Branch-and-Bound en Cutting Planes
|
|
|
- Frieda de Ruiter
- 10 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Branch-and-Bound en Cutting Planes
2 Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft 2 Polynomiaal algoritme dat niet-optimale oplossing geeft 19 november
3 Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft (VANDAAG) 2 Polynomiaal algoritme dat niet-optimale oplossing geeft (College 12) 19 november
4 Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft (VANDAAG) 2 Polynomiaal algoritme dat niet-optimale oplossing geeft (College 12) Vandaag 2 methoden: 1 Branch-and-Bound 2 Cutting planes (geldige ongelijkheden) 19 november
5 Branch-and-Bound Idee: ILP s zijn moeilijk, LP s zijn makkelijk. We gebruiken LP om ILP op te lossen. Belangrijke relatie: Z TOEG Z IP Z LP Z LP Z IP Z TOEG (Maximalisatie) (Minimalisatie) Branchen: Het probleem opsplitsen in deelproblemen, zdd elke toegelaten oplossing bevindt zich in exact één deelprobleem. Bounden: Boven- en ondergrens bijhouden voor oplossing. Gebruik deze grenzen voor het snoeien van zoekboom. Snoeien: Concluderen dat een deelprobleem niet verder onderzocht hoeft te worden 19 november
6 Branch-and-Bound (Minimalisatie) Lijst met nog te beschouwen deelproblemen Bovengrens voor hele boom Ondergrens per deelprobleem In geval van geheeltallige doelstellingscoëfficiënten: ondergrens naar boven afronden 19 november
7 Voorbeeld Branch-and-Bound Z IP = min 4x 1 + x 2 odv 7x 1 2x 2 14 x 2 3 2x 1 2x 2 3 x 1, x 2 0, geheeltallig 19 november
8 Wanneer kunnen we snoeien? (Maximalisatie) 1 Niet-toegelaten LP-relaxatie deelprobleem Geen geheeltallige oplossingen in dit deelprobleem 2 Geheeltallige LP-relaxatie in deelprobleem Toegelaten (integer) oplossing gevonden. Globale ondergrens updaten 3 Bovengrens deelprobleem kleiner dan globale ondergrens Er is geen betere oplossing in dit deelprobleem dan de al gevonden integer oplossing Merk op: Ondergrenzen zijn globaal, terwijl bovengrenzen alleen geldig in deelprobleem 19 november
9 Wanneer kunnen we snoeien? (Minimalisatie) 1 Niet-toegelaten LP-relaxatie deelprobleem Geen geheeltallige oplossingen in dit deelprobleem 2 Geheeltallige LP-relaxatie in deelprobleem Toegelaten (integer) oplossing gevonden. Globale bovengrens updaten 3 Ondergrens deelprobleem kleiner dan globale bovengrens Er is geen betere oplossing in dit deelprobleem dan de al gevonden integer oplossing Merk op: Bovengrenzen zijn globaal, terwijl ondergrenzen alleen geldig in deelprobleem 19 november
10 Implementatieaspecten 1 Welke variabele kiezen we om te branchen? Fractie het dichtst bij Welke deelprobleem beschouwen we eerst? Depth-first search: Deelprobleem zo diep mogelijk in de boom Best-node first: Deelprobleem met beste waarde van de LP-relaxatie Vaak mengsel van beide 19 november
11 Rekentijd Branch-and-Bound Stel alle variabelen zijn 0-1 variabelen. Maximaal aantal eindpunten: 2 n Maximaal aantal knopen/deelproblemen: n = 1 2n = 2 n+1 1 Exponentiëel aantal deelproblemen Werkcollege: voorbeeld waarin inderdaad exponentiëel veel deelproblemen opgelost moeten worden 19 november
12 Cutting Planes z IP = min odv c T x Ax b x 0, geheeltallig Laat S de verzameling toegelaten punten zijn. Definitie: Een polyeder P = {x R n 0 A x b } noemen we een formulering voor S als geldt P Z n = S. Vorige week gezien dat er meerdere formuleringen bestaan voor een gegeven verzameling S. Er bestaan zelfs oneindig veel formuleringen voor S 19 november
13 Sterkte van een formulering Een formulering P is tenminste even sterk als een formulering P als geldt P P Definitie: Een ongelijkheid αx β is geldig voor S als αx β voor iedere x S. Het toevoegen van een geldige ongelijkheid aan P resulteert in een formulering P die tenminste even sterk is. Wat is de sterkst mogelijke formulering? Conv(S), het convexe omhulsel van de toegelaten punten S. Merk op: Met een expliciete omschrijving van Conv(S) kunnen we ILP oplossen met LP. Het vinden van conv(s) kan echter niet in polynomiale tijd 19 november
14 Gomory s cutting planes We zoeken niet het volledige convexe omhulsel Fractioneel deel van optimale oplossing LP-relaxatie geeft geldige ongelijkheid Stop wanneer LP-relaxatie geheeltallig optimum heeft Alle snedes zijn geldig, dus ook optimum voor IP 19 november
15 Voorbeeld Gomory s cutting planes Z IP = max 4x 1 x 2 odv 7x 1 2x 2 14 x 2 3 2x 1 2x 2 3 x 1, x 2 0, geheeltallig (Zelfde voorbeeld als voor Branch-and-Bound) 19 november
16 Duale simplex algoritme Zowel bij B&B als bij cutting planes moet herhaaldelijk een LP-relaxatie worden opgelost Moeten we iedere keer opnieuw beginnen met simplex? Nee, we gebruiken duale simplex algoritme Oude oplossing blijft duaal toegelaten na toevoeging van extra voorwaarde. 19 november
17 Voorbeeld duale simplex 19 november
18 Duale simplex algoritme Initialisatie: Basisoplossing, niet-noodzakelijk toegelaten, met c j 0 j (maximalisatie) c j 0 j (minimalisatie) Uittredende variabele: x B(i ) zdd b i = min{ b i b i < 0} Als b i 0 optimaal. i, STOP, huidige basisoplossing is toegelaten en Intredende variabele: x j zdd c j ā = min{ c j i j ā : ā i j i j < 0} Als ā i j 0 j, STOP, probleem heeft geen toegelaten oplossing. Anders, voer pivot uit en ga naar 1 19 november
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 10 Leo van Iersel Technische Universiteit Delft 23 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 23 november 2016 1 / 40 Vraag Ik heb het deeltentamen niet
Hoofdstuk 13: Integer Lineair Programmeren
Hoofdstuk 13: Integer Lineair Programmeren Vandaag: Wat is Integer Lineair Programmeren (ILP)? Relatie tussen ILP en LP Voorbeeld 1: Minimum Spanning Tree (MST) Voorbeeld 2: Travelling Salesman Problem
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 13 Leo van Iersel Technische Universiteit Delft 9 december 2015 Leo van Iersel (TUD) TW2020 Optimalisering 9 december 2015 1 / 13 Vraag Wat moet ik kennen en kunnen voor
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 5 Leo van Iersel Technische Universiteit Delft 12 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 12 oktober 2016 1 / 31 Dualiteit Dualiteit: Elk LP probleem heeft
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 5 Leo van Iersel Technische Universiteit Delft 2 oktober 206 Leo van Iersel (TUD) TW2020 Optimalisering 2 oktober 206 / 3 Dualiteit Dualiteit: Elk LP probleem heeft een
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 9 Leo van Iersel Technische Universiteit Delft 16 november 2016 Leo van Iersel (TUD) TW2020 Optimalisering 16 november 2016 1 / 28 Vandaag Integer Linear Programming (ILP)
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 11 Leo van Iersel Technische Universiteit Delft 25 november 2015 Leo van Iersel (TUD) TW2020 Optimalisering 25 november 2015 1 / 28 Vandaag Vraag Voor welke problemen
Geheeltallige programmering
Geheeltallige programmering In een LP probleem zijn alle variabelen reëel. In een geheeltallig probleem blijven doelfunctie en constraints lineair, maar zijn de variabelen geheeltallig. LP: IP: BIP: MIP:
Tentamen: Operationele Research 1D (4016)
UITWERKINGEN Tentamen: Operationele Research 1D (4016) Tentamendatum: 12-1-2010 Duur van het tentamen: 3 uur (maximaal) Opgave 1 (15 punten) Beschouw het volgende lineaire programmeringsprobleem P: max
Tie breaking in de simplex methode
Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.
BESLISKUNDE 2 L.C.M. KALLENBERG UNIVERSITEIT LEIDEN
BESLISKUNDE L.C.M. KALLENBERG UNIVERSITEIT LEIDEN Voorwoord Dit vak is een voortzetting van het tweedejaarscollege Besliskunde. Een aantal andere mathematische beslissingsproblemen komt aan de orde en
Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk.
Netwerkanalyse (H3) Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Deze problemen kunnen vaak als continu LP probleem worden opgelost. Door de speciale structuur
Hoofdstuk 8: Algoritmen en Complexiteit
Hoofdstuk 8: Algoritmen en Complexiteit Vandaag: Hoe meten we de performance van algoritmen? Waar ligt de grens tussen een goed en een slecht algoritme? 22 oktober 2014 1 Vandaag: Hoe meten we de performance
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 3 Leo van Iersel Technische Universiteit Delft 21 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 21 september 2016 1 / 36 LP: Lineair Programmeren min x 1 2
Tie breaking in de simplex methode
Tie breaking in de simplex methode Tijdens de Simplexmethode kan op een aantal momenten onduidelijk zijn wat je moet doen: 1. Variabele die de basis in gaat: Zoek de grootste coëfficiënt in de doelfunctie.
1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist is. Kruis de juiste bewering aan. (2pt. per juist antwoord).
Tentamen Optimalisering (IN2805-I) Datum: 3 april 2008, 14.00 17.00. Docent: Dr. J.B.M. Melissen Naam: Studienummer: 1 In deze opgave wordt vijftien maal telkens drie beweringen gedaan waarvan er één juist
Optimalisering/Besliskunde 1. College 1 3 september, 2014
Optimalisering/Besliskunde 1 College 1 3 september, 2014 Algemene informatie College: woensdag 9:00-10:45: Gorlaeus C1/C2, Leiden vrijdag: werkcollege Leiden en Delft Vier verplichte huiswerkopgaven Informatie
Enkele basismodellen uit operationeel onderzoek
Enkele baimodellen uit operationeel onderzoek Roel Leu [email protected] Studiedag Wikunde e graad ASO 6 mei Inleiding Operationeel onderzoek (O.O.) = het gebruik van wikundige technieken voor
1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3.
1. Het aantal optimale oplossingen van een LP probleem is 0, 1, of oneindig. 2. De vereniging van twee konvexe verzamelingen is niet convex. 3. Een LP probleem heeft n>2 variabelen en n+2 constraints.
Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur.
Universiteit Utrecht Faculteit Wiskunde en Informatica Examen Optimalisering op maandag 18 april 2005, 9.00-12.00 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf
Tentamen combinatorische optimalisatie Tijd:
Tentamen combinatorische optimalisatie 26-05-2014. Tijd: 9.00-11.30 Tentamen is met gesloten boek. Beschrijf bij elke opgave steeds het belangrijkste idee. Notatie en exacte formulering is van minder belang.
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 12 Leo van Iersel Technische Universiteit Delft 7 december 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 december 2016 1 / 25 Volgende week: Study guide Vragenuurtje
TU/e 2DD50: Wiskunde 2 (1)
TU/e 2DD50: Wiskunde 2 (1) Organisatorische informatie Wat Dag Tijd Zaal Docent College Tue 5+6 Aud 6+15 Gerhard Woeginger Thu 1+2 Aud 1+4 Gerhard Woeginger Clicker session Tue 7+8 Aud 6+15 Gerhard Woeginger
TU/e 2DD50: Wiskunde 2
TU/e 2DD50: Wiskunde 2 Enkele mededelingen Tussentoets: 26 november, tijdens de instructies Tentamenstof: LP; Simplex; dualiteit (= colleges 1 4) Bij de tussentoets mag een eenvoudige (niet programmeerbare)
TU/e 2DD50: Wiskunde 2
TU/e 2DD50: Wiskunde 2 Enkele mededelingen Instructies (vandaag, 10:45 12:30) in vier zalen: Zaal Aud 10 Pav b2 Pav m23 Ipo 0.98 voor studenten met achternaam beginnend met letters A tot en met D met letters
Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search
Overzicht Inleiding Toepassingen Verwante problemen Modellering Exacte oplosmethode: B&B Insertie heuristieken Local Search Handelsreizigersprobleem 1 Cyclische permutatie van steden b 3 77 a 93 21 42
Een voorbeeld. Computationele Intelligentie Zoeken met een tegenstander. Een voorbeeld vervolg. Een zoekprobleem met een tegenstander
Computationele Intelligentie Zoeken met een tegenstander Beschouw het boter-kaas-en-eieren spel: een probleemtoestand is een plaatsing van i kruisjes en j nulletjes in de vakjes van het raam, met i j en
Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 28 september 2016
Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 28 september 2016 Leo van Iersel (TUD) Optimalisering 28 september 2016 1 / 18 Dualiteit Dualiteit: Elk LP probleem heeft een bijbehorend
l e x e voor alle e E
Geselecteerde uitwerkingen Werkcollege Introduceer beslissingsvariabelen x e met x e = als lijn e in de boom zit en anders x e = 0. De doelfunctie wordt: min e E l e x e Voor elke deelverzameling S V met
Optimalisering. Hoorcollege 4. Leo van Iersel. Technische Universiteit Delft. 23 september 2015
Optimalisering Hoorcollege 4 Leo van Iersel Technische Universiteit Delft 23 september 2015 Leo van Iersel (TUD) Optimalisering 23 september 2015 1 / 19 Mededelingen Maandag 28 september: deadline huiswerk
Tentamen Optimalisering (IN2520) Datum: 5 november 2004, Docent: Dr. J.B.M. Melissen
Tentamen Optimalisering (IN2520) Datum: 5 november 2004, 14.00 17.00. Docent: Dr. J.B.M. Melissen Veel succes! 1 Deze opgave bestaat uit 15 tweekeuzevragen. Per goed antwoord krijg je 2 punten. a. Dynamisch
Optimalisering en Complexiteit, College 11. Complementaire speling; duale Simplex methode. Han Hoogeveen, Utrecht University
Optimalisering en Complexiteit, College 11 Complementaire speling; duale Simplex methode Han Hoogeveen, Utrecht University Duale probleem (P) (D) min c 1 x 1 + c 2 x 2 + c 3 x 3 max w 1 b 1 + w 2 b 2 +
Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University
Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : [email protected] Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Student assistenten
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 21 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 21 oktober 2015 1 / 20 Deze week: algoritmes en complexiteit
Computationele Intelligentie
Computationele Intelligentie Uitwerking werkcollege Representatie, Ongeïnformeerd zoeken, Heuristisch zoeken 1 lokkenwereld a. De zoekboom die door het dynamische breadth-first search algoritme wordt gegenereerd
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 1 Leo van Iersel Technische Universiteit Delft 7 september 2016 Leo van Iersel (TUD) TW2020 Optimalisering 7 september 2016 1 / 40 Opzet vak Woensdag: hoorcollege 13:45-15:30
Examen Datastructuren en Algoritmen II
Tweede bachelor Informatica Academiejaar 2008 2009, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke
Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound
Algoritmiek 011/11 College 11 Elfde college algoritmiek 1 april 011 Dijkstra en Branch & Bound 1 Algoritmiek 011/11 Kortste paden Gegeven een graaf G met gewichten op de takken, en een beginknoop s. We
Er zijn 4 opgaven, daarna volgen blanco bladzijden die u kan gebruiken om te antwoorden.
Examen DH45 Lineaire Optimalizatie (D. Goossens) Vrijdag 29 januari 2010, 9 12u Richtlijnen: Er zijn 4 opgaven, daarna volgen blanco bladzijden die u kan gebruiken om te antwoorden. Lees aandachtig de
Benaderingsalgoritmen
Benaderingsalgoritmen Eerste hulp bij NP-moeilijkheid 1 Herhaling NP-volledigheid (1) NP: er is een polynomiaal certificaat voor jainstanties dat in polynomiale tijd te controleren is Een probleem A is
Computationele Intelligentie
Computationele Intelligentie Uitwerking werkcollege Representatie, Ongeïnformeerd zoeken, Heuristisch zoeken 1 lokkenwereld a. De zoekboom die door het dynamische breadth-first search algoritme wordt gegenereerd
Optimalisering/Besliskunde 1. College 1 2 september, 2015
Optimalisering/Besliskunde 1 College 1 2 september, 2015 Algemene informatie College: woensdag 13:45-15:30: Leiden C1 en C2: Gorlaeus gebouw Zaal DS: De Sitterzaal, Oort gebouw Werkcollege: vrijdag: Leiden
TW2020 Optimalisering
TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 26 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober 2016 1 / 28 Deze week: analyseren van algoritmes Hoe
Uitwerking tentamen Algoritmiek 9 juli :00 13:00
Uitwerking tentamen Algoritmiek 9 juli 0 0:00 :00. (N,M)-game a. Toestanden: Een geheel getal g, waarvoor geldt g N én wie er aan de beurt is (Tristan of Isolde) b. c. Acties: Het noemen van een geheel
Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University
Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : [email protected] Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Student assistenten
1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d.
1. Een kortste pad probleem in een netwerk kan worden gemodelleerd als a. een LP probleem. b. een IP probleem. c. een BIP probleem. d. een toewijzingsprobleem. 2. Het aantal toegelaten hoekpunten in een
Voorbeeld simplexmethode. Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 10, 3x 1 + x 2-2x 3 8, en x 1, x 2, x 3 0.
Voorbeeld simplexmethode Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x 2 + x 3 10, 3x 1 + x 2-2x 3 8, en x 1, x 2, x 3 0. Voer slackvariabelen (x 4, x 5 ) in: Max Z = 3x 1 + 2x 2 0.5x 3 z.d.d. 4x 1 + 3x
Universiteit Utrecht Departement Informatica
Universiteit Utrecht Departement Informatica Uitwerking Tussentoets Optimalisering 20 december 206 Opgave. Beschouw het volgende lineair programmeringsprobleem: (P) Minimaliseer z = x 2x 2 + x 3 2x 4 o.v.
De Branch-and-Bound methode
De Branch-and-Bound methode Een eigenschap van het ILP probleem is dat er meestal maar een eindig aantal mogelijke oplossingen toegelaten zijn, of op zijn slechtst zijn de oplossingen aftelbaar (eventueel
Examen Datastructuren en Algoritmen II
Tweede kandidatuur Informatica Academiejaar 2004 2005, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Binomiale
TU/e 2DD50: Wiskunde 2 (1)
TU/e 2DD50: Wiskunde 2 () Tussentoets 26 november, tijdens de instructies Zaal: paviljoen (study hub) Time: 90min Tentamenstof: colleges 4 (LP; Simplex; dualiteit; complementaire slackness) Oude tentamens:
Kosten. Computationale Intelligentie. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route. Zoeken met kosten.
Kosten omputationale Intelligentie Zoeken met kosten Veel zoekproblemen omvatten kosten: een afstand in kilometers; een geldbedrag; een hoeveelheid tijd;... Voorbeelden van dergelijke problemen zijn: het
Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes. Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013
Transshipment problemen Simplex methode en netwerk optimalisatie algoritmes Luuk van de Sande Begeleider: Judith Keijsper 20 januari 2013 1 Inhoudsopgave 1 Transport problemen 3 2 Definities en stellingen
Begrenzing van het aantal iteraties in het max-flow algoritme
Begrenzing van het aantal iteraties in het max-flow algoritme Het oplossen van het maximum stroom probleem met behulp van stroomvermeerderende paden werkt, maar het aantal iteraties kan aardig de spuigaten
A.1 Grafentheorie 64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A.1. GRAFENTHEORIE 65. dan heeft deze kring in ieder knooppunt een even aantal takken).
64 BIJLAGE A. OPLOSSING VAN DE VRAGEN A. Grafentheorie Vraag. Neem drie knooppunten i, j en k. d(i, k) = het minimum aantal takken in een keten tussen i en k Vraag.2 het minimum aantal takken in een keten
Taak 2: LP: simplex en sensitiviteitsanalyse Voorbeeld uitwerking
Taak 2: LP: simplex en sensitiviteitsanalyse Voorbeeld uitwerking. Sensitiviteitsanalyse (a) Als de prijs van legering 5 daalt, kan het voordeliger worden om gebruik te maken van deze legering. Als de
Optimalisering WI 2608
Optimalisering WI 2608 Docent: Hans Melissen, EWI kamer 7.080 e-mail: [email protected] tel: 015-2782547 Studiemateriaal op : http://www.isa.ewi.tudelft.nl/~melissen (kijk bij onderwijs WI
Optimalisering en Complexiteit, College 1. Han Hoogeveen, Utrecht University
Optimalisering en Complexiteit, College 1 Han Hoogeveen, Utrecht University Gegevens Docent : Han Hoogeveen : [email protected] Vak website : http://www.cs.uu.nl/docs/vakken/opt/ Medewerkers : Ivor van
Oefeningentoets Differentiaalvergelijkingen, deel 1 dinsdag 6 november 2018 in lokaal 200M van 16:00 tot 18:00u
Oefeningentoets Differentiaalvergelijkingen, deel 1 dinsdag 6 november 2018 in lokaal 200M 00.07 van 16:00 tot 18:00u Beste student, Deze oefeningentoets bevat twee oefeningen betreffende het tweede deel
Toewijzingsprobleem Bachelorscriptie
Radboud Universiteit Nijmegen Faculteit der Natuurwetenschappen, Wiskunde en Informatica Toewijzingsprobleem Bachelorscriptie Auteur: Veronique Rademaekers (s4155718) Begeleiders: Dr. W. Bosma en dr. H.
Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005
Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 08-04-2005 1 Transportprobleem Onderdeel a Fabriek 1 kan 120 ton staal fabriceren in 40 uur. Voor fabriek 2 is dit 150
Kortste Paden. Algoritmiek
Kortste Paden Toepassingen Kevin Bacon getal Six degrees of separation Heeft een netwerk de small-world eigenschap? TomTom / Google Maps 2 Kortste paden Gerichte graaf G=(N,A), en een lengte L(v,w) voor
Lineaire programmering
Lineaire programmering Hans Maassen kort naar Inleiding Besliskunde van J. Potters [Pot]. en Methods of Mathematical Economics van J. Franklin [Fra]. Lineaire programmering is het bepalen van het maximum
Examen Datastructuren en Algoritmen II
Tweede bachelor Informatica Academiejaar 2016 2017, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele
Lineaire Optimilizatie Extra sessie. 19 augustus 2010
Lineaire Optimilizatie Extra sessie 19 augustus 2010 De leerstof Handboek: hoofdstuk 2 t.e.m. 8 (incl. errata) Slides (zie toledo) Extra opgaven (zie toledo) Computersessie: Lindo syntax en output Wat
1 Complexiteit. of benadering en snel
1 Complexiteit Het college van vandaag gaat over complexiteit van algoritmes. In het boek hoort hier hoofdstuk 8.1-8.5 bij. Bij complexiteitstheorie is de belangrijkste kernvraag: Hoe goed is een algoritme?
Lineair Programmeren op het polytoop
Lineair Programmeren op het polytoop Paulien Neppelenbroek 12 juli 2017 Bachelorproject wiskunde Supervisor: dr. Jan Brandts Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen,
Inhoud voor vandaag. Knapzak probleem (2) Knapzak probleem. Geheeltallige lineaire programmeringsproblemen en hun toepassingen
Inhoud voor vandaag Geheeltallige lineaire programmeringproblemen en hun toepaingen Inleiding geheeltallig lineaire programmering Modellen: Toewijzing Depot locatie Inkoop met kwantum korting Marjan van
Recapitulatie: Ongeïnformeerd zoeken. Zoekalgoritmen ( ) College 2: Ongeïnformeerd zoeken. Dynamische breadth-first search
Recapitulatie: Ongeïnformeerd zoeken Zoekalgoritmen (009 00) College : Ongeïnformeerd zoeken Peter de Waal, Tekst: Linda van der Gaag een algoritme voor ongeïnformeerd zoeken doorzoekt de zoekruimte van
Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen
Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,
Examen Datastructuren en Algoritmen II
Tweede bachelor Informatica Academiejaar 2009 2010, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele
Examen Datastructuren en Algoritmen II
Tweede bachelor Informatica Academiejaar 2010 2011, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele
Heuristieken en benaderingsalgoritmen. Algoritmiek
Heuristieken en benaderingsalgoritmen Wat te doen met `moeilijke optimaliseringsproblemen? Voor veel problemen, o.a. optimaliseringsproblemen is geen algoritme bekend dat het probleem voor alle inputs
Fundamentele Informatica
Fundamentele Informatica (IN3120 en IN3005 DOI nwe stijl) 20 augustus 2004, 9.00 11.00 uur Het tentamen IN3120 bestaat uit 10 meerkeuzevragen en 2 open vragen. Voor de meerkeuzevragen kunt u maximaal 65
