Optimalisering WI 2608
|
|
|
- Emmanuel van Dijk
- 9 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Optimalisering WI 2608 Docent: Hans Melissen, EWI kamer tel: Studiemateriaal op : (kijk bij onderwijs WI 2608) college: Maandag 3+4 zaal F Vrijdag 3+4 zaal E Boek: F.S. Hillier and G.J. Lieberman: Introduction to Operations Research, 8th Ed., McGraw-Hill, CD-ROM. ISBN X
2 Operations Research (OR, besliskunde) Management Science (MS) OR: - deterministisch: Optimalisering (H 1-12) - stochastisch: Wachttijdtheorie (H 16) Risicoanalyse Speltheorie (H14) Voorraadbeheer (H 18) Simulatie (H 20) Optimalisering (Mathematical Programming): Lineair (LP) - Continu, simplexmethode (H 1-7) - Geheeltallig (+ binair) (H 11) - Mixed integer Niet-lineair (NLP) (H12)
3 Lineaire programmering. Toepassingen: productieplanning mengproblemen locatieproblemen transportproblemen routering projectplanning aandelenportefeuilles Geschiedenis: 1947 George B. Dantzig: Simplexmethode voor LP Uitvoerbaar door opkomst van de computer 1984 Karmarkar: polynomiaal algoritme voor LP Voorpaginanieuws in de New York Times
4 Een dieet voor een jongen van 19 moet dagelijks 3000 kcal, 81 gram eiwit, 100 gram vet en 410 gram koolhydraten bevatten. kcal eiwit vet koolhydr Prijs kaas ,20 bruine boterham ,12 boter (5g) ,04 aardappel (lepel) ,05 bruine bonen ,05 (lepel) braadworst ( ,75 g) Mars ,90 Maak een zo goedkoop mogelijk dieet met deze ingrediënten: Min 20x x 2 + 4x 3 + 5x 4 + 5x x x 7 z.d.d. 75x x x x x x x x 1 + 3x 2 + 0x 3 + 1x 4 + 4x x 6 + 3x x 1 + 1x 2 + 2x 3 + 0x 4 + 0x x x x x 2 + 0x 3 + 8x 4 + 8x 5 + 1x x kaas brood boter aardap bonen worst Mars Prijs???????? alle x i ,3 4,56 boon 19,9 40 8,2 3,3 4,56 aardappel boter brood 3,8 25,6 25,6 0,02 4,87 brood 8 12, ,3 5,57 aardappels 6 1, ,04 5,8 7,51 Mars ,96 Mars ,56 Worst Conclusie: Jongens minstens 5,8 Marsen per dag, meisjes 3,6!
5 Voorbeeld: productieplanning Bedrijf fabriceert producten A, B, C, D Productiefasen: assemblage, afronding, verpakking Productietijden (uren) per eenheid: productietijden (uren) A B C D Beschikbaar Assemblage 0,70 0,75 0,55 0, uur Afronding 0,55 0,82 0,80 0, uur Verpakking 0,24 0,32 0,45 0, uur grondstoffen 1,9 2,5 1,8 2 Winst 4,80 12,00 6,00 7,20 Aanwezige grondstoffen: 1500 eenheden Order voor volgende week: 100 eenheden A Al het geproduceerde wordt afgenomen Vraag: Hoeveel moet je produceren voor maximale winst? Formulering: Beslissingsvariabelen: x A = aantal eenheden A x B B = aantal eenheden B x C = aantal eenheden C x D = aantal eenheden D Model: Maximaliseer Z = 4,8x A + 12x B B + 6xC + 7,2x D z.d.d. 0,70x A + 0,75x B B + 0,55xC en 0,55x A + 0,82x B B + 0,80xC 0,24x A + 0,32x B B + 0,45xC 1,9x A + 2,5x B B + 1,8xC x A 100 x A, x B, B xc, x D 0 + 0,34x D 400 (assemblage) + 0,55x D 480 (afronding) + 0,27x D 220 (verpakking) + 2x D 1500 (grondstoffen) (order) Oplossing: x A = 100,0 x B = 330,15 x B C = 0 x D = 242,31 Z = 6186,46
6 Algemene aannamen voor dergelijke problemen: Proportionaliteit: Additiviteit: Deelbaarheid: Productie van 7 eenheden kost 7 keer zoveel, vergt 7 keer zoveel grondstoffen De winst van twee producten is de som van de afzonderlijke winsten Beslissingsvariabelen kunnen willekeurige reële waarden aannemen (niet alleen geheeltallig) Lineair Programmeren (LP) = Lineair Optimaliseren (LO) Programmeren = plannen Lineair = alle functies zijn lineair: Additief: f(x+y) = f(x) + f(y) voor alle x, y Multiplicatief: f(λx) = λf(x) voor alle λ, x Continue reële variabelen
7 Lineaire functies: x 3x (x 1, x 2 ) 5x 1 7x 2 x 6x 17 niet lineair x ax (a, x) ax niet-lineair 3x log x 2 niet-lineair substitueer x 1 = y 1, x 2 = exp(y 2 ) levert 3y 1 + 5y 2 na substitutie lineair. Niet-lineaire functies kunnen soms bij benadering gelineariseerd worden
8 Opgave Een kolencentrale verwerkt steenkoolsoorten A en B om energie op te wekken. De steenkool wordt eerst verpulverd en daarna verbrand om stoom te maken voor het aandrijven van stoomturbines. De vraag is in welke verhouding de steenkoolsoorten verwerkt moeten worden voor de maximale productie van energie, gegeven een aantal beperkende voorwaarden. Zo zijn milieueisen opgelegd voor de gas- en roetuitstoot. De roetuitstoot mag hooguit 12 kg per uur zijn, en het aantal deeltjes zwavel per miljoen gasdeeltjes mag niet meer dan 3000 zijn. De verbranding van 1 ton kolensoort A geeft een roetuitstoot van 0,5 kg per uur en 1 ton kolensoort B geeft een roetuitstoot van 1 kg per uur. De kolensoort A heeft de eigenschap dat op elke miljoen deeltjes die na verbranding van deze kolensoort vrijkomen er 1800 zwaveldeeltjes zijn, terwijl voor kolensoort B het aantal zwaveldeeltjes 3800 is op elke miljoen vrijgekomen gasdeeltjes. De kolensoorten A en B stoten per verbrande ton evenveel deeltjes uit. De kolensoorten worden per trein aangevoerd en de aanvoer is beperkt tot 20 ton per uur. De capaciteit van de verpulverinstallatie is ook beperkt: 16 ton kolensoort A per uur als A de enige zou zijn en 24 ton kolensoort B per uur als B de enige zou zijn. Ten slotte geeft 1 ton kolensoort A na verbranding pond stoomenergie en 1 ton kolensoort B geeft pond stoomenergie. Formuleer het probleem als een LP probleem. Los het (grafisch) op.
9 Grafische oplosmethode (2 variabelen) Max Z = 24x x 2 z.d.d. x 1 + x 2 20 (transportbeperking) 0,5x 1 + x 2 12 (roetuitstoot) 1 x x 2 1 (verpulvercapaciteit) 12x 1-8x 2 0 (zwaveluitstoot) x 1, x 2 0 (hoeveelheden) Hint: arceer telkens de niet-toegelaten gebieden!
10 Opgave: Los op met de grafische methode: max Z = 5x + 23y z.d.d. 2x + 9y 24 2x 5y 3 x, y 0 Teken de lijn 2x + 9y = 24: x = 0 8 y = 3 y = 0 x = 12 Lijn door (0, 8 3 ) en (12,0). Probeer (0,0): = 0 24, dus (0,0) ligt aan de goede kant. Oplossing: Hoekpunten van het toelaatbare gebied zijn: (0,0) Z = 0 ( 3 2,0) Z = 2 = 7,5 ( 21 4, 3 2 ) Z = = 59,25 (0, 3 8 ) Z = = 61,3333 3
11 Algemene formulering LP probleem Probleem: n producten j = 1,, n m grondstoffen i = 1,, m Van grondstof j is b i aanwezig Op product j wordt c j winst gemaakt per eenheid Voor product j is a ij eenheden grondstof i nodig Vraag: hoeveel maken zodat de winst maximaal is? LP Model: Maak x j eenheden van product j (beslisvariabelen). Max Z = c 1 x 1 + c 2 x c n x n z.d.d. a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m en x 1, x 2, x n 0 Max z.d.d. en n Z = j= 1 c j x j n aijx j j=1 x j 0 b i voor i = 1, 2,, m voor j = 1, 2,, n
12 Standaardvorm voor een LP probleem: Max Z = c 1 x 1 + c 2 x c n x n z.d.d. a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m en x 1, x 2, x n 0 Terminologie: Beslisvariabelen (decision variables): x j Parameters: c j, a ij Doelfunctie, objectfunctie (objective function): Z Begrenzingen (constraints)
13 Terminologie Oplossing: Willekeurige keuze van de beslisvariabelen Toelaatbare oplossing (feasible solution): Oplossing die aan alle beperkingen voldoet Toelaatbaar gebied (feasible region): Verzameling van alle toelaatbare oplossingen Niet-toelaatbare oplossing: Oplossing die aan minstens één beperking niet voldoet Optimale oplossing: Toelaatbare oplossing met optimale doelwaarde.
14 Een toelaatbaar gebied is meestal begrensd en niet leeg, maar dat hoeft niet Onbegrensd toelaatbaar gebied Leeg toelaatbaar gebied
15 Optimale oplossingen hoeven niet uniek te zijn: Nog extremer: Als de doelfunctie Z = 0 is, zijn alle toegelaten waarden optimaal!
16 Een begrensd toelaatbaar gebied in R 2 wordt gedefinieerd door n lineaire ongelijkheden. Hoeveel hoekpunten (h) kan dit gebied hebben? Voorbeeld: N = 3 h = 3 N = 5 h = 5 h h-1+2 = h+1
17 Oplossing: h = n. n = 5, h = 3??? Betere oplossing: Nog betere oplossing: h n 3 h n Kan elke h met 3 h n? Kan h = 0? x 0 x 1 (kan dus als n 2) Kan h = 1? x 0 y 0 x+y 0 (mogelijk als n 3) Kan h = 2? x 0 x 0 y 1 y 0 (mogelijk als n 4)
18 De echte oplossing is dus: n = 2: h = 0 n = 3: h = 0, 1, 3 n 4: 0 h n Zonder de eis begrensd toelaatbaar gebied is het antwoord: n = 0: h = 0 n = 1: h = 0 n = 2: h = 0, 1 n 3: 0 h n
19 Het toegelaten gebied is een gebied in R n dat wordt bepaald door lineaire ongelijkheden en is dus de doorsnijding van halfruimten. Dit definieert een polytoop met hoekpunten, ribben, zijvlakken, etc. Wat is een hoekpunt? n lineaire ongelijkheden bepalen in n dimensies normaal gesproken een punt. Bij n van de lineaire ongelijkheden hoort dus een punt: hoekpunt. Als dit hoekpunt toelaatbaar is heet het een toelaatbaar hoekpunt (Corner Point Feasible (CPF) solution) Hoeveel hoekpunten zijn er bij n variabelen en m ongelijkheden? m n Voorbeeld: 50 variabelen, 150 constraints, aantal hoekpunten is: Als je 1 miljard hoekpunten per seconde controleert ben je na jaar klaar!
1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3.
1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3. Een LP probleem heeft n>2 variabelen en n+2 constraints.
Tie breaking in de simplex methode
Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.
TU/e 2DD50: Wiskunde 2 (1)
TU/e 2DD50: Wiskunde 2 (1) Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Gerhard Woeginger Thu 1+2 Aud 1+4 Gerhard Woeginger Clicker session Tue 7+8 Aud 6+15 Gerhard Woeginger
1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord).
Tentamen Optimalisering (IN2805-I) Datum: 3 april 2008, 14.00 17.00. Docent: Dr. J.B.M. Melissen Naam: Studienummer: 1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist
Geheeltallige programmering
Geheeltallige programmering In een LP probleem zijn alle variabelen reëel. In een geheeltallig probleem blijven doelfunctie en constraints lineair, maar zijn de variabelen geheeltallig. LP: IP: BIP: MIP:
Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen
Tentamen Optimalisering (IN2520) Datum: 5 november 2004, 14.00 17.00. Docent: Dr. J.B.M. Melissen Veel succes! 1 Deze opgave bestaat uit 15 tweekeuzevragen. Per goed antwoord krijg je 2 punten. a. Dynamisch
Tie breaking in de simplex methode
Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.
1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d.
1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d. een toewijzingsprobleem. 2. Het aantal toegelaten hoekpunten in een
Hoofdstuk 13: Integer Lineair Programmeren
Hoofdstuk 13: Integer Lineair Programmeren Vandaag: Wat is Integer Lineair Programmeren (ILP)? Relatie tussen ILP en LP Voorbeeld 1: Minimum Spanning Tree (MST) Voorbeeld 2: Travelling Salesman Problem
Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk.
Netwerkanalyse (H3) Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Deze problemen kunnen vaak als continu LP probleem worden opgelost. Door de speciale structuur
Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University
Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : [email protected] Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Student assistenten
Lineaire programmering
Lineaire programmering Hans Maassen kort naar Inleiding Besliskunde van J. Potters [Pot]. en Methods of Mathematical Economics van J. Franklin [Fra]. Lineaire programmering is het bepalen van het maximum
Voorbeeld simplexmethode. Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 10, 3x 1 + x 2-2x 3 8, en x 1, x 2, x 3 0.
Voorbeeld simplexmethode Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 10, 3x 1 + x 2-2x 3 8, en x 1, x 2, x 3 0. Voer slackvariabelen (x 4, x 5 ) in: Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x
Lineaire Optimilizatie Extra sessie. 19 augustus 2010
Lineaire Optimilizatie Extra sessie 19 augustus 2010 De leerstof Handboek: hoofdstuk 2 t.e.m. 8 (incl. errata) Slides (zie toledo) Extra opgaven (zie toledo) Computersessie: Lindo syntax en output Wat
Digitaal Proefstuderen Econometrie en Operationele Research Universiteit van Tilburg
Digitaal Proefstuderen Econometrie en Operationele Research Universiteit van Tilburg 1 Voorwoord Welkom bij de cursus Digitaal Proefstuderen van de opleiding Econometrie en Operationele Research aan de
Voorbeeld van herschrijven als transportprobleem
Voorbeeld van herschrijven als transportprobleem Het water van 3 rivieren moet worden verdeeld over 4 steden. Daar zijn kosten aan verbonden per eenheid water (zie tabel). De steden hebben minimumbehoeften
Er zijn 4 opgaven, daarna volgen blanco bladzijden die u kan gebruiken om te antwoorden.
Examen DH45 Lineaire Optimalizatie (D. Goossens) Vrijdag 29 januari 2010, 9 12u Richtlijnen: Er zijn 4 opgaven, daarna volgen blanco bladzijden die u kan gebruiken om te antwoorden. Lees aandachtig de
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 1 Leo van Iersel Technische Universiteit Delft 7 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 september 2016 1 / 40 Opzet vak Woensdag: hoorcollege 13:45-15:30
Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University
Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : [email protected] Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Student assistenten
Examenvragen D0H45 (Lineaire optimalizatie)
Examenvragen D0H45 (Lineaire optimalizatie) Tijdstip: Vrijdag 3 februari 2012 vanaf 09.00 uur tot 12.00 uur Er zijn vier opgaven. Achter de opgaven zitten de bladzijden die u kunt gebruiken om uw antwoord
K.0 Voorkennis. y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x.
K.0 Voorkennis y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. y = -4x + 8 kan herschreven worden als y + 4x = 8 Dit is een lineaire vergelijking met twee variabelen. Als je
Enkele basismodellen uit operationeel onderzoek
Enkele baimodellen uit operationeel onderzoek Roel Leu [email protected] Studiedag Wikunde e graad ASO 6 mei Inleiding Operationeel onderzoek (O.O.) = het gebruik van wikundige technieken voor
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 16 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 16 november 2016 1 / 28 Vandaag Integer Linear Programming (ILP)
Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00
Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten
Project Management (H 9.8 + H 22 op CD-ROM)
Project Management (H 9.8 + H 22 op CD-ROM) CPM (Critical Path Method) Activiteiten met afhankelijkheden en vaste duur zijn gegeven. CPM bepaalt de minimale doorlooptijd van het project. PERT (Program
Optimalisering/Besliskunde 1. College 1 3 september, 2014
Optimalisering/Besliskunde 1 College 1 3 september, 2014 Algemene informatie College: woensdag 9:00-10:45: Gorlaeus C1/C2, Leiden vrijdag: werkcollege Leiden en Delft Vier verplichte huiswerkopgaven Informatie
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 3 Leo van Iersel Technische Universiteit Delft 21 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 21 september 2016 1 / 36 LP: Lineair Programmeren min x 1 2
Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015
Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 23 september 2015 Leo van Iersel (TUD) Optimalisering 23 september 2015 1 / 19 Mededelingen Maandag 28 september: deadline huiswerk
Branch-and-Bound en Cutting Planes
Branch-and-Bound en Cutting Planes Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft 2 Polynomiaal algoritme
Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:
Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van
Wat? Stap 1: Vertalen naar wiskunde. Doel. Mathematische modellen voor lineaire programmering. winstmaximalisatie kostenminimalisatie
Mathematische modellen voor lineaire programmering cursus bladzijde 27 winstmaximalisatie kostenminimalisatie Wat? Doel Opgave gestructureerd oplossen (stappenplan) => zie cursus bladzijde 39!!! structuur
Uitwerkingen bij 1_1 Lineaire vergelijkingen
Uitwerkingen bij 1_1 Lineaire vergelijkingen!! "#$ #!%!& " %'!& " #!' " # ( # )' * # ' #*" # + '!#*" ' ' + + ' '!, %' &% &%& % -&. = / +. = / + * 0 #!*" 0 $! 1 = ' + 1 = - 0 " "!$ *# 2 1 = # '2 = ' + 2
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 5 Leo van Iersel Technische Universiteit Delft 12 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 12 oktober 2016 1 / 31 Dualiteit Dualiteit: Elk LP probleem heeft
1 Transportproblemen. 1.1 Het standaard transportprobleem
1 Transportproblemen 1.1 Het standaard transportprobleem Dit is het eenvoudigste logistieke model voor ruimtelijk gescheiden vraag en aanbod. Een goed is beschikbaar in gekende hoeveelheden op verscheidene
Tentamen: Operationele Research 1D (4016)
UITWERKINGEN Tentamen: Operationele Research 1D (4016) Tentamendatum: 12-1-2010 Duur van het tentamen: 3 uur (maximaal) Opgave 1 (15 punten) Beschouw het volgende lineaire programmeringsprobleem P: max
Hoofdstuk 9 - Lineair Programmeren Twee variabelen
Hoofdstuk 9 - Lineair Programmeren Twee variabelen bladzijde a Twee ons bonbons kost, euro. Er blijft,, =, euro over. Doris kan daarvan, = ons drop kopen., b d is het aantal ons gemengde drop (, euro per
TU/e 2DD50: Wiskunde 2 (1)
TU/e 2DD50: Wiskunde 2 () Tussentoets 26 november, tijdens de instructies Zaal: paviljoen (study hub) Time: 90min Tentamenstof: colleges 4 (LP; Simplex; dualiteit; complementaire slackness) Oude tentamens:
Bijlage A Simplex-methode
Dee bijlage hoort bij Beter beslissen, Bijlage A Simplex-methode Verreweg de meeste LP-problemen worden opgelost met behulp van het ogenoemde Simplex-algoritme, in ontwikkeld door G.B. Dantig. De meeste
Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University
Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : [email protected] Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Medewerkers : Ivor van
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 5 Leo van Iersel Technische Universiteit Delft 2 oktober 206 Leo van Iersel (TUD) TW2020 Optimalisering 2 oktober 206 / 3 Dualiteit Dualiteit: Elk LP probleem heeft een
Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016
Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 28 september 2016 Leo van Iersel (TUD) Optimalisering 28 september 2016 1 / 18 Dualiteit Dualiteit: Elk LP probleem heeft een bijbehorend
Stochastische Modellen in Operations Management (153088)
S1 S2 X ms X ms Stochastische Modellen in Operations Management (153088) R1 S0 240 ms Ack Internet R2 L1 R3 L2 10 ms 1 10 ms D1 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219 http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/153088/153088.html
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 11 Leo van Iersel Technische Universiteit Delft 25 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 25 november 2015 1 / 28 Vandaag Vraag Voor welke problemen
Differentiaalvergelijkingen Technische Universiteit Delft
Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi2030wbmt Roelof Koekoek (TU Delft) Differentiaalvergelijkingen wi2030wbmt 1 / 15 Even voorstellen... Dr. Roelof Koekoek Gebouw
Modeluitwerking Tentamen Computationele Intelligentie Universiteit Leiden Informatica Vrijdag 11 Januari 2013
Modeluitwerking Tentamen Computationele Intelligentie Universiteit Leiden Informatica Vrijdag Januari 20 Opgave. Python Gegeven is de volgende (slechte) Python code:. def t(x): 2. def p(y):. return x*y
Lineair programmeren met de TI-84 CE-T
Lineair programmeren met de TI-84 CE-T Harmen Westerveld Oktober 2018 INHOUDSOPGAVE Lineair programmeren met TI-84 PLUS CE-T... 2 Introductie... 3 Voorbeeld 1: maximaliseringsprobleem... 4 De app Inequalz...
x 3 E H x 1 B A = (0,0,0) B = (1,0,0) C = (0,1,0) E = (0,0,1) I = (1,1,1/2) J = (1/2,1,1) H=(1,1/2,1) x 2
1. Gegeven een LP probleem (P) max z = c 1 x 1 + c 2 x 2 + c 3 x 3 (= c x) waarvoor het gebied van toegelaten oplossingen T wordt gegeven als de verzameling punten op het afknotingsvlak van een symmetrisch
Modellen en Simulatie Speltheorie
Utrecht, 20 juni 2012 Modellen en Simulatie Speltheorie Gerard Sleijpen Department of Mathematics http://www.staff.science.uu.nl/ sleij101/ Program Optimaliseren Nul-som matrix spel Spel strategie Gemengde
OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN
OPERATIONS RESEARCH TECHNIEKEN L.C.M. KALLENBERG UNIVERSITEIT LEIDEN VOORJAAR 2003 Inhoudsopgave 1 Inleiding 1 1.1 Wat is Operations Research?.............................. 1 1.2 Overzicht van de te behandelen
Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur.
Universiteit Utrecht Faculteit Wiskunde en Informatica Examen Optimalisering op maandag 18 april 2005, 9.00-12.00 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf
TU/e 2DD50: Wiskunde 2
TU/e 2DD50: Wiskunde 2 Enkele mededelingen Instructies (vandaag, 10:45 12:30) in vier zalen: Zaal Aud 10 Pav b2 Pav m23 Ipo 0.98 voor studenten met achternaam beginnend met letters A tot en met D met letters
Optimalisering en Complexiteit, College 11. Complementaire speling; duale Simplex methode. Han Hoogeveen, Utrecht University
Optimalisering en Complexiteit, College 11 Complementaire speling; duale Simplex methode Han Hoogeveen, Utrecht University Duale probleem (P) (D) min c 1 x 1 + c 2 x 2 + c 3 x 3 max w 1 b 1 + w 2 b 2 +
Wiskunde D. Keuzevak beslissen onderdeel: optimaliseren
Wiskunde D Keuzevak beslissen onderdeel: optimaliseren Samenstelling Jan Essers ism Kerngroep Wiskunde D Eindhoven Fontys bewerking van Ferdy van der Werf op 16 juli 2008 voorkennis: lineaire vergelijkingen
Hints en uitwerkingen huiswerk 2013 Analyse 1 H18
Hints en uitwerkingen huiswerk 2013 Analyse 1 H18 Rocco van Vreumingen 29 augustus 2014 1 Inhoudsopgave 1 Hints 1 3 2 Hints 2 4 3 Hints 3 5 4 Hints 4 5 5 Hints 5 6 6 Hints 6 6 7 Hints 7 6 8 Antwoorden
Hieronder zie je een figuur die bestaat uit vier rijen. De figuur is gemaakt van witte en grijze vierkanten.
VIERKANTEN LEGGEN Hieronder zie je een figuur die bestaat uit vier rijen. De figuur is gemaakt van witte en grijze vierkanten. rijnummer 1 rijnummer 2 rijnummer 3 rijnummer 4 Onder rij 3 wordt nog een
TU/e 2DD50: Wiskunde 2
TU/e 2DD50: Wiskunde 2 Enkele mededelingen Tussentoets: 26 november, tijdens de instructies Tentamenstof: LP; Simplex; dualiteit (= colleges 1 4) Bij de tussentoets mag een eenvoudige (niet programmeerbare)
Functies van één veranderlijke
Functies van één veranderlijke 191512600 Docent : Anton Stoorvogel E-mail: [email protected] 1/40 Elektrotechniek, Wiskunde en Informatica EWI Functies van één veranderlijke Als je alleen deelneemt
Deze examenopgave bestaat uit 8 pagina s, inclusief het voorblad. Controleer of alle pagina s aanwezig zijn.
SPD Bedrijfsadministratie Examenopgave COST & MANAGEMENTACCOUNTING VRIJDAG 19 JUNI 2015 9.00-11.00 UUR Belangrijke informatie Deze examenopgave bestaat uit 8 pagina s, inclusief het voorblad. Controleer
34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN
34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 1.11 Vraagstukken Vraagstuk 1.11.1 Beschouw het beginwaardeprobleem = 2x (y 1), y(0) = y 0. Los dit beginwaardeprobleem op voor y 0 R en maak een
Kansrekening en stochastische processen 2DE18
Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: [email protected] 1/28 The delta functie Zij De eenheids impulsfunctie is: d ε (x) = { 1ε als ε 2 x ε 2 0 anders δ(x) = lim
14 Lineair programmeren
9 a q ˆ 5 geeft TK ˆ 23,5 en TO ˆ 30 e winst is dus 30000 23 500 ˆ 6500 euro. b Voerin 1 ˆ 0,1 3 2 6 6 en 2 ˆ 6. e optie intersect geeft 2,909 en 9,307. us bij een productie van 2909 en 9307 teddberen.
Uitwerkingen oefenopdrachten or
Uitwerkingen oefenopdrachten or Marc Bremer August 10, 2009 Uitwerkingen bijeenkomst 1 Contact Dit document is samengesteld door onderwijsbureau Bijles en Training. Wij zijn DE expert op het gebied van
Examenopgaven VMBO-KB 2003
Examenopgaven VMBO-KB 2003 tijdvak 21 donderdag woensdag 22 18 mei juni 13.30-15.30 uur WISKUNDE CSE KB WISKUNDE VBO-MAVO C Bij dit examen hoort een uitwerkboekje. Dit examen bestaat uit 24 vragen. Voor
Lineair Programmeren op het polytoop
Lineair Programmeren op het polytoop Paulien Neppelenbroek 12 juli 2017 Bachelorproject wiskunde Supervisor: dr. Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen,
Optimalisering/Besliskunde 1. College 1 2 september, 2015
Optimalisering/Besliskunde 1 College 1 2 september, 2015 Algemene informatie College: woensdag 13:45-15:30: Leiden C1 en C2: Gorlaeus gebouw Zaal DS: De Sitterzaal, Oort gebouw Werkcollege: vrijdag: Leiden
KlasseLunch. Over gezond eten 1. Docentenhandleiding KlasseLunch 2008:
Over gezond eten 1 WAAROM IS GEZOND ETEN BELANGRIJK? Je bent nu in de groei. Je lichaam is nog lang niet klaar. Goed en gezond eten is daarom erg belangrijk. Want alleen dan krijg je voldoende voedingsstoffen
Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie
Vrije Universiteit Faculteit der Economische Wetenschappen en Bedrijfskunde Afdeling Econometrie Tentamen: Convexe Analyse en Optimalisering Opleiding: Bacheloropleiding Econometrie Vakcode: 611010 Datum:
Hoofdstuk 10 - Lineair programmeren Meer dan twee variabelen
Hoofdstuk 0 - Lineair programmeren Meer dan twee variaelen ladzijde 90 a 8 anken, 8 stoelen en 7 tafels nemen evenveel plaats in als 8 + 8 + 7 = 6+ 8+ = 78 stoelen. Dat is meer dan de maximale opslagcapaciteit
Stochastische Modellen in Operations Management (153088)
Stochastische Modellen in Operations Management (153088) S1 S2 X ms X ms R1 S0 240 ms Ack L1 R2 10 ms Internet R3 L2 D0 10 ms D1 D2 Richard Boucherie Stochastische Operations Research TW, Ravelijn H 219
RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO CM/EM UITWERKING Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald.
RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO CM/EM UITWERKING Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Antwoorden moeten altijd zijn voorzien van een berekening, toelichting
Universiteit Utrecht Departement Informatica
Universiteit Utrecht Departement Informatica Uitwerking Tussentoets Optimalisering 20 december 206 Opgave. Beschouw het volgende lineair programmeringsprobleem: (P) Minimaliseer z = x 2x 2 + x 3 2x 4 o.v.
1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde.
Vlaamse Wiskunde Olympiade 989-990: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -
Routeren van treinstellen op knooppunten
Routeren van treinstellen op knooppunten John van den Broek 2 februari 2007 Nationale Wiskunde Dagen Algemene gegevens NS 1.100.000 reizigers per werkdag 15.000.000.000 reizigers kilometers per jaar 5200
ffl een willekeurige LP in standaard vorm kan omzetten ffl het bij een basis toebehorend tableau en de basisoplossing kan berekenen ffl de simplex alg
Grafentheorie en Operationele Research 158070 Handout Operationele Research gedeelte 1 Inleiding 1.1 Inhoud Het Operationele Research gedeelte van het vak 'Grafentheorie en Operationele Research' houdt
BESLISKUNDE 3 L.C.M. KALLENBERG
BESLISKUNDE 3 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN versie november 2010 Voorwoord De voorkennis van dit vak is het tweedejaarscollege Besliskunde 1. Het derdejaarscollege Besliskunde 2 is niet noodzakelijk,
Annelies Droessaert en Etienne Goemaere
De meerwaarde van TI-Nspire in de 2 de graad Annelies Droessaert en Etienne Goemaere 1. INLEIDING De meeste scholen kiezen er momenteel voor om een grafisch rekentoestel in te voeren vanaf de 2 de graad.
