aankomsten in disjuncte tijdsintervallen zijn onafhankelijk van elkaar APPENDIX: HET POISSON PROCES Een stochastisch proces dat onlosmakelijk verbonden is met de Poisson verdeling is het Poisson proces. Dit is een telproces dat het aantal optredens van een bepaalde gebeurtenis

Nadere informatie

Waarom wachten voor verkeerslichten? Inhoud 2/16/2010. Introductie Wachtrijtheorie Simpel model: een opengebroken weg

Waarom wachten voor verkeerslichten? Inhoud 2/16/2010. Introductie Wachtrijtheorie Simpel model: een opengebroken weg Waarom wachten voor verkeerslichten? Marko Boon Nationale Wiskunde Dagen 2010 Inhoud Introductie Simpel model: een opengebroken weg Met vaste afstellingen Met dynamische afstellingen Ingewikkeldere kruispunten

Nadere informatie

Deeltentamen Vraag 1 (0.25 punten) Vraag 2 (0.25 punten) Vraag 3 (0.25 punten) Vraag 4 (0.25 punten) *-vragen ( relatief simpel 2 punten)

Deeltentamen Vraag 1 (0.25 punten) Vraag 2 (0.25 punten) Vraag 3 (0.25 punten) Vraag 4 (0.25 punten) *-vragen ( relatief simpel 2 punten) Deeltentamen 2013 *-vragen ( relatief simpel 2 punten) Vraag 1 (0.25 punten) In wachtrijtheorie (blz. 226) wordt het symbool λ gebruikt voor: A. De gemiddelde tijd tussen twee aankomsten B. Het gemiddeld

Nadere informatie

Wachtrijtheorie. Hester Vogels en Franziska van Dalen. 11 juni 2013

Wachtrijtheorie. Hester Vogels en Franziska van Dalen. 11 juni 2013 Wachtrijtheorie Hester Vogels en Franziska van Dalen 11 juni 2013 1 1 Inleiding Een mens wacht gemiddeld 15.000 uur in zijn leven. Dit is bijvoorbeeld in de rij bij de kassa van een winkel, aan de telefoon

Nadere informatie

BESLISKUNDE A. Najaar 2017 Deel 2. L.C.M. KALLENBERG en F.M. SPIEKSMA

BESLISKUNDE A. Najaar 2017 Deel 2. L.C.M. KALLENBERG en F.M. SPIEKSMA BESLISKUNDE A Najaar 2017 Deel 2 L.C.M. KALLENBERG en F.M. SPIEKSMA UNIVERSITEIT LEIDEN Inhoudsopgave 5 WACHTTIJDTHEORIE 1 5.1 Inleiding.......................................... 1 5.2 Wachttijdparadox.....................................

Nadere informatie

Wachten of niet wachten: Dat is de vraag

Wachten of niet wachten: Dat is de vraag Wachten of niet wachten: Dat is de vraag Sindo Núñez-Queija Centrum voor Wiskunde en Informatica Technische Universiteit Eindhoven Wachten of niet wachten: Dat is de vraag Wanneer heeft u voor het laatst

Nadere informatie

BESLISKUNDE A. Najaar 2016 Deel 2. L.C.M. KALLENBERG en F.M. SPIEKSMA

BESLISKUNDE A. Najaar 2016 Deel 2. L.C.M. KALLENBERG en F.M. SPIEKSMA BESLISKUNDE A Najaar 016 Deel L.C.M. KALLENBERG en F.M. SPIEKSMA UNIVERSITEIT LEIDEN Inhoudsopgave 5 WACHTTIJDTHEORIE 1 5.1 Inleiding.......................................... 1 5. Wachttijdparadox.....................................

Nadere informatie

Wachtrijmodellen voor optimalisatie in het dagelijks leven

Wachtrijmodellen voor optimalisatie in het dagelijks leven Wachtrijmodellen voor optimalisatie in het dagelijks leven Richard J. Boucherie Stochastische Operationele Research Abstract Wachten doen we allemaal: bij de kassa van de supermarkt, in het verkeer, maar

Nadere informatie

Wachtrijtheorie op verkeersmodellen

Wachtrijtheorie op verkeersmodellen Wachtrijtheorie op verkeersmodellen Jan Jelle de Wit 20 juli 202 Bachelorscriptie Begeleiding: prof.dr. R. Núñez Queija KdV Instituut voor wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Nadere informatie

Chapter 4: Continuous-time Markov Chains (Part I)

Chapter 4: Continuous-time Markov Chains (Part I) Stochastic Operations Research I (2014/2015) Selection of exercises from book and previous exams. Chapter 4: Continuous-time Markov Chains (Part I) 1.1 Book pp 179 185 These are useful exercises to learn

Nadere informatie

o Dit tentamen bestaat uit vier opgaven o Beantwoord de opgaven 1 en 2 enerzijds, en de opgaven 3 en 4 anderzijds op aparte vellen papier

o Dit tentamen bestaat uit vier opgaven o Beantwoord de opgaven 1 en 2 enerzijds, en de opgaven 3 en 4 anderzijds op aparte vellen papier Toets Stochastic Models (theorie) Maandag 22 rnei 2OL7 van 8.45-1-1-.45 uur Onderdeel van de modules: o Modelling and analysis of stochastic processes for MATH (20L400434) o Modelling and analysis of stochastic

Nadere informatie

Benaderingen voor wachttijden in k-gelimiteerde polling modellen

Benaderingen voor wachttijden in k-gelimiteerde polling modellen TU/e Technische Universiteit Eindhoven Bachelor technische wiskunde Bachelor project 28 januari 2016 Benaderingen voor wachttijden in k-gelimiteerde polling modellen Auteur: Iris Theeuwes 0828283, i.theeuwes@student.tue.nl

Nadere informatie

WACHTTIJDTHEORIE. Rob Bosch. Jan van de Craats

WACHTTIJDTHEORIE. Rob Bosch. Jan van de Craats WACHTTIJDTHEORIE Rob Bosch Jan van de Craats Inhoudsopgave 1 Het Poissonproces 1 1.1 De Poissonverdeling......................... 2 1.2 Voorbeelden.............................. 4 1.3 Van binomiaal naar

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Oerations Management (153088) S1 S2 Ack X ms X ms S0 240 ms R1 R2 R3 L1 L2 10 ms 10 ms D0 Internet D1 D2 Richard Boucherie Stochastische Oerations Research TW, Citadel 125 htt://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

Wachten in de supermarkt

Wachten in de supermarkt Wachten in de supermarkt Rik Schepens 0772841 Rob Wu 0787817 22 juni 2012 Begeleider: Marko Boon Modelleren A Vakcode: 2WH01 Inhoudsopgave Samenvatting 1 1 Inleiding 1 2 Theorie 1 3 Model 3 4 Resultaten

Nadere informatie

Practicum wachtrijtheorie

Practicum wachtrijtheorie SPM0001 1e week Technische Bestuurskunde Woensdag 5 september 2012, 10:30 12:30 uur Plaats: TBM begane grond (zalen B, C, D1, D2, computerzaal A en studielandschap) Practicum wachtrijtheorie Het practicum

Nadere informatie

Wiskunde is tijdloos

Wiskunde is tijdloos Van Graham Bell tot John de Mol: Wiskunde is tijdloos Rob van der Mei Agenda 1. Telecommunicatie: de geboorte van een vakgebied 2. een reis door de geschiedenis 3. en de terugkeer naar het basiskamp: Wiskunde!

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms R1 S0 240 ms Ack L1 R2 10 ms Internet R3 L2 D0 10 ms D1 D2 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219

Nadere informatie

De Wachttijd-paradox

De Wachttijd-paradox De Wachttijd-paradox Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam Mastercourse 15 november 25 Peter Spreij spreij@science.uva.nl 1 Het probleem In deze mastercourse behandelen

Nadere informatie

Attractielogistiek. Bachelorproject. Where innovation starts. Faculteit Wiskunde en Informatica

Attractielogistiek. Bachelorproject. Where innovation starts. Faculteit Wiskunde en Informatica Faculteit Wiskunde en Informatica Den Dolech 2, 5612 AZ Eindhoven Postbus 513, 5600 MB Eindhoven Auteur Yves Houben Opdrachtgever prof.dr.ir. O.J. Boxma, dr.ir. M.A.A. Boon Datum 14 juni 2011 Attractielogistiek

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/39 Een stochastisch proces (stochastic proces) X (t) bestaat

Nadere informatie

Wachttijdtheorie. Prof. dr N.M. van Dijk Dr H.J. van der Sluis

Wachttijdtheorie. Prof. dr N.M. van Dijk Dr H.J. van der Sluis Wachttijdtheorie Beo-cases Prof. dr N.M. van Dijk Dr H.J. van der Sluis Een ogenblik geduld a.u.b. Een ogenblik geduld... (Uit Trouw artikel, 26 augustus 1998) Zeker een jaar van ons leven verdoen we onze

Nadere informatie

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door APP.1 Appendix A.1 Erlang verdeling verdeling met parameters n en λ Voor o.o. discrete s.v.-en X en Y geldt P (X + Y = z) =P (X = x 1 en Y = z x 1 )+P(X = x en Y = z x )+... = P (X = x 1 )P (Y = z x 1

Nadere informatie

Guus kom naar huus... of over koeienstallen, robots en wachtrijen

Guus kom naar huus... of over koeienstallen, robots en wachtrijen Guus kom naar huus... of over koeienstallen, robots en wachtrijen Ivo Adan Faculteit Wiskunde en Informatice TU Eindhoven 31 januari 2003 / department of mathematics and computer science 1/20 Nieuwe ontwikkeling

Nadere informatie

Milieustraat Project Modelleren C

Milieustraat Project Modelleren C Den Dolech 2, 5612 AZ Eindhoven Postbus 513, 5600 MB Eindhoven www.tue.nl Auteur Wouter van der Heide & Thomas Beekenkamp ID (resp.): 0739052 & 0743557 Begeleider: J.A.C. Resing Opdrachtgever: M. Boon

Nadere informatie

INLEIDING. Definitie Stochastisch Proces:

INLEIDING. Definitie Stochastisch Proces: Definitie Stochastisch Proces: INLEIDING Verzameling van stochastische variabelen die het gedrag in de tijd beschrijven van een systeem dat onderhevig is aan toeval. Tijdparameter: discreet: {X n, n 0};

Nadere informatie

Personeelsplanning in een schoolkantine

Personeelsplanning in een schoolkantine Personeelsplanning in een schoolkantine BWI werkstuk Januari 212 Petra Vis Begeleider: prof. dr. R.D. van der Mei Vrije Universiteit Faculteit der Exacte Wetenschappen Bedrijfswiskunde en Informatica De

Nadere informatie

CPU scheduling : introductie

CPU scheduling : introductie CPU scheduling : introductie CPU scheduling nodig bij multiprogrammering doel: een zo hoog mogelijke CPU-bezetting, bij tevreden gebruikers proces bestaat uit afwisselend CPU-bursts en I/O-bursts lengte

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) R1 L1 R2 1 S0 Stochastische Modellen in Operations Management (153088) 240 ms 10 ms Ack Internet Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) R1 L1 R2 S0 Stochastische Modellen in Operations Management (153088) 240 ms 10 ms Ack Internet Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

Milieustraat Project Modelleren C

Milieustraat Project Modelleren C Den Dolech 2, 562 AZ Eindhoven Postbus 53, 5600 MB Eindhoven www.tue.nl Auteur Wouter van der Heide & Thomas Beekenkamp ID (resp.): 0739052 & 0743557 Begeleider: J.A.C. Resing Opdrachtgever: M. Boon Faculteit:

Nadere informatie

Doorlooptijd variantie reductie in productielijnen

Doorlooptijd variantie reductie in productielijnen Auteur Erik van Rhee (0589036) Begeleider dr. J.A.C. Resing Doorlooptijd variantie reductie in productielijnen Opdrachtgever dr. ir. M. van Vuuren (CQM) Datum 7 oktober 2009 Versie 2.0 Abstract Consider

Nadere informatie

Hoofdstuk 7 : Continue distributies als stochastische modellen. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 7 : Continue distributies als stochastische modellen. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 7 : Continue distributies als stochastische modellen Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Continue distributies als stochastische

Nadere informatie

Multi-class Erlang loss systems with trunk reservation in a Halfin-Whitt Regime

Multi-class Erlang loss systems with trunk reservation in a Halfin-Whitt Regime Eindhoven University of Technology BACHELOR Multi-class Erlang loss systems with trunk reservation in a Halfin-Whitt Regime van der Boor, M Award date: 204 Disclaimer This document contains a student thesis

Nadere informatie

Optimale regeling van de bedieningscapaciteit van een wachtlijnsysteem

Optimale regeling van de bedieningscapaciteit van een wachtlijnsysteem UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 200 Optimale regeling van de bedieningscapaciteit van een wachtlijnsysteem Masterproef voorgedragen tot het bekomen van de graad

Nadere informatie

Wachttijdtheorie (vakcode )

Wachttijdtheorie (vakcode ) Wachttidtheorie vacode 153087 Doel Introductie theorie netweren van wachtrien met nadru o exacte analytische olossingen. Omvang 3 SP 5 ECTS volgend aar Ca 18 bieenomsten Plaats: 4.2 Vorm: Hoorcollege /

Nadere informatie

BESLISKUNDE 2 Deel 2 najaar L.C.M. KALLENBERG en F.M. SPIEKSMA UNIVERSITEIT LEIDEN

BESLISKUNDE 2 Deel 2 najaar L.C.M. KALLENBERG en F.M. SPIEKSMA UNIVERSITEIT LEIDEN BESLISKUNDE 2 Deel 2 najaar 203 L.C.M. KALLENBERG en F.M. SPIEKSMA UNIVERSITEIT LEIDEN Inhoudsopgave MARKOVPROCESSEN. Inleiding...........................................2 Differentiaalvergelijkingen

Nadere informatie

Deel 2 van Wiskunde 2

Deel 2 van Wiskunde 2 Deel 2 van Wiskunde 2 Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Jacques Resing Thu 1+2 Aud 1+4 Jacques Resing Werkcollege Tue 7+8 Aud 6+15 Jacques Resing Instructie

Nadere informatie

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling.

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling. Deze week: Verdelingsfuncties Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties Cursusjaar 29 Peter de Waal Toepassingen Kansmassafuncties / kansdichtheidsfuncties Eigenschappen Departement Informatica

Nadere informatie

Triage op de spoedeisende hulp

Triage op de spoedeisende hulp Triage op de spoedeisende hulp BWI Werkstuk, augustus 2008 Matthijs Kooy Vrije Universiteit Amsterdam Faculteit der Eacte Wetenschappen De Boelelaan 1081a 1081 HV Amsterdam Voorwoord Een van de laatste

Nadere informatie

Vergelijken van modellen voor het aanbieden van tolken Een wiskundig model voor Capio

Vergelijken van modellen voor het aanbieden van tolken Een wiskundig model voor Capio Vergelijken van modellen voor het aanbieden van tolken Een wiskundig model voor Capio Anke Gasseling, Wouter Lardinois en Eloy Stoppels 15 juni 2015 1 1 Abstract Capio is een bedrijf dat een applicatie

Nadere informatie

Kansrekening en stochastische processen 2DE18

Kansrekening en stochastische processen 2DE18 Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: resing@win.tue.nl 1/23 Voor een verzameling stochastische variabelen X 1,..., X n, de verwachting van W n = X 1 + + X n is

Nadere informatie

Uitwerkingen oefenopdrachten WEX6

Uitwerkingen oefenopdrachten WEX6 Uitwerkingen oefenopdrachten WEX6 Marc Bremer August 9, 2009 Serie : Wachttijdtheorie Contact Dit document is samengesteld door onderwijsbureau Bijles en Training. Wij zijn DE expert op het gebied van

Nadere informatie

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten:

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten: Definitie van Markov keten: MARKOV KETENS Een stochastisch proces {X n, n 0} met toestandsruimte S heet een discrete-tijd Markov keten (DTMC) als voor alle i en j in S geldt P (X n+1 = j X n = i, X n 1,...,

Nadere informatie

R.B. Kappetein. Callcenters. Bachelorscriptie, 5 juli 2011. Scriptiebegeleider: Dr. F.M. Spieksma. Mathematisch Instituut, Universiteit Leiden

R.B. Kappetein. Callcenters. Bachelorscriptie, 5 juli 2011. Scriptiebegeleider: Dr. F.M. Spieksma. Mathematisch Instituut, Universiteit Leiden R.B. Kappetein Callcenters Bachelorscriptie, 5 juli 2011 Scriptiebegeleider: Dr. F.M. Spieksma Mathematisch Instituut, Universiteit Leiden Inhoudsopgave 1 Inleiding: callcenters met ongeduldige klanten

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

Vrije Universiteit Amsterdam Opleiding Wiskunde Vak Poisson Processen. Poisson Processen. Arno Weber.

Vrije Universiteit Amsterdam Opleiding Wiskunde Vak Poisson Processen. Poisson Processen. Arno Weber. Vrije Universiteit Amsterdam Opleiding Wiskunde Vak Poisson Processen Poisson Processen Arno Weber email: aeweber@cs.vu.nl Januari 2003 1 Inhoudsopgave 1. Computersimulaties 3 2. Wachttijd-paradox 6 3.

Nadere informatie

Bouwplaat. Datastructuren Opgave 6, Voorjaar

Bouwplaat. Datastructuren Opgave 6, Voorjaar 1 Achtergrond Bouwplaat Datastructuren Opgave 6, Voorjaar 2016 1 Het bedrijf Mijn Bouwplaat BV levert gepersonaliseerde bouwplaten Klaar terwijl u wacht. Nadat klanten thuis een ontwerp hebben gemaakt

Nadere informatie

MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen.

MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen. MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen. voorraadmodel: voorraadkosten personeelsplanningmodel: salariskosten machineonderhoudsmodel: reparatiekosten

Nadere informatie

Matchings Bachelorproject

Matchings Bachelorproject Den Dolech 2, 5612 AZ Eindhoven Postbus 513, 5600 MB Eindhoven www.tue.nl Auteur Wouter van der Heide Identiteitsnummer: 0739052 Faculteit: W&I Vakcode: 2J008 Datum April - Juni 2013 Matchings Where innovation

Nadere informatie

Over wiskundig modelleren en call centers

Over wiskundig modelleren en call centers Over wiskundig modelleren en call centers Ger Koole Verschenen in: Nieuwe Wiskrant 20(3):8 12, maart 2001 Toegepaste wiskunde is meer dan het oplossen van wiskundige modellen. Vaak is het opstellen van

Nadere informatie

Verkeerslichten. Ton Godtschalk 13 juni Lengte van de wachtrij Inleiding Variabelen Aannames... 3

Verkeerslichten. Ton Godtschalk 13 juni Lengte van de wachtrij Inleiding Variabelen Aannames... 3 Verkeerslichten Ton Godtschalk 13 juni 2008 Inhoudsopgave 1 Lengte van de wachtrij 2 1.1 Inleiding..................................... 2 1.2 Variabelen.................................... 3 1.3 Aannames....................................

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) Stochastische Modellen in Oerations Management (15388) S1 S2 Ack X ms X ms S 24 ms R1 R2 R3 L1 L2 1 ms 1 ms D Internet D1 D2 Richard Boucherie Stochastische Oerations Research TW, Ravelijn H 219 htt://wwwhome.math.utwente.nl/~boucherierj/onderwijs/15388/15388.html

Nadere informatie

Eindhoven University of Technology BACHELOR. Wachtrijsystemen met toestandsafhankelijke bedieningssnelheid. Schutte, Mattijn.

Eindhoven University of Technology BACHELOR. Wachtrijsystemen met toestandsafhankelijke bedieningssnelheid. Schutte, Mattijn. Eindhoven University of Technology BACHELOR Wachtrijsystemen met toestandsafhankelijke bedieningssnelheid Schutte, Mattijn Award date: 2008 Link to publication Disclaimer This document contains a student

Nadere informatie

MARKOV KETENS, OF: WAT IS DE KANS DAT MEVROUW DE VRIES NAT ZAL WORDEN?

MARKOV KETENS, OF: WAT IS DE KANS DAT MEVROUW DE VRIES NAT ZAL WORDEN? MARKOV KETENS, OF: WAT IS DE KANS DAT MEVROUW DE VRIES NAT ZAL WORDEN? KARMA DAJANI In deze lezing gaan we over een bijzonder model in kansrekening spreken Maar eerst een paar woorden vooraf Wat doen we

Nadere informatie

Tentamen Inleiding Kansrekening 11 augustus 2011, uur

Tentamen Inleiding Kansrekening 11 augustus 2011, uur Mathematisch Instituut Niels Bohrweg Universiteit Leiden 2 CA Leiden Delft Tentamen Inleiding Kansrekening augustus 20, 09.00 2.00 uur Bij dit examen is het gebruik van een evt. grafische) rekenmachine

Nadere informatie

Opslag strategieën in een multi-deep magazijn

Opslag strategieën in een multi-deep magazijn Opslag strategieën in een multi-deep magazijn J. Manders Universiteit Twente. Technische Wiskunde 18 juli 2016 Samenvatting In dit onderzoek wordt het gebruik van een multi-deep automatisch magazijn inclusief

Nadere informatie

Stochastische Modellen in Operations Management (153088)

Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms Stochastische Modellen in Operations Management (153088) R1 S0 240 ms Ack Internet R2 L1 R3 L2 10 ms 1 10 ms D1 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/28 Schatten van de verwachting We hebben een stochast X en

Nadere informatie

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten:

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten: Definitie van Markov keten: MARKOV KETENS Een stochastisch proces {X n, n 0} met toestandsruimte S heet een discrete-tijd Markov keten (DTMC) als voor alle i en j in S geldt P (X n+ = j X n = i, X n,...,

Nadere informatie

Het kassaprobleem. Bachelorproject (2J008) Ellen Weerts ( ) 2 juli Technische Universiteit Eindhoven Stochastische Besliskunde

Het kassaprobleem. Bachelorproject (2J008) Ellen Weerts ( ) 2 juli Technische Universiteit Eindhoven Stochastische Besliskunde Het kassaprobleem Bachelorproject (2J008) Ellen Weerts (0572318) 2 juli 2007 Technische Universiteit Eindhoven Stochastische Besliskunde Begeleiders: O.J. Boxma en J.S.H. van Leeuwaarden. 2 Samenvatting

Nadere informatie

OR in de zorg: een persoonlijk overzicht

OR in de zorg: een persoonlijk overzicht OR in de zorg: een persoonlijk overzicht René Bekker Afdeling Wiskunde, VU Zorguitgaven Verenigde Staten In 2007: $2.3 triljoen Voorspellingen 2011 & 2016: $3 & $4.2 triljoen Zorguitgaven zijn 4.3 maal

Nadere informatie

3 De situatie, probleemstelling en doelstelling

3 De situatie, probleemstelling en doelstelling 1 Voorwoord Voor U ligt het eindverslag van ons onderzoek, uitgevoerd voor de gemeente Enschede en de Universiteit Twente. Het onderzoek is uitgevoerd door drie studenten van de opleiding Science Education

Nadere informatie

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden.

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden. Hertentamen Inleiding Kansrekening WI64. 9 augustus, 9:-: Het tentamen heeft 5 onderdelen. Met ieder onderdeel kan maximaal punten verdiend worden. Het tentamen is open boek. Boeken, nota s en een (eventueel

Nadere informatie

MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen.

MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen. MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen. voorraadmodel: voorraadkosten personeelsplanningmodel: salariskosten machineonderhoudsmodel: reparatiekosten

Nadere informatie

Stochastic Operations Research

Stochastic Operations Research Stochastic Operations Research Staf: Richard Boucherie Nelly Litvak Jan-Kees van Ommeren Werner Scheinhardt Judith Vink-Timmer Promovendi: Tom Coenen Roland de Haan Denis Miretskiy Yana Volkovich Peter

Nadere informatie

Waarom kleintjes niet altijd voor moeten gaan (maar vaak wel)

Waarom kleintjes niet altijd voor moeten gaan (maar vaak wel) Waarom kleintjes niet altijd voor moeten gaan (maar vaak wel) Sindo Núñez Queija Universiteit van Amsterdam & Centrum voor Wiskunde en Informatica + Maaike Verloop en Sem Borst OVERZICHT: Wachtrijen en

Nadere informatie

Strategisch kassa s inzetten in supermarkten. Lydia van t Veer. BWI-werkstuk

Strategisch kassa s inzetten in supermarkten. Lydia van t Veer. BWI-werkstuk Lydia van t Veer BWI-werkstuk Lydia van t Veer BWI-werkstuk Vrije Universiteit Faculteit der Exacte Wetenschappen Studierichting Bedrijfswiskunde en Informatica De Boelelaan 1081a 1081 HV Amsterdam Maart

Nadere informatie

We zullen in deze les kijken hoe we netwerken kunnen analyseren, om bijvoorbeeld de volgende vragen te kunnen beantwoorden:

We zullen in deze les kijken hoe we netwerken kunnen analyseren, om bijvoorbeeld de volgende vragen te kunnen beantwoorden: Wiskunde voor kunstmatige intelligentie, 24 Les 5 Proces analyse Veel processen laten zich door netwerken beschrijven, waarin een aantal knopen acties aangeeft en opdrachten langs verbindingen tussen de

Nadere informatie

Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1.

Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1. LIMIETGEDRAG VAN REDUCIBELE MARKOV KETEN In het voorgaande hebben we gezien hoe we de limietverdeling van een irreducibele, aperiodieke Markov keten kunnen berekenen: Voorbeeld 1: Zoek de unieke oplossing

Nadere informatie

Eindhoven University of Technology BACHELOR. Wachtrij- en verzekeringsmodellen. Bink, H.L.J. Award date: Link to publication

Eindhoven University of Technology BACHELOR. Wachtrij- en verzekeringsmodellen. Bink, H.L.J. Award date: Link to publication Eindhoven University of Technology BACHELOR Bink, H.L.J. Award date: 203 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven

Nadere informatie

Even geduld a.u.b. 3 maart 2003

Even geduld a.u.b. 3 maart 2003 Even geduld a.u.b. 3 maart 2003 In het dagelijks leven hebben we vaak te maken met wachten. Denk bijvoorbeeld aan het wachten bij de kassa in de supermarkt, voor het downloaden van een file op het internet

Nadere informatie

Besliskunde deeltentamen II

Besliskunde deeltentamen II Besliskunde deeltentamen II Hoofdstuk 3 Lineair programmeren Een lineair programmeringsprobleem kunnen we beschrijven met een lineaire doelfunctie en lineaire beperkingen. Het woord programmeren wordt

Nadere informatie

STOCHASTISCHE OPERATIONS RESEARCH

STOCHASTISCHE OPERATIONS RESEARCH STOCHASTISCHE OPERATIONS RESEARCH Staf: prof.dr Henk Zijm prof.dr Richard Boucherie mevr. dr Nelly Litvak dr Jan-Kees van Ommeren dr.ir Werner Scheinhardt mevr. dr Judith Vink-Timmer Promovendi: ir. Bas

Nadere informatie

Call Center Mathematics Versienummer: 2.0 Datum: 18-09-2007

Call Center Mathematics Versienummer: 2.0 Datum: 18-09-2007 Call Center Mathematics Versienummer: 2.0 Datum: 18-09-2007 Auteur: Bart van de Laar Opleiding: Technische Wiskunde Universiteit: Technische Universiteit Eindhoven Begeleider: Ivo Adan Inhoudsopgave 1

Nadere informatie

Kantoorruimte is simpelweg te duur om verloren te laten gaan aan ongebruikte toiletten technische studie Kurt Van Hautegem Wouter Rogiest

Kantoorruimte is simpelweg te duur om verloren te laten gaan aan ongebruikte toiletten technische studie Kurt Van Hautegem Wouter Rogiest Kantoorruimte is simpelweg te duur om verloren te laten gaan aan ongebruikte toiletten technische studie Kurt Van Hautegem Wouter Rogiest In dit document geven we een korte toelichting bij de aannames

Nadere informatie

Prestatie-analyse van zone-picking systemen

Prestatie-analyse van zone-picking systemen Prestatie-analyse van zone-picking systemen Ivo Adan, Jelmer van der Gaast, René de Koster, Jacques Resing Donderdag 11 oktober Zone-picking systemen 2/38 Populair order-picking systeem Magazijn verdeeld

Nadere informatie

P = LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten:

P = LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten: LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten: Voorbeeld: Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1. P = 0 1/4

Nadere informatie

Tentamen Kansrekening (NB004B)

Tentamen Kansrekening (NB004B) NB4B: Kansrekening Dinsdag november 2 Tentamen Kansrekening (NB4B) Het is een open boek tentamen. Gebruik van een rekenmachine of andere hulpmiddelen is niet toegestaan. Vermeld op ieder blad je naam en

Nadere informatie