Definitie van continue-tijd Markov keten:
|
|
|
- Nina Boender
- 9 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Definitie van continue-tijd Markov keten: Een stochastisch proces {X(t), t 0} met toestandsruimte S heet een continue-tijd Markov keten (CTMC) als voor alle i en j in S en voor alle tijden s, t 0 geldt P (X(s+t) = j X(s) = i, X(u), 0 u < s) = P (X(s+t) = j X(s) = i). In woorden: "Gegeven het heden X(s) en het verleden X(u), 0 u < s van het proces hangt de toekomst X(s+t) alleen af van het heden en niet van het verleden." 1/28
2 Beschrijving continue-tijd Markov keten Een continue-tijd Markov keten is een stochastisch proces {X(t) : t 0} met toestandsruimte S = {1,..., N} waarvoor het volgende geldt: het proces verblijft een exponentiële tijd, zeg met parameter r i in toestand i, daarna springt het proces, onafhankelijk van het verleden van het proces, met kans p i,j naar toestand j, vervolgens verblijft het proces een exponentiële tijd, zeg met parameter r j in toestand j, daarna springt het proces, onafhankelijk van het verleden van het proces, met kans p j,k naar toestand k, enzovoorts... 2/28
3 Visualisatie continue-tijd Markov keten Net als bij een discrete-tijd Markov keten visualiseren we een continue-tijd Markov keten met behulp van een gerichte graaf. Als we van toestand i naar toestand j kunnen springen zetten we van knoop i naar knoop j een pijl met daar boven de grootheid r i,j = r i p i,j. De grootheid r i,j is de overgangsintensiteit van toestand i naar toestand j. Interpretatie van overgangsintensiteit: Als we naar een klein intervalletje ter lengte dt kijken, dan is de kans dat het proces in dat intervalletje van i naar j springt gelijk aan r i,j dt. (als het proces in toestand i zit wil het r i,j keer per tijdseenheid van toestand i naar toestand j springen) 3/28
4 De rol die de 1-staps overgangsmatrix P had bij een DTMC wordt nu dus overgenomen door de intensiteitmatrix R r 1,1 r 1,2... r 1,N R = r 2,1 r 2,2... r 2,N... r N,1 r N,2... r N,N Wanneer je van een CTMC de beginverdeling en de intensiteitmatrix R hebt beschreven, heb je het stochastisch gedrag van het proces in zijn geheel beschreven. Waarschuwing: In veel andere boeken wordt niet gewerkt met de intensiteitmatrix R maar met de generatormatrix Q. Voor i j geldt q i,j = r i,j, maar voor i = j geldt q i,i = r i terwijl r i,i = 0. 4/28
5 Example 4.5 Machine werkplaats met vier onafhankelijke machines 1, 2, 3 en 4. Bedrijfsduur machine i (i = 1, 2, 3, 4) is B i Exp(µ), reparatieduur wegens defect machine i is R i Exp(λ). Er zijn twee reparateurs beschikbaar. X(t) = toestand op tijdstip t = aantal machines op tijd t in bedrijf, dan is {X(t), t 0} met toestandsruimte S = {0, 1, 2, 3, 4} een continue-tijd Markov keten (CTMC). De intensiteitmatrix R bij deze S = {0, 1, 2, 3, 4} wordt 0 2λ µ 0 2λ 0 0 R = 0 2µ 0 2λ µ 0 λ µ 0 5/28
6 HET POISSON PROCES In veel praktische toepassingen kan het aaankomstproces van personen, orders,..., gemodelleerd worden door een zogenaamd Poisson proces. Definitie van een Poisson proces: Een Poisson proces met intensiteit λ (notatie P P (λ)) is een stochastisch proces {N(t), t 0} dat het aantal gebeurtenissen telt in het interval (0, t), waarbij de tijden tussen 2 opeenvolgende gebeurtenissen onafhankelijke, exponentieel verdeelde stochastische variabelen zijn met parameter λ. Notatie: S 0 = 0, S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. {T n, n 0} is rij van onafhankelijke, exponentieel verdeelde stochastische variabelen met parameter λ. 6/28
7 VOORBEELDEN VAN CONTINUE-TIJD MARKOV KETENS Het M/M/1/K wachtrijmodel Stel klanten arriveren bij een betaalautomaat volgens een Poisson proces met intensiteit λ. De behandelingstijden van klanten bij de automaat zijn onafhankelijk, exponentiëel verdeeld met parameter µ. Klanten worden First Come First Served (FCFS) behandeld. Klanten die bij aankomst K andere klanten bij de automaat aantreffen gaan ergens anders geld halen. X(t), het aantal klanten bij de betaalautomaat op tijdstip t, is een continuetijd Markov keten. 7/28
8 VOORBEELDEN VAN CONTINUE-TIJD MARKOV KETENS (VERVOLG) Call center s telefonisten en H wachtplaatsen Aankomstproces van gesprekken is Poisson proces met intensiteit λ. Gespreksduren zijn exponentiëel verdeeld met parameter µ. X(t): aantal gespreksaanvragen in het systeem (in behandeling of in de wachtstand) op tijdstip t. X(t) is geboorte-sterfte proces met toestandsruimte S = {0, 1, 2,..., K} waarbij K = s + H en overgangsintensiteiten: λ i = λ voor 0 i K 1. µ i = min (i, s)µ, voor 1 i K. 8/28
9 VOORBEELDEN VAN CONTINUE-TIJD MARKOV KETENS (VERVOLG) Produktiemodel Op machine worden produkten op voorraad geproduceerd. Als de machine aan staat, produceert hij produkten volgens Poisson proces met intensiteit λ. Vraag naar produkten is Poisson proces met intensiteit µ. Machine wordt uitgezet als voorraad gelijk is aan opslagcapaciteit K. Machine wordt weer aangezet als voorraad gezakt is naar niveau k. X(t): aantal produkten op voorraad op tijdstip t. Y (t): toestand machine op tijdstip t. (Belangrijk als k < X(t) < K) Dan is {(X(t), Y (t)) : t 0} een CTMC. 9/28
10 Net als bij een discrete-tijd Markov keten is men bij de bestudering van een continue-tijd Markov keten zowel geïnteresseerd in het korte-termijn gedrag als in het lange-termijn gedrag. Vragen die je wilt beantwoorden zijn: Wat is de kans dat het proces {X(t) : t 0} zich op tijdstip t in een bepaalde toestand bevindt? (transiënte verdeling) Wat is de kans dat het proces {X(t) : t 0} zich voor t in een bepaalde toestand bevindt? (limietverdeling) Welk deel van de tijd bevindt het stochastisch proces {X(t) : t 0} zich in een bepaalde toestand? (occupatieverdeling) Wij zullen ons wel op het lange-termijn gedrag van CTMC s richten maar niet op het korte-termijn gedrag. De secties 4.4 en 4.5 uit het boek zullen we overslaan. 10/28
11 LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS Hoofdstelling over het limietgedrag van continue-tijd Markov ketens formuleren. Stelling: Een irreducibele, continue-tijd Markov keten met toestandsruimte S = {1, 2,..., N} heeft een unieke limietverdeling, een unieke stationaire verdeling en een unieke occupatieverdeling. De drie verdelingen zijn gelijk en ze worden gegeven door de unieke oplossing van het stelsel vergelijkingen p j r j = N p i r i,j, 1 j N, i=1 waarvoor bovendien geldt dat N i=1 p i = 1. Opmerking: In het geval van continue-tijd Markov ketens hoeven we ons geen zorgen te maken over periodiciteit/aperiodiciteit van de Markov keten. 11/28
12 Toelichting bij het ontstaan van het stelsel vergelijkingen voor de limiet- /evenwichtskansen p 1, p 2,..., p N. De kans op vertrek uit j S in het interval (t, t + dt] na een verblijftijd t is: p j r j dt De kans op binnenkomen in j S in het interval (t, t + dt] na een verblijftijd t elders is: N i=1 p ir i,j dt Deze kansen zijn in de limiet-/evenwichtssituatie, waarin de kans op een toestand j S niet meer in de tijd verandert, gelijk, dus p j r j = N i=1 p ir i,j, j = 1, 2,..., N met N j=1 p j = 1. Balansargument in intensiteitdiagram: Uitstroom toestand j = Instroom toestand j. levert eenvoudig het voorgaande stelsel vergelijkingen. 12/28
13 Met behulp van de hoofdstelling kan de limietverdeling van een irreducibele CTMC dus uitgerekend worden. Voorbeeld: Machine die afwisselend werkt en kapot is Levensduur van machine: Exp(1/10) verdeeld (gemiddeld 10 dagen) Reparatieduur van machine: Exp(1) verdeeld (gemiddeld 1 dag) Toestand 0: machine kapot; Toestand 1: machine werkt; Dan geldt En dus p 0 1 = p 1 1/10, p 1 1/10 = p 0 1, p 0 + p 1 = 1. p 0 = 1/11, p 1 = 10/11. 13/28
14 Beschouw geboorte-sterfte proces met toestandsruimte {0, 1,..., K} en met de intensiteiten vanuit een toestand naar buurtoestanden: λ i : de intensiteit van toestand i naar toestand i + 1 (i = 0, 1,..., K 1). µ i : de intensiteit van toestand i naar toestand i 1 (i = 1, 2,..., K). Op basis van het Balansargument: Uitstroom toestand j = Instroom toestand j, volgt een stelsel vergelijkingen voor de limiet/evenwichtskansen: p 0 λ 0 = p 1 µ 1, p 1 (λ 1 + µ 1 ) = p 0 λ 0 + p 2 µ 2, p 2 (λ 2 + µ 2 ) = p 1 λ 1 + p 3 µ 3,. p i 1 (λ i 1 + µ i 1 ) = p i 2 λ i 2 + p i µ i, (i = 4, 5,..., K). p K µ K = p K 1 λ K 1 en met K i=0 p i = 1. 14/28
15 Uit voorgaand stelsel vergelijkingen is bij geboorte-sterfte processen een eenvoudiger stelsel af te leiden door combinatie van de oorspronkelijke vergelijkingen. Deze vergelijkingen heten snedevergelijkingen. p 0 λ 0 = p 1 µ 1, p 1 λ 1 = p 2 µ 2,. p i 1 λ i 1 = p i µ i, (i = 3, 4,..., K), In de limietsituatie is de kans om van links naar rechts door een snede te gaan even groot als andersom. Oplossing: druk elke kans p i uit in p 0 ; daarna volgt p 0 uit K i=0 p i = 1. 15/28
16 Vier onafhankelijke machines 1, 2, 3, 4. Bedrijfsduur (uur) elke machine is B Exp( 1 ), reparatieduur (uur) wegens defect is R 72 Exp(1 ). Twee 2 reparateurs beschikbaar. X(t) = aantal machines op tijd t in bedrijf. De intensiteitmatrix R bij deze CTMC met S = {0, 1, 2, 3, 4} wordt R = De snedevergelijkingen en normalisatievergelijking zijn: p 0 = 1 72 p 1, p 1 = 1 36 p 2, p 2 = 1 24 p 3, 1 2 p 3 = 1 18 p 4, p 0 + p 1 + p 2 + p 3 + p 4 = 1. Oplossing: (p 0, p 1, p 2, p 3, p 4 ) = 1 (1, 72, 2592, 62208, ) /28
17 Twee resterende onderwerpen van CTMCs. Lange-termijn gemiddelde kosten per tijdseenheid (Long-run cost rate, paragraaf 4.7.2) Verwachte tijd tot je voor het eerst in bepaalde toestanden komt (First-passage time, paragraaf 4.8) 17/28
18 Lange-termijn gemiddelde kosten per tijdseenheid Stel dat wanneer de CTMC zich in toestand i bevindt, dit kosten c(i) per tijdseenheid met zich meebrengt. Definiëer verder g(i, T ) als de totale verwachte kosten in het interval [0, T ] wanneer de CTMC start in toestand i. De lange-termijn gemiddelde kosten per tijdseenheid bij start in i worden dan gegeven door g(i, T ) g(i) := lim. T T Stelling: Voor een irreducibele CTMC met limietverdeling p = [p 1,..., p N ] geldt g(i) = g = N p j c(j). j=1 Idee: Onafhankelijk van de begintoestand brengt de CTMC een deel p j in toestand j door en het verblijf in toestand j brengt kosten c(j) per tijdseenheid met zich mee. 18/28
19 Voorbeeld: Telefooncentrale 6 beschikbare telefoonlijnen Aankomstproces nieuwe gesprekken: Poissonproces met intensiteit van 4 gesprekken per minuut Gespreksduren zijn exponentiëel verdeeld met een gemiddelde duur van 2 minuten Gespreksaanvragen die aankomen als alle lijnen vol zijn gaan verloren Gesprekskosten per gebruiker: 10 cent per minuut Vragen: Wat is de verwachte opbrengst per minuut? Hoeveel geld gaat er per minuut verloren doordat alle lijnen bezet zijn? 19/28
20 Verwachte tijd tot je voor het eerst in bepaalde toestanden komt Laat A een deelverzameling van de toestandsruimte zijn en definieer m i (A) als de verwachte tijd totdat CTMC voor het eerst in deelverzameling A komt bij start in toestand i. Dan geldt m i (A) = 0 als i A en verder Idee bewijs: m i (A) = 1 r i + j S\A r i,j r i m j (A), i / A. CTMC verblijft eerst een exponentiële tijd met parameter r i in toestand i en springt daarna met kans p i,j = r i,j /r i naar toestand j. Het bovenstaande stelsel vergelijkingen kan eenvoudig opgelost worden. 20/28
21 Voorbeeld: Betaalautomaat Stel klanten arriveren bij een betaalautomaat volgens een Poisson proces met een intensiteit van 10 klanten per uur. De behandelingstijden van klanten bij de automaat zijn onafhankelijk, exponentiëel verdeeld met een gemiddelde van 4 minuten. Klanten worden First Come First Served (FCFS) behandeld. Klanten die bij aankomst 5 andere klanten bij de automaat aantreffen gaan ergens anders geld halen. Vraag: Als er op dit moment 1 klant bij de betaalautomaat staat, hoe lang duurt het dan totdat voor het eerst niemand meer bij de betaalautomaat aanwezig is? 21/28
22 VERNIEUWINGSPROCESSEN In hoofdstuk 3 hebben we gezien wat een Poisson proces is. Definitie van een Poisson proces: Een Poisson proces met intensiteit λ (notatie P P (λ)) is een stochastisch proces {N(t), t 0} dat het aantal gebeurtenissen telt in het interval (0, t), waarbij de tijden tussen 2 opeenvolgende gebeurtenissen onafhankelijke, exponentieel verdeelde stochastische variabelen zijn met parameter λ. Notatie: S 0 = 0, S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. {T n, n 0} is rij van onafhankelijke, exponentieel verdeelde stochastische variabelen met parameter λ. 22/28
23 Een Poisson proces is een speciaal geval van een vernieuwingsproces Definitie van een vernieuwingsproces: Een vernieuwingsproces is een stochastisch proces {N(t), t 0} dat het aantal gebeurtenissen (= vernieuwingen) telt in het interval (0, t), waarbij de tijden tussen 2 opeenvolgende gebeurtenissen onafhankelijke, identiek verdeelde stochastische variabelen zijn. Notatie (als voorheen): S 0 = 0, S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis. {T n, n 0} is dus een rij van onafhankelijke, identiek verdeelde stochastische variabelen. Als de stochastische variabelen {T n, n 0} exponentiëel verdeeld zijn noemen we het vernieuwingsproces dus een Poisson proces. 23/28
24 Voorbeelden vernieuwingsprocessen Correctieve vervanging (identiek verdeelde levensduren + vervanging alleen als apparaat stuk is) Correctieve + preventieve vervanging (identiek verdeelde levensduren + vervanging als apparaat stuk is of een bepaalde leeftijd bereikt) Aantal bezoeken van CTMC aan bepaalde toestand (Start op tijdstip 0 in i en tel het aantal keren dat CTMC na tijdstip 0 toestand i binnenkomt) 24/28
25 Stelling: N(t) lim = 1, met kans 1, t t τ waarbij τ de verwachte tijd tussen twee opeenvolgende vernieuwingen is. In woorden: Het aantal vernieuwingen dat op den lange termijn per tijdseenheid opgetreden is, is met kans 1 gelijk aan 1 gedeeld door de verwachte tijd tussen twee opeenvolgende vernieuwingen. Het bewijs van bovenstaande stelling is gebaseerd op de sterke wet van de grote aantallen. 25/28
26 Sterke wet van de grote aantallen Stel {T n, n 0} een rij van onderling onafhankelijke, identiek verdeelde stochastische variabelen met gemiddelde τ en zij S n = T T n. Dan geldt S n lim x n = τ, met kans 1. 26/28
27 Bewijs van Stelling lim t N(t) t = 1 τ : Per definitie en dus S N(t) N(t) S N(t) t S N(t)+1 t N(t) S N(t)+1 N(t) + 1 N(t) + 1. N(t) Volgens de sterke wet van de grote aantallen gaan zowel de term helemaal links als de term helemaal rechts naar τ als t. En dus volgt uit de insluitstelling dat ook (en dus lim t N(t) t = 1 τ ). lim t t N(t) = τ. 27/28
28 Voorbeeld: correctieve vervanging Stel levensduren U[1, 5] verdeeld. Dan geldt τ = 3 en dus is het aantal vervangingen dat op den lange termijn per tijdseenheid opgetreden is met kans 1 gelijk aan 1/3. Voorbeeld: correctieve + preventieve vervanging Stel levensduren U[1, 5] verdeeld en apparaten worden preventief vervangen als de leeftijd 3 is. Dan geldt dat de gemiddelde tijd tussen 2 vervangingen (correctief of preventief) 2.5 is (ga na!) en dus is het aantal vervangingen dat op den lange termijn per tijdseenheid opgetreden is met kans 1 gelijk aan 0.4. Vraag: Wat is het aantal correctieve (resp. preventieve) vervangingen dat op den lange termijn per tijdseenheid opgetreden is? 28/28
Definitie van continue-tijd Markov keten:
Definitie van continue-tijd Markov keten: Een stochastisch proces {X(t), t 0} met toestandsruimte S heet een continue-tijd Markov keten (CTMC) als voor alle i en j in S en voor alle tijden s, t 0 geldt
p j r j = LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS Hoofdstelling over het limietgedrag van continue-tijd Markov ketens formuleren.
LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS Hoofdstelling over het limietgedrag van continue-tijd Markov ketens formuleren. Stelling: Een irreducibele, continue-tijd Markov keten met toestandsruimte S
LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS
LIMIETGEDRAG VAN CONTINUE-TIJD MARKOV KETENS Hoofdstelling over limietgedrag van continue-tijd Markov ketens. Stelling: Een irreducibele, continue-tijd Markov keten met toestandsruimte S = {1, 2,..., N}
S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.
HET POISSON PROCES In veel praktische toepassingen kan het aaankomstproces van personen, orders,..., gemodelleerd worden door een zogenaamd Poisson proces. Definitie van een Poisson proces: Een Poisson
Q is het deel van de overgangsmatrix dat correspondeert met overgangen
COHORTE MODELLEN Stel we hebben een groep personen, waarvan het gedrag van ieder persoon afzonderlijk beschreven wordt door een Markov keten met toestandsruimte S = {0, 1, 2,..., N} en overgangsmatrix
S n = tijdstip van de n-de gebeurtenis, T n = S n S n 1 = tijd tussen n-de en (n 1)-de gebeurtenis.
VERNIEUWINGSPROCESSEN In hoofdstuk 3 hebben we gezien wat een Poisson proces is. Definitie van een Poisson proces: Een Poisson proces met intensiteit λ (notatie P P (λ)) is een stochastisch proces {N(t),
P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). P (X n+1 = j X n = i) MARKOV KETENS. Definitie van Markov keten:
Definitie van Markov keten: MARKOV KETENS Een stochastisch proces {X n, n 0} met toestandsruimte S heet een discrete-tijd Markov keten (DTMC) als voor alle i en j in S geldt P (X n+1 = j X n = i, X n 1,...,
WACHTRIJMODELLEN. aankomstproces van klanten; wachtruimte (met eindige of oneindige capaciteit); bedieningsstation (met één of meerdere bediendes).
Verschillende soorten toepassingen WACHTRIJMODELLEN alledaagse toepassingen; toepassingen uit produktieomgeving; toepassingen in de communicatiesfeer. Typische onderdelen van een wachtrijmodel aankomstproces
WACHTRIJMODELLEN. aankomstproces van klanten; wachtruimte (met eindige of oneindige capaciteit); bedieningsstation (met één of meerdere bediendes).
Verschillende soorten toepassingen WACHTRIJMODELLEN alledaagse toepassingen; toepassingen uit produktieomgeving; toepassingen in de communicatiesfeer. Typische onderdelen van een wachtrijmodel aankomstproces
We zullen de volgende modellen bekijken: Het M/M/ model 1/14
De analyse en resultaten van de voorgaande twee modellen (het M/M/1/K model en het M/M/1 model) kunnen uitgebreid worden naar modellen met meerdere bediendes. We zullen de volgende modellen bekijken: Het
INLEIDING. Definitie Stochastisch Proces:
Definitie Stochastisch Proces: INLEIDING Verzameling van stochastische variabelen die het gedrag in de tijd beschrijven van een systeem dat onderhevig is aan toeval. Tijdparameter: discreet: {X n, n 0};
P = LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten:
LIMIETGEDRAG VAN MARKOV KETENS Limietverdeling van irreducibele, aperiodieke Markov keten: Voorbeeld: Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1. P = 0 1/4
Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1.
LIMIETGEDRAG VAN REDUCIBELE MARKOV KETEN In het voorgaande hebben we gezien hoe we de limietverdeling van een irreducibele, aperiodieke Markov keten kunnen berekenen: Voorbeeld 1: Zoek de unieke oplossing
MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen.
MARKOV MODEL MET KOSTEN In Markov modellen zijn we vaak geïnteresseerd in kostenberekeningen. voorraadmodel: voorraadkosten personeelsplanningmodel: salariskosten machineonderhoudsmodel: reparatiekosten
Deel 2 van Wiskunde 2
Deel 2 van Wiskunde 2 Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Jacques Resing Thu 1+2 Aud 1+4 Jacques Resing Werkcollege Tue 7+8 Aud 6+15 Jacques Resing Instructie
Stochastische Modellen in Operations Management (153088)
S1 S2 X ms X ms Stochastische Modellen in Operations Management (153088) R1 S0 240 ms Ack Internet R2 L1 R3 L2 10 ms 1 10 ms D1 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html
Stochastische Modellen in Operations Management (153088)
S1 S2 X ms X ms Stochastische Modellen in Operations Management (153088) R1 S0 240 ms Ack Internet R2 L1 R3 L2 10 ms 1 10 ms D1 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html
NETWERKEN VAN WACHTRIJEN
NETWERKEN VAN WACHTRIJEN Tot nog toe keken we naar wachtrijmodellen bestaande uit 1 station. Klanten komen aan bij het station,... staan (al dan niet) een tijdje in de wachtrij,... worden bediend door
Model: Er is één bediende en de capaciteit van de wachtrij is onbegrensd. 1/19. 1 ) = σ 2 + τ 2 = s 2.
Het M/G/1 model In veel toepassingen is de aanname van exponentiële bedieningstijden niet realistisch (denk bijv. aan produktietijden). Daarom zullen we nu naar het model kijken met willekeurig verdeelde
Hoofdstuk 20 Wachtrijentheorie
Hoofdstuk 20 Wachtrijentheorie Beschrijving Iedereen van ons heeft al tijd gespendeerd in een wachtrij: b.v. aanschuiven in de Alma restaurants. In dit hoofdstuk onwikkelen we mathematische modellen voor
0.97 0.03 0 0 0.008 0.982 0.01 0 0.02 0 0.975 0.005 0.01 0 0 0.99
COHORTE MODELLEN Markov ketens worden vaak gebruikt bij de bestudering van een groep van personen of objecten. We spreken dan meestal over Cohorte modellen. Een voorbeeld van zo n situatie is het personeelsplanning
Chapter 4: Continuous-time Markov Chains (Part I)
Stochastic Operations Research I (2014/2015) Selection of exercises from book and previous exams. Chapter 4: Continuous-time Markov Chains (Part I) 1.1 Book pp 179 185 These are useful exercises to learn
Stochastische Modellen in Operations Management (153088)
Stochastische Modellen in Operations Management (53088) S S Ack X ms X ms S0 40 ms R R R3 L L 0 ms 0 ms D0 Internet D D Richard Boucherie Stochastische Operations Research TW, Ravelijn H 9 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/53088/53088.html
MARKOV KETENS, OF: WAT IS DE KANS DAT MEVROUW DE VRIES NAT ZAL WORDEN?
MARKOV KETENS, OF: WAT IS DE KANS DAT MEVROUW DE VRIES NAT ZAL WORDEN? KARMA DAJANI In deze lezing gaan we over een bijzonder model in kansrekening spreken Maar eerst een paar woorden vooraf Wat doen we
Inleiding Modelmatige beschrijving Kansverdelingen Het overgangsdiagram De stellingen van Little M/M/1 M/M/1/N Afsluiti.
11 juni 2013 Maartje van de Vrugt, CHOIR Wat is het belang van wachtrijtheorie? Inleiding Modelmatige beschrijving Kansverdelingen Het overgangsdiagram De stellingen van Little M/M/1 Evenwichtskansen Wachtrij
Tentamen Inleiding Kansrekening wi juni 2010, uur
Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische
De Wachttijd-paradox
De Wachttijd-paradox Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam Mastercourse 15 november 25 Peter Spreij [email protected] 1 Het probleem In deze mastercourse behandelen
Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening
Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail
De dimensie van een deelruimte
De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van
Deeltentamen Vraag 1 (0.25 punten) Vraag 2 (0.25 punten) Vraag 3 (0.25 punten) Vraag 4 (0.25 punten) *-vragen ( relatief simpel 2 punten)
Deeltentamen 2013 *-vragen ( relatief simpel 2 punten) Vraag 1 (0.25 punten) In wachtrijtheorie (blz. 226) wordt het symbool λ gebruikt voor: A. De gemiddelde tijd tussen twee aankomsten B. Het gemiddeld
Vrije Universiteit Amsterdam Opleiding Wiskunde Vak Poisson Processen. Poisson Processen. Arno Weber.
Vrije Universiteit Amsterdam Opleiding Wiskunde Vak Poisson Processen Poisson Processen Arno Weber email: [email protected] Januari 2003 1 Inhoudsopgave 1. Computersimulaties 3 2. Wachttijd-paradox 6 3.
Kansrekening en stochastische processen 2S610
Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: [email protected] http://www.win.tue.nl/wsk/onderwijs/2s610 1/39 Een stochastisch proces (stochastic proces) X (t) bestaat
Hoofdstuk 2. Aanvullingen Markovketens
Hoofdstuk 2. Aanvullingen Markovketens Betere formulering van Stelling 2.20. Stelling. (St. 2.20) Laat C een gesloten klasse zijn, en j C. Dan geldt dat {µ ij } i C zijn de minimale niet-negatieve oplossing
Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door
APP.1 Appendix A.1 Erlang verdeling verdeling met parameters n en λ Voor o.o. discrete s.v.-en X en Y geldt P (X + Y = z) =P (X = x 1 en Y = z x 1 )+P(X = x en Y = z x )+... = P (X = x 1 )P (Y = z x 1
Tentamen Inleiding Kansrekening 12 augustus 2010, 10.00 13.00 uur Docent: F. den Hollander
Universiteit Leiden Niels Bohrweg Mathematisch Instituut 333 CA Leiden Tentamen Inleiding Kansrekening augustus,. 3. uur Docent: F. den Hollander Bij dit tentamen is het gebruik van een (grafische) rekenmachine
BESLISKUNDE 2 Deel 2 najaar L.C.M. KALLENBERG en F.M. SPIEKSMA UNIVERSITEIT LEIDEN
BESLISKUNDE 2 Deel 2 najaar 203 L.C.M. KALLENBERG en F.M. SPIEKSMA UNIVERSITEIT LEIDEN Inhoudsopgave MARKOVPROCESSEN. Inleiding...........................................2 Differentiaalvergelijkingen
Wachtrijmodellen voor optimalisatie in het dagelijks leven
Wachtrijmodellen voor optimalisatie in het dagelijks leven Richard J. Boucherie Stochastische Operationele Research Abstract Wachten doen we allemaal: bij de kassa van de supermarkt, in het verkeer, maar
Wachtrijtheorie op verkeersmodellen
Wachtrijtheorie op verkeersmodellen Jan Jelle de Wit 20 juli 202 Bachelorscriptie Begeleiding: prof.dr. R. Núñez Queija KdV Instituut voor wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Modellen en Simulatie Lesliematrices Markovketens
Utrecht, 6 april 3 Modellen en Simulatie Lesliematrices Markovketens Program Meerdere leeftijdsklassen Leslie matrices Eigenwaarden en eigenvectoren Dominante eigenvector Irreducibele, a-periodieke matrices
Personeelsplanning in een schoolkantine
Personeelsplanning in een schoolkantine BWI werkstuk Januari 212 Petra Vis Begeleider: prof. dr. R.D. van der Mei Vrije Universiteit Faculteit der Exacte Wetenschappen Bedrijfswiskunde en Informatica De
Wachtrijtheorie. Hester Vogels en Franziska van Dalen. 11 juni 2013
Wachtrijtheorie Hester Vogels en Franziska van Dalen 11 juni 2013 1 1 Inleiding Een mens wacht gemiddeld 15.000 uur in zijn leven. Dit is bijvoorbeeld in de rij bij de kassa van een winkel, aan de telefoon
Stochastische Modellen in Operations Management (153088)
Stochastische Modellen in Oerations Management (15388) S1 S2 Ack X ms X ms S 24 ms R1 R2 R3 L1 L2 1 ms 1 ms D Internet D1 D2 Richard Boucherie Stochastische Oerations Research TW, Ravelijn H 219 htt://wwwhome.math.utwente.nl/~boucherierj/onderwijs/15388/15388.html
We zullen in deze les kijken hoe we netwerken kunnen analyseren, om bijvoorbeeld de volgende vragen te kunnen beantwoorden:
Wiskunde voor kunstmatige intelligentie, 24 Les 5 Proces analyse Veel processen laten zich door netwerken beschrijven, waarin een aantal knopen acties aangeeft en opdrachten langs verbindingen tussen de
Kansrekening en stochastische processen 2DE18
Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: [email protected] 1/23 Voor een verzameling stochastische variabelen X 1,..., X n, de verwachting van W n = X 1 + + X n is
Toegepaste Wiskunde 2: Het Kalman-filter
Toegepaste Wiskunde 2: Het Kalman-filter 25 februari, 2008 Hans Maassen 1. Inleiding Het Kalman filter schat de toestand van een systeem op basis van een reeks, door ruis verstoorde waarnemingen. Een meer
WACHTTIJDTHEORIE. Rob Bosch. Jan van de Craats
WACHTTIJDTHEORIE Rob Bosch Jan van de Craats Inhoudsopgave 1 Het Poissonproces 1 1.1 De Poissonverdeling......................... 2 1.2 Voorbeelden.............................. 4 1.3 Van binomiaal naar
Practicum wachtrijtheorie
SPM0001 1e week Technische Bestuurskunde Woensdag 5 september 2012, 10:30 12:30 uur Plaats: TBM begane grond (zalen B, C, D1, D2, computerzaal A en studielandschap) Practicum wachtrijtheorie Het practicum
BESLISKUNDE A. Najaar 2016 Deel 2. L.C.M. KALLENBERG en F.M. SPIEKSMA
BESLISKUNDE A Najaar 016 Deel L.C.M. KALLENBERG en F.M. SPIEKSMA UNIVERSITEIT LEIDEN Inhoudsopgave 5 WACHTTIJDTHEORIE 1 5.1 Inleiding.......................................... 1 5. Wachttijdparadox.....................................
Hoofdstuk 7 : Continue distributies als stochastische modellen. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent
Hoofdstuk 7 : Continue distributies als stochastische modellen Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Continue distributies als stochastische
Stochastische Modellen in Operations Management (153088)
Stochastische Modellen in Oerations Management (153088) S1 S2 Ack X ms X ms S0 240 ms R1 R2 R3 L1 L2 10 ms 10 ms D0 Internet D1 D2 Richard Boucherie Stochastische Oerations Research TW, Citadel 125 htt://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html
Kansrekening en stochastische processen 2S610
Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: [email protected] http://www.win.tue.nl/wsk/onderwijs/2s610 1/28 Schatten van de verwachting We hebben een stochast X en
Eindhoven University of Technology BACHELOR. Wachtrijsystemen met toestandsafhankelijke bedieningssnelheid. Schutte, Mattijn.
Eindhoven University of Technology BACHELOR Wachtrijsystemen met toestandsafhankelijke bedieningssnelheid Schutte, Mattijn Award date: 2008 Link to publication Disclaimer This document contains a student
Kostenbesparing bij voorraadbeheer
Kostenbesparing bij voorraadbeheer Douwe Hut Universiteit Twente [email protected] 3 augustus 207 Samenvatting In dit artikel worden twee samenwerkingsstrategieën voor gezamenlijke inkoop van
V.2 Limieten van functies
V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de
Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling.
Deze week: Verdelingsfuncties Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties Cursusjaar 29 Peter de Waal Toepassingen Kansmassafuncties / kansdichtheidsfuncties Eigenschappen Departement Informatica
Toepassingen op differentievergelijkingen
Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij
Examenvragen Hogere Wiskunde I
1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies
Doorlooptijd variantie reductie in productielijnen
Auteur Erik van Rhee (0589036) Begeleider dr. J.A.C. Resing Doorlooptijd variantie reductie in productielijnen Opdrachtgever dr. ir. M. van Vuuren (CQM) Datum 7 oktober 2009 Versie 2.0 Abstract Consider
Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur
Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:
Classificatie van Markovbeslissingsketens
Classificatie van Markovbeslissingsketens Complexiteit van het multichainclassificatieprobleem Wendy Ellens 21 augustus 2008 Bachelorscriptie, Mathematisch Instituut, Universiteit Leiden Begeleider: Prof.
Discrete Wiskunde, College 12. Han Hoogeveen, Utrecht University
Discrete Wiskunde, College 12 Han Hoogeveen, Utrecht University Dynamische programmering Het basisidee is dat je het probleem stap voor stap oplost Het probleem moet voldoen aan het optimaliteitsprincipe
Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002
Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 19.a) Laat zien dat 5 een voortbrenger is van F 37. b) In het sleuteldistributiesysteem van Diffie en Hellman (met G = F 37, α =
TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2), Vrijdag 24 januari 24, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven
Tentamen Kansrekening (NB004B)
NB4B: Kansrekening Dinsdag november 2 Tentamen Kansrekening (NB4B) Het is een open boek tentamen. Gebruik van een rekenmachine of andere hulpmiddelen is niet toegestaan. Vermeld op ieder blad je naam en
Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties
Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties Discrete Distributiefuncties 3. Er zijn 3 studenten aan het begin van de dag aanwezig bij een symposium. De kans dat een student volhoudt
Handout limietstellingen Kansrekening 2WS20
Handout limietstellingen Kansrekening WS0 Remco van der Hofstad 13 januari 017 Samenvatting In deze hand out bespreken we een aantal limietstellingen en hun bewijzen. In meer detail, behandelen we de volgende
R.B. Kappetein. Callcenters. Bachelorscriptie, 5 juli 2011. Scriptiebegeleider: Dr. F.M. Spieksma. Mathematisch Instituut, Universiteit Leiden
R.B. Kappetein Callcenters Bachelorscriptie, 5 juli 2011 Scriptiebegeleider: Dr. F.M. Spieksma Mathematisch Instituut, Universiteit Leiden Inhoudsopgave 1 Inleiding: callcenters met ongeduldige klanten
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: [email protected] studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 9 J.Keijsper (TUE)
Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)
Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie
Stochastische Modellen in Operations Management (153088)
Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms R1 S0 240 ms Ack L1 R2 10 ms Internet R3 L2 D0 10 ms D1 D2 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 5 Leo van Iersel Technische Universiteit Delft 12 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 12 oktober 2016 1 / 31 Dualiteit Dualiteit: Elk LP probleem heeft
f) (9 pnt) Wat is bij Wachtebeke de gemiddelde wachttijd voor een vrachtwagen voordat hij gelost wordt?
Contact Dit document is samengesteld door onderwijsbureau Bijles en Training. Wij zijn DE expert op het gebied van bijlessen en trainingen in de exacte vakken, van VMBO tot universiteit. Zowel voor individuele
Stochastische grafen in alledaagse modellen
Stochastische grafen in alledaagse modellen Ionica Smeets en Gerard Hooghiemstra 27 februari 2004 Stochastische grafen zijn grafen waarbij het aantal kanten bepaald wordt door kansverdelingen. Deze grafen
Voorbeeld 1: kansverdeling discrete stochast discrete kansverdeling
12.0 Voorkennis Voorbeeld 1: Yvette pakt vier knikkers uit een vaas waar er 20 inzitten. 9 van de knikkers zijn rood en 11 van de knikkers zijn blauw. X = het aantal rode knikkers dat Yvette pakt. Er zijn
