Kosten. Computationale Intelligentie. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route. Zoeken met kosten.

Maat: px
Weergave met pagina beginnen:

Download "Kosten. Computationale Intelligentie. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route. Zoeken met kosten."

Transcriptie

1 Kosten omputationale Intelligentie Zoeken met kosten Veel zoekproblemen omvatten kosten: een afstand in kilometers; een geldbedrag; een hoeveelheid tijd;... Voorbeelden van dergelijke problemen zijn: het configureren van apparatuur; het maken van roosters; het vinden van routes;... Het doel is dan om een oplossing met minimale kosten te vinden. omp. Int.: Zoeken met kosten / 0 omp. Int.: Zoeken met kosten tapkosten / 0 Een zoekprobleem met stapkosten Definitie Een zoekprobleem met stapkosten is een tupel P =(T,, D, O, c) met T,, D en O zijn als voorheen; c : O! R +. De functie c associeert met de toepassing van een operator positieve stapkosten. Een voorbeeld: het vinden van een route eschouw een kaart met steden en wegen tussen die steden: Het probleem P is het vinden van een route van naar van minimale lengte in kilometers: de verzameling T van toestanden van P is gelijk aan de verzameling {,,,,} van steden; de verzameling van begintoestanden van P bevat alleen de toestand ; de verzameling D van doeltoestanden van P bevat alleen ; omp. Int.: Zoeken met kosten tapkosten / 0 omp. Int.: Zoeken met kosten tapkosten 4 / 0

2 Het vinden van een route vervolg Paden en kosten eschouw nogmaals de kaart met steden en wegen: de operator o van P bevat de tupels (,), (,), (,), (,), (,),...,(,); de kostenfunctie c van P is gedefinieerd als c(, ) = 4 c(, ) = 4 c(, ) = 5 c(, ) = 0 c(, ) = c(, ) = 5 Definitie Zij P =(T,, D, O, c) een zoekprobleem met stapkosten. Een pad t in T is een eindige reeks toestanden t = t,...,t n, n, zodanig dat voor elke k =,...,n er een o O is met (t k, t k+ ) o. De kosten van een willekeurige reeks t van toestanden in T zijn gelijk aan I (t) = X c(n i, n i+ ) als t een pad in T is; I (n i,n i+ )t (t) = als t geen pad in T is. omp. Int.: Zoeken met kosten tapkosten 5 / 0 omp. Int.: Zoeken met kosten Paden 6 / 0 Een oplossing Definitie Zij P =(T,, D, O, c) een zoekprobleem met stapkosten. Een oplossing van P is een pad in T van een begintoestand naar een eindtoestand. Een oplossing t van P is optimaal als voor alle oplossingen t 0 van P geldt dat (t 0 ) (t). Voorbeeld 8 D 4 5 E De oplossing,,e, is optimaal, met kosten (,, E, ) =. omp. Int.: Zoeken met kosten Oplossingen / 0 ost-based search ost-based search is een variant van dynamische breadth-first search met als verschillen: voor elke knoop op het front worden de padkosten berekend; het front wordt gesorteerd naar toenemende padkosten; de knoop met de laagste padkosten tot dan toe, wordt van het front verwijderd voor expansie. omp. Int.: Zoeken met kosten ost-based search 8 / 0

3 Een voorbeeld eschouw nogmaals ost-based search genereert de volgende zoekboom: De vier eigenschappen ls de zoekboom van een probleem met stapkosten tenminste één oplossing bevat, dan geldt: cost-based search vindt altijd een oplossing; de gevonden oplossing is optimaal; cost-based search kost exponentieel veel tijd en ruimte. ij het expanderen van een knoop is nooit een toestand opgenomen die al voorkomt op het pad van de wortel naar de knoop. omp. Int.: Zoeken met kosten ost-based search / 0 omp. Int.: Zoeken met kosten ost-based search: Eigenschappen 0 / 0 Heuristische cost-based search Een evaluatiefunctie met kosten eschouw een toestand t in een dynamische zoekboom: b Heuristische cost-based search doorzoekt de zoekruimte van een probleem met stapkosten, gestuurd door een heuristische functie: deze functie is gebaseerd op kennis van het probleem; de functie geeft voor een toestand een inschatting van de kosten die nog gemaakt moeten worden om een doeltoestand te bereiken. t d Een schatting van de kosten van het optimale pad van de begintoestand b naar een doeltoestand via toestand t is waarin f (t) =g(t)+h(t) g(t) is de kost van het pad van begintoestand b naar toestand t; h(t) is een schatting van de kosten van het optimale pad van toestand t naar een doeltoestand. omp. Int.: Zoeken met kosten Heuristische cost-based search / 0 omp. Int.: Zoeken met kosten Heuristische cost-based search / 0

4 met kosten Heuristische cost-based search met een evaluatiefunctie van de vorm als voorheen, met f (t) =g(t)+h(t) 0 apple h(t) apple h (t) voor alle t T, waarbij alle functies gebaseerd zijn op padkosten, heet een -algoritme voor cost-based search. Een voorbeeld eschouw nogmaals Een heuristische functie voor het probleem is h() = 0 h(n) = de minimale kosten van het bereiken van een naburige stad vanuit n Er geldt bijvoorbeeld dat h() = 4 h() = h() = omp. Int.: Zoeken met kosten Heuristische cost-based search / 0 omp. Int.: Zoeken met kosten Heuristische cost-based search 4 / 0 Een voorbeeld vervolg eschouw nogmaals en de heuristische functie als voorheen. cost-based search genereert de volgende zoekboom: h = 4 g = 0 Een monotone heuristische functie Definitie Zij P =(T,, D, O, c) een zoekprobleem met stapkosten. Een heuristische functie h heet monotoon (aka. consistent) op T als h(n i ) apple h(n j )+c(n i, n j ) voor elke n i, n j T met n j een successor van n i ; h(d) =0 voor elke d D. b h = 4 g = 4 h = 0 g = 4 h = g = 5 h = g = 6 h = 0 g = h = 0 g = h = g = c ( n i, n j ) ni nj d omp. Int.: Zoeken met kosten Heuristische cost-based search 5 / 0 omp. Int.: Zoeken met kosten Lokale geoorloofdheid 6 / 0

5 Monotonie en geoorloofdheid Een voorbeeld eschouw de zoekgraaf van een probleem met constante kosten gelijk aan en de bijbehorende heuristische functie h: eschouw een zoekprobleem P met stapkosten. Er geldt: als een heuristische functie monotoon is voor P, dan is de functie ook geoorloofd voor P; als een heuristische functie geoorloofd is voor P, dan is de functie niet noodzakelijk monotoon voor P. h(b) = 4 b h(n) = n h(n) = n h(n4) = 0 n4 h(n5) = 0 n5 h(d) = 0 d n h(n) = Voor de heuristische functie h geldt dat de functie is geoorloofd; de functie is niet monotoon : h(b) > h(n)+c(b, n). omp. Int.: Zoeken met kosten Lokale geoorloofdheid / 0 omp. Int.: Zoeken met kosten Lokale geoorloofdheid 8 / 0 Monotoon impliceert geoorloofd eschouw een pad t 0,...,t n = d in de toestandsruimte van een probleem P. eschouw een monotone heuristische functie h voor P. Dan geldt: t 0! t h(t 0 ) h(t ) apple c(t 0, t ) t! t h(t ) h(t ) apple c(t, t ) Lokale geoorloofdheid Voor een -algoritme voor cost-based search met een monotone heuristische functie geldt: Met. t n! d h(t n ) h(d) apple c(t n, d) + t 0!...! d h(t 0 ) apple P n i=0 c(t i, t i+ ) Xn c(t i, t i+ )=(t 0, d) i=0 de evaluatiewaarden f (n) van de achtereenvolgens door het algoritme geëxpandeerde toestanden n, zijn monotoon niet-dalend. als het algoritme een toestand expandeert, dan heeft het een pad met minimale kosten naar die toestand gevonden het algoritme is lokaal geoorloofd; volgt dat de functie h geoorloofd is voor P. omp. Int.: Zoeken met kosten Lokale geoorloofdheid / 0 omp. Int.: Zoeken met kosten Lokale geoorloofdheid 0 / 0

6 Monotoon niet-dalend bewijsschets eschouw een toestand t n+ die de toestand t n opvolgt op een pad: g(t n+ )=g(t n )+c(t n, t n+ ) waaruit volgt f (t n+ ) = g(t n+ )+h(t n+ ) = g(t n )+c(t n, t n+ )+h(t n+ ) g(t n )+h(t n ) = f (t n ) omp. Int.: Zoeken met kosten Lokale geoorloofdheid / 0 Lokale geoorloofdheid bewijsschets Veronderstel dat het -zoekalgoritme een toestand s expandeert op het niet optimale pad b = m,...,m p = s. Er geldt dan dat g (s) < g(m p = s) Zij nu b = n,...,n q = s een optimaal pad van b naar s. Voor n j, n j+ op dat pad geldt dat g (n j )+h(n j ) apple g (n j+ )+h(n j+ ) Zij nu n i de toestand op dat pad met n i L (= lijst van nog te expanderen toestanden). Voor n i geldt dat g (n i )+h(n i ) apple g (s)+h(s) < g(m p = s)+h(s) en dus dat f (n i ) < f (m p = s) Het algoritme zal toestand n i voor expansie selecteren en niet toestand m p = s. Een tegenspraak volgt. omp. Int.: Zoeken met kosten Lokale geoorloofdheid / 0 m m p- b s n n q- Uitputtende depth-first search Een voorbeeld eschouw een zoekprobleem met stapkosten. ls de zoekboom tenminste één oplossing bevat, dan geldt: standaard depth-first search vindt het eerste pad van de begintoestand naar de doeltoestand; de gevonden oplossing is niet noodzakelijk optimaal; het gebruik van een heuristische functie geeft weinig sturing. Depth-first search wordt voor zoekproblemen met stapkosten daarom uitputtend toegepast. eschouw een zoekprobleem met de volgende stapkosten: 8 D 4 5 E Depth-first search genereert de volgende zoekboom: 0 4 omp. Int.: Zoeken met kosten Uitputtende depth-first search / 0 omp. Int.: Zoeken met kosten Uitputtende depth-first search 4 / 0

7 Een voorbeeld vervolg eschouw nogmaals: 8 D 4 5 E Uitputtende depth-first search genereert alle paden van naar : 0 4 D E 6 8 E 8 0 D De vier eigenschappen ls de zoekboom van een zoekprobleem met stapkosten tenminste één oplossing bevat, dan geldt: uitputtende depth-first search vindt altijd een optimale oplossing; uitputtende depth-first search kost polynomiaal veel ruimte zoals dynamische depth-first search; uitputtende depth-first search kost exponentieel veel tijd zoals cost-based search. 4 omp. Int.: Zoeken met kosten Uitputtende depth-first search 5 / 0 omp. Int.: Zoeken met kosten Uitputtende depth-first search 6 / 0 ranch-and-bound inleiding Depth-first branch-and-bound search De essentie van depth-first branch-and-bound search is: ranch-and-bound is een aanvullende techniek waarmee de zoekboom voor een zoekprobleem dynamisch gesnoeid wordt: branch-and-bound houdt de beste tot dan toe gevonden oplossing bij; als een pad ontstaat dat nooit tot een betere oplossing kan leiden, staakt branch-and-bound verdere expansie op dat pad. ranch-and-bound kan bij verschillende zoekalgoritmen worden gebruikt. procedure bb(l,best) returns best: if empty(l) then return best else t pop(l); if goal(t) then best min{c(best),c(path(b,t))} else if (best) > (path(b,t)) then L push(l,successors(t)); bb(l,best) endprocedure De procedure bb wordt aangeroepen met een stack L met initieel de begintoestand en een variabele best, en geeft een pad terug. omp. Int.: Zoeken met kosten ranch-and-bound / 0 omp. Int.: Zoeken met kosten ranch-and-bound 8 / 0

8 Een voorbeeld vervolg ranch-and-bound: heuristiek, initiële oplossing eschouw nogmaals: 8 D 4 5 E Depth-first branch-and-bound search resulteert in: 0 4 D E 6 8 E 8 0 D ranch-and-bound wordt efficiënter naarmate de initiële oplossing beter is. Of Vindt met een ander (snel) algoritme een (niet-optimale) oplossing ; tart DF met branch-and-bound met als initiële oplossing. Leidt (wiskundig) af dat er een oplossing bestaat met padkosten apple (liefst laag); tart DF met branch-and-bound en gebruik als initiële snoeigrens. 4 omp. Int.: Zoeken met kosten ranch-and-bound / 0 omp. Int.: Zoeken met kosten ranch-and-bound 0 / 0

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route Kosten Zoekalgoritmen (00 00) ollege 5: Zoeken met kosten Peter de Waal, Tekst: Linda van der aag Veel zoekproblemen omvatten kosten: een afstand in kilometers; een geldbedrag; een hoeveelheid tijd; ongemak;...

Nadere informatie

Computationale Intelligentie Dirk Thierens

Computationale Intelligentie Dirk Thierens Computationale Intelligentie Dirk Thierens Organisatie Onderwijsvormen: Docent: Topic: Collegemateriaal: Boek: Beoordeling: hoorcollege, practicum, werkcollege Dirk Thierens Deel : Zoekalgoritmen Toets

Nadere informatie

Computationele Intelligentie

Computationele Intelligentie Computationele Intelligentie Uitwerking werkcollege Representatie, Ongeïnformeerd zoeken, Heuristisch zoeken 1 lokkenwereld a. De zoekboom die door het dynamische breadth-first search algoritme wordt gegenereerd

Nadere informatie

Computationele Intelligentie

Computationele Intelligentie Computationele Intelligentie Uitwerking werkcollege Representatie, Ongeïnformeerd zoeken, Heuristisch zoeken 1 lokkenwereld a. De zoekboom die door het dynamische breadth-first search algoritme wordt gegenereerd

Nadere informatie

Recapitulatie: Ongeïnformeerd zoeken. Zoekalgoritmen ( ) College 2: Ongeïnformeerd zoeken. Dynamische breadth-first search

Recapitulatie: Ongeïnformeerd zoeken. Zoekalgoritmen ( ) College 2: Ongeïnformeerd zoeken. Dynamische breadth-first search Recapitulatie: Ongeïnformeerd zoeken Zoekalgoritmen (009 00) College : Ongeïnformeerd zoeken Peter de Waal, Tekst: Linda van der Gaag een algoritme voor ongeïnformeerd zoeken doorzoekt de zoekruimte van

Nadere informatie

Zoeken met beperkt geheugen. Zoekalgoritmen ( ) College 7: Zoeken met beperkt geheugen. Een representatie van het kleuringsprobleem

Zoeken met beperkt geheugen. Zoekalgoritmen ( ) College 7: Zoeken met beperkt geheugen. Een representatie van het kleuringsprobleem Zoeken met beperkt geheugen Zoekalgoritmen (2009 2010) College 7: Zoeken met beperkt geheugen Dirk Thierens, Tekst: Linda van der Gaag algoritmen voor zoeken met beperkt geheugen zijn ontwikkeld voor problemen

Nadere informatie

Duration: 2 hrs; Total points: 100 No documents allowed. Use of electronic devices, such as calculators, smartphones, smartwatches is forbidden.

Duration: 2 hrs; Total points: 100 No documents allowed. Use of electronic devices, such as calculators, smartphones, smartwatches is forbidden. : Computationele Intelligentie (INFOBCI) Midterm Exam Duration: hrs; Total points: No documents allowed. Use of electronic devices, such as calculators, smartphones, smartwatches is forbidden. Question

Nadere informatie

Zoekproblemen met tegenstanders. Zoekalgoritmen ( ) College 9: Zoeken met een tegenstander (I) Een zoekprobleem met een tegenstander

Zoekproblemen met tegenstanders. Zoekalgoritmen ( ) College 9: Zoeken met een tegenstander (I) Een zoekprobleem met een tegenstander Zoekproblemen met tegenstanders Zoekalgoritmen (29 2) College 9: Zoeken met een tegenstander (I) Dirk Thierens, Tekst: Linda van der Gaag Zoekproblemen met meer dan één partij worden gekenmerkt door interventies

Nadere informatie

Lokaal zoeken. Computationele Intelligentie. Een representatie van het kleuringsprobleem. Impliciete doeltoestanden. Lokaal zoeken

Lokaal zoeken. Computationele Intelligentie. Een representatie van het kleuringsprobleem. Impliciete doeltoestanden. Lokaal zoeken Lokaal zoeken Computationele Intelligentie Lokaal zoeken algoritmen voor lokaal zoeken zijn ontwikkeld voor problemen I met grote oplossingsdiepten; I waarbij een oplossing slechts een doeltoestand is;

Nadere informatie

Een voorbeeld. Computationele Intelligentie Zoeken met een tegenstander. Een voorbeeld vervolg. Een zoekprobleem met een tegenstander

Een voorbeeld. Computationele Intelligentie Zoeken met een tegenstander. Een voorbeeld vervolg. Een zoekprobleem met een tegenstander Computationele Intelligentie Zoeken met een tegenstander Beschouw het boter-kaas-en-eieren spel: een probleemtoestand is een plaatsing van i kruisjes en j nulletjes in de vakjes van het raam, met i j en

Nadere informatie

Constraint satisfaction. Zoekalgoritmen ( ) College 11: Constraint Satisfaction. Voorbeelden. Een constraint satisfaction probleem

Constraint satisfaction. Zoekalgoritmen ( ) College 11: Constraint Satisfaction. Voorbeelden. Een constraint satisfaction probleem Constraint satisfaction Zoekalgoritmen (2009 2010) College 11: Constraint Satisfaction Dirk Thierens, Tekst: Linda van der Gaag Een constraint satisfaction probleem (CSP) bestaat uit: een verzameling variabelen;

Nadere informatie

Heuristisch zoeken. Computationele Intelligentie. Een heuristische functie op de toestandsruimte. Voorbeelden van kennis. Heuristisch zoeken

Heuristisch zoeken. Computationele Intelligentie. Een heuristische functie op de toestandsruimte. Voorbeelden van kennis. Heuristisch zoeken Heuristisch zoeken Computationele Intelligentie Heuristisch zoeken een algoritme voor heuristisch zoeken oorzoekt e zoekruimte van een proleem op een systematische wijze, gestuur oor kennis van het proleem;

Nadere informatie

Constraint satisfaction. Computationele Intelligentie. Voorbeelden. Een constraint satisfaction probleem. Constraint Satisfaction

Constraint satisfaction. Computationele Intelligentie. Voorbeelden. Een constraint satisfaction probleem. Constraint Satisfaction Constraint satisfaction Computationele Intelligentie Constraint Satisfaction Een constraint satisfaction probleem (CSP) bestaat uit: een verzameling variabelen; een domein van waarden voor elke variabele;

Nadere informatie

Hoofdstuk 3 (vanaf 3.5) en 4 van Russell/Norvig = [RN] Gericht zoeken en verder

Hoofdstuk 3 (vanaf 3.5) en 4 van Russell/Norvig = [RN] Gericht zoeken en verder I Kunstmatige Intelligentie (I) Hoofdstuk 3 (vanaf 3.5) en 4 van Russell/Norvig = [RN] Gericht zoeken en verder voorjaar 2016 ollege 5, 15 maart 2016 www.liacs.leidenuniv.nl/ kosterswa/i/ 1 I Gericht zoeken

Nadere informatie

Tentamen Kunstmatige Intelligentie (INFOB2KI)

Tentamen Kunstmatige Intelligentie (INFOB2KI) Tentamen Kunstmatige Intelligentie (INFOB2KI) 12 december 2014 8:30-10:30 Vooraf Mobiele telefoons en dergelijke dienen uitgeschakeld te zijn. Het eerste deel van het tentamen bestaat uit 8 multiple-choice

Nadere informatie

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search Overzicht Inleiding Toepassingen Verwante problemen Modellering Exacte oplosmethode: B&B Insertie heuristieken Local Search Handelsreizigersprobleem 1 Cyclische permutatie van steden b 3 77 a 93 21 42

Nadere informatie

Uitwerking tentamen Algoritmiek 10 juni :00 13:00

Uitwerking tentamen Algoritmiek 10 juni :00 13:00 Uitwerking tentamen Algoritmiek 10 juni 2014 10:00 13:00 1. Dominono s a. Toestanden: n x n bord met in elk hokje een O, een X of een -. Hierbij is het aantal X gelijk aan het aantal O of hooguit één hoger.

Nadere informatie

Vierde college algoritmiek. 2 maart Toestand-actie-ruimte Exhaustive Search

Vierde college algoritmiek. 2 maart Toestand-actie-ruimte Exhaustive Search Algoritmiek 2018/Toestand-actie-ruimte Vierde college algoritmiek 2 maart 2018 Toestand-actie-ruimte Exhaustive Search 1 Algoritmiek 2018/Toestand-actie-ruimte Kannen Voorbeeld 4: Kannenprobleem We hebben

Nadere informatie

Hoofdstuk 3 (tot en met 3.4) van Russell/Norvig = [RN] Probleemoplossen en zoeken

Hoofdstuk 3 (tot en met 3.4) van Russell/Norvig = [RN] Probleemoplossen en zoeken AI Kunstmatige Intelligentie (AI) Hoofdstuk 3 (tot en met 3.4) van Russell/Norvig = [RN] Probleemoplossen en zoeken voorjaar 2015 College 4, 3 maart 2015 www.liacs.leidenuniv.nl/ kosterswa/ai/ 1 AI Robotica

Nadere informatie

Twaalfde college algoritmiek. 13 mei Branch & Bound Heap, Heapsort & Heapify

Twaalfde college algoritmiek. 13 mei Branch & Bound Heap, Heapsort & Heapify Algoritmiek 2016/Branch & Bound Twaalfde college algoritmiek 13 mei 2016 Branch & Bound Heap, Heapsort & Heapify 1 Algoritmiek 2016/Branch & Bound TSP met Branch & Bound Mogelijke ondergrenzen voor de

Nadere informatie

Tree traversal. Bomen zijn overal. Ferd van Odenhoven. 15 november 2011

Tree traversal. Bomen zijn overal. Ferd van Odenhoven. 15 november 2011 15 november 2011 Tree traversal Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 15 november 2011 ODE/FHTBM Tree traversal 15 november 2011 1/22 1 ODE/FHTBM Tree

Nadere informatie

Branch-and-Bound en Cutting Planes

Branch-and-Bound en Cutting Planes Branch-and-Bound en Cutting Planes Vandaag: Er is nog geen algoritme om ILP s in polynomiale tijd op te lossen. Twee opties: 1 Exponentiëel algoritme dat optimale oplossing geeft 2 Polynomiaal algoritme

Nadere informatie

Elfde college algoritmiek. 18 mei Algoritme van Dijkstra, Heap, Heapify & Heapsort

Elfde college algoritmiek. 18 mei Algoritme van Dijkstra, Heap, Heapify & Heapsort Algoritmiek 018/Algoritme van Dijkstra Elfde college algoritmiek 18 mei 018 Algoritme van Dijkstra, Heap, Heapify & Heapsort 1 Algoritmiek 018/Algoritme van Dijkstra Uit college 10: Voorb. -1- A B C D

Nadere informatie

Vijfde college algoritmiek. 2/3 maart Exhaustive search

Vijfde college algoritmiek. 2/3 maart Exhaustive search Vijfde college algoritmiek 2/3 maart 2017 Exhaustive search 1 Voor- en nadelen Brute force: Voordelen: - algemeen toepasbaar - eenvoudig - levert voor een aantal belangrijke problemen (zoeken, patroonherkenning)

Nadere informatie

Het minimale aantal sleutels op niveau h is derhalve

Het minimale aantal sleutels op niveau h is derhalve 1 (a) In een B-boom van orde m bevat de wortel minimaal 1 sleutel en maximaal m 1 sleutels De andere knopen bevatten minimaal m 1 sleutels en maximaal m 1 sleutels (b) In een B-boom van orde 5 bevat elke

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede kandidatuur Informatica Academiejaar 2004 2005, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Binomiale

Nadere informatie

Opgaven Kunstmatige Intelligentie 1 maart 2017

Opgaven Kunstmatige Intelligentie 1 maart 2017 Opgaven Kunstmatige Intelligentie 1 maart 2017 Opgave 1. a. Denkt een schaakprogramma? b. Denkt een (Nederlands-Engels) vertaalprogramma? c. Denkt een C ++ -compiler? d. Denkt Watson, the IBM-computer

Nadere informatie

Twaalfde college algoritmiek. 12 mei Branch & Bound

Twaalfde college algoritmiek. 12 mei Branch & Bound Twaalfde college algoritmiek 12 mei 2016 Branch & Bound 1 Branch and bound -1- Branch & bound is alleen toepasbaar op optimalisatieproblemen genereert oplossingen stap voor stap en houdt de tot dusver

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 3 maart 2008 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren

Nadere informatie

Vijfde college algoritmiek. 17 maart Exhaustive search Graafwandelingen Backtracking

Vijfde college algoritmiek. 17 maart Exhaustive search Graafwandelingen Backtracking College 5 Vijfde college algoritmiek 17 maart 2016 Exhaustive search Graafwandelingen Backtracking 1 Exhaustive search Exhaustive search: brute force benadering voor problemen die te maken hebben met het

Nadere informatie

Dynamisch Programmeren III. Algoritmiek

Dynamisch Programmeren III. Algoritmiek Dynamisch Programmeren III Vandaag Dynamisch programmeren met wat lastiger voorbeelden: Handelsreiziger Longest common subsequence Optimale zoekbomen Knapsack 2 - DP2 Handelsreiziger Een handelsreiziger

Nadere informatie

Divide & Conquer: Verdeel en Heers vervolg. Algoritmiek

Divide & Conquer: Verdeel en Heers vervolg. Algoritmiek Divide & Conquer: Verdeel en Heers vervolg Algoritmiek Algoritmische technieken Vorige keer: Divide and conquer techniek Aantal toepassingen van de techniek Analyse met Master theorem en substitutie Vandaag:

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

Inleiding Programmeren 2

Inleiding Programmeren 2 Inleiding Programmeren 2 Gertjan van Noord November 28, 2016 Stof week 3 nogmaals Zelle hoofdstuk 8 en recursie Brookshear hoofdstuk 5: Algoritmes Datastructuren: tuples Een geheel andere manier om te

Nadere informatie

Uitgebreide uitwerking tentamen Algoritmiek Dinsdag 5 juni 2007, uur

Uitgebreide uitwerking tentamen Algoritmiek Dinsdag 5 juni 2007, uur Uitgebreide uitwerking tentamen Algoritmiek Dinsdag juni 00, 0.00.00 uur Opgave. a. Een toestand bestaat hier uit een aantal stapels, met op elk van die stapels een aantal munten (hooguit n per stapel).

Nadere informatie

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005

Transport-, Routing- en Schedulingproblemen. Wi4062TU / Wi487TU / a86g. Uitwerkingen 08-04-2005 Transport-, Routing- en Schedulingproblemen Wi4062TU / Wi487TU / a86g Uitwerkingen 08-04-2005 1 Transportprobleem Onderdeel a Fabriek 1 kan 120 ton staal fabriceren in 40 uur. Voor fabriek 2 is dit 150

Nadere informatie

Logisch programmeren 2012

Logisch programmeren 2012 Logisch programmeren 2012 Opdrachten Week 8 1 Fibonacci woorden Een Fibonacci woord is een eindig rijtje over het twee-letter alfabet {1, 2}. De rangorde van een Fibonacci woord w is de som van de samenstellende

Nadere informatie

Kunstmatige Intelligentie (AI) Hoofdstuk 6 van Russell/Norvig = [RN] Constrained Satisfaction Problemen (CSP s) voorjaar 2015 College 7, 31 maart 2015

Kunstmatige Intelligentie (AI) Hoofdstuk 6 van Russell/Norvig = [RN] Constrained Satisfaction Problemen (CSP s) voorjaar 2015 College 7, 31 maart 2015 AI Kunstmatige Intelligentie (AI) Hoofdstuk 6 van Russell/Norvig = [RN] Constrained Satisfaction Problemen (CSP s) voorjaar 2015 College 7, 31 maart 2015 www.liacs.leidenuniv.nl/ kosterswa/ai/ 1 Introductie

Nadere informatie

Inleiding Programmeren 2

Inleiding Programmeren 2 Inleiding Programmeren 2 Gertjan van Noord November 26, 2018 Stof week 3 nogmaals Zelle hoofdstuk 8 en recursie Brookshear hoofdstuk 5: Algoritmes Datastructuren: tuples Een geheel andere manier om te

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2012 2013, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele

Nadere informatie

Zesde college algoritmiek. 22 maart Backtracking

Zesde college algoritmiek. 22 maart Backtracking Zesde college algoritmiek 22 maart 2019 Backtracking 1 Backtracking Bij veel problemen gaat het erom een element met een speciale eigenschap te vinden binnen een ruimte die exponentieel groeit als functie

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

Doorzoeken van grafen. Algoritmiek

Doorzoeken van grafen. Algoritmiek Doorzoeken van grafen Algoritmiek Vandaag Methoden om door grafen te wandelen Depth First Search Breadth First Search Gerichte Acyclische Grafen en topologische sorteringen 2 Doolhof start eind 3 Depth

Nadere informatie

Datastructuren en Algoritmen

Datastructuren en Algoritmen Datastructuren en Algoritmen Tentamen Vrijdag 6 november 2015 13.30-16.30 Toelichting Bij dit tentamen mag je gebruik maken van een spiekbriefje van maximaal 2 kantjes. Verder mogen er geen hulpmiddelen

Nadere informatie

Vierde college complexiteit. 14 februari Beslissingsbomen

Vierde college complexiteit. 14 februari Beslissingsbomen College 4 Vierde college complexiteit 14 februari 2017 Restant zoeken Beslissingsbomen 1 Binair zoeken Links := 1; Rechts := n; while Links Rechts do Midden := Links + Rechts 2 ; if X = A[Midden] then

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2012 2013, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele

Nadere informatie

Opgaven Kunstmatige intelligentie 4 mei 2012

Opgaven Kunstmatige intelligentie 4 mei 2012 Opgaven Kunstmatige intelligentie 4 mei 2012 Opgave 28. (opgave tentamen 12 augustus 2002) Stel dat we een handelsreizigersprobleem op willen lossen, en dat we dat met een genetisch algoritme willen doen.

Nadere informatie

Tree traversal. Ferd van Odenhoven. 15 november Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering. Doorlopen van bomen

Tree traversal. Ferd van Odenhoven. 15 november Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering. Doorlopen van bomen Tree traversal Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 15 november 2011 ODE/FHTBM Tree traversal 15 november 2011 1/22 1 ODE/FHTBM Tree traversal 15 november

Nadere informatie

Hoofdstuk 17: Approximation Algorithms

Hoofdstuk 17: Approximation Algorithms Hoofdstuk 17: Approximation Algorithms Overzicht: Vorige week: Π NP-volledig Π waarschijnlijk niet polynomiaal oplosbaar 2 opties: 1 Optimaal oplossen, niet in polynomiale tijd (B&B, Cutting planes) 2

Nadere informatie

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST College 12 Twaalfde college complexiteit 11 mei 2012 Overzicht, MST 1 Agenda voor vandaag Minimum Opspannende Boom (minimum spanning tree) als voorbeeld van greedy algoritmen Overzicht: wat voor technieken

Nadere informatie

Achtste college algoritmiek. 12 april Verdeel en Heers. Dynamisch Programmeren

Achtste college algoritmiek. 12 april Verdeel en Heers. Dynamisch Programmeren Achtste college algoritmiek 12 april 2019 Verdeel en Heers Dynamisch Programmeren 1 Uit college 7: Partitie Partitie Partitie(A[l r]) :: // partitioneert een (sub)array, met A[l] als spil (pivot) p :=

Nadere informatie

van het door Rudy van Vliet (Wiskunde & Informatica, 1987) Mei 1994 In het kader van een Projectstudie Kunstmatige Intelligentie

van het door Rudy van Vliet (Wiskunde & Informatica, 1987) Mei 1994 In het kader van een Projectstudie Kunstmatige Intelligentie Drie Varianten van het A -Algorite door Rudy van Vliet (Wiskunde & Inforatica, 1987) Mei 1994 In het kader van een Projectstudie Kunstatige Intelligentie Docent: dr. I.G. Sprinkhuizen-Kuyper Rijksuniversiteit

Nadere informatie

Derde college algoritmiek. 18 februari Toestand-actie-ruimte

Derde college algoritmiek. 18 februari Toestand-actie-ruimte Derde college algoritmiek 18 februari 2016 Toestand-actie-ruimte 1 BZboom: zoeken Na het bomenpracticum 60 20 80 10 40 70 100 1 15 30 75 5 25 35 2 BZboom: verwijderen 60 20 80 10 40 70 100 1 15 30 75 5

Nadere informatie

Uitwerking tentamen Analyse van Algoritmen, 29 januari

Uitwerking tentamen Analyse van Algoritmen, 29 januari Uitwerking tentamen Analyse van Algoritmen, 29 januari 2007. (a) De buitenste for-lus kent N = 5 iteraties. Na iedere iteratie ziet de rij getallen er als volgt uit: i rij na i e iteratie 2 5 4 6 2 2 4

Nadere informatie

Duration: 2 hrs; Total points: 100 No documents allowed. You can use a regular calculator.

Duration: 2 hrs; Total points: 100 No documents allowed. You can use a regular calculator. : Computationele Intelligentie (INFOCI) Exam II Duration: hrs; Total points: No documents allowed. You can use a regular calculator. Question [ points] In de Allais paradox krijgen mensen de keuze tussen

Nadere informatie

Tweede college algoritmiek. 12 februari Grafen en bomen

Tweede college algoritmiek. 12 februari Grafen en bomen College 2 Tweede college algoritmiek 12 februari 2016 Grafen en bomen 1 Grafen (herhaling) Een graaf G wordt gedefinieerd als een paar (V,E), waarbij V een eindige verzameling is van knopen (vertices)

Nadere informatie

Opgaven bij Hoofdstuk 3 - Productiesystemen

Opgaven bij Hoofdstuk 3 - Productiesystemen Opgaven bij Hoofdstuk 3 - Productiesystemen Top-down inferentie In de opgaven in deze paragraaf over top-down inferentie wordt aangenomen dat de feitenverzameling alleen feiten bevat die als getraceerd

Nadere informatie

Een eenvoudig algoritme om permutaties te genereren

Een eenvoudig algoritme om permutaties te genereren Een eenvoudig algoritme om permutaties te genereren Daniel von Asmuth Inleiding Er zijn in de vakliteratuur verschillende manieren beschreven om alle permutaties van een verzameling te generen. De methoden

Nadere informatie

Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens

Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens Algoritmes in ons dagelijks leven Leve de Wiskunde! 7 April 2017 Jacobien Carstens Wat is een algoritme? Een algoritme is een eindige reeks instructies die vanuit een gegeven begintoestand naar een beoogd

Nadere informatie

Derde college algoritmiek. 23 februari Complexiteit Toestand-actie-ruimte

Derde college algoritmiek. 23 februari Complexiteit Toestand-actie-ruimte Algoritmiek 2018/Complexiteit Derde college algoritmiek 2 februari 2018 Complexiteit Toestand-actie-ruimte 1 Algoritmiek 2018/Complexiteit Tijdcomplexiteit Complexiteit (= tijdcomplexiteit) van een algoritme:

Nadere informatie

Uitwerkingen opgaven Kunstmatige intelligentie

Uitwerkingen opgaven Kunstmatige intelligentie Uitwerkingen opgaven Kunstmatige intelligentie Opgave 8 (1.6.2001) e. Uiteindelijk wordt onderstaande boom opgebouwd. Knopen die al eerder op een pad voorkwamen worden niet aangegeven, er zijn dus geen

Nadere informatie

Elfde college algoritmiek. 29 april Algoritme van Dijkstra, Branch & Bound

Elfde college algoritmiek. 29 april Algoritme van Dijkstra, Branch & Bound Algoritmiek 01/Algoritme van Dijkstra Elfde college algoritmiek 9 april 01 Algoritme van Dijkstra, Branch & Bound 1 Algoritmiek 01/Algoritme van Dijkstra College 10: Voorbeeld -1- A B C D E F G H 9 7 5

Nadere informatie

Uitwerking tentamen Algoritmiek 9 juli :00 13:00

Uitwerking tentamen Algoritmiek 9 juli :00 13:00 Uitwerking tentamen Algoritmiek 9 juli 0 0:00 :00. (N,M)-game a. Toestanden: Een geheel getal g, waarvoor geldt g N én wie er aan de beurt is (Tristan of Isolde) b. c. Acties: Het noemen van een geheel

Nadere informatie

Oefeningen voor de oefeningenles. Oefening 1

Oefeningen voor de oefeningenles. Oefening 1 Oefeningen voor de oefeningenles Oefening 1 Gegeven een arbitraire binaire zoekboom T met n toppen en een (andere of gelijke) binaire zoekboom T die ook n sleutels bevat. Beschrijf een algoritme dat in

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

Over binaire beslissingsdiagrammen naar Donald E. Knuth s The Art of Computer Programming, Volume 4

Over binaire beslissingsdiagrammen naar Donald E. Knuth s The Art of Computer Programming, Volume 4 Over binaire beslissingsdiagrammen naar Donald E. Knuth s The Art of Computer Programming, Volume 4 Jonathan K. Vis 1 Inleiding (blz. 70 72) In dit essay behandelen we bladzijden 70 75 van Donald E. Knuth

Nadere informatie

Derde college algoritmiek. 16/17 februari Toestand-actie-ruimte

Derde college algoritmiek. 16/17 februari Toestand-actie-ruimte Derde college algoritmiek 16/17 februari 2017 Toestand-actie-ruimte 1 Toestand-actie-ruimte Probleem Toestand-actie-ruimte Een toestand-actie-ruimte (toestand-actie-diagram, state transition diagram, toestandsruimte,

Nadere informatie

Derde college algoritmiek. 22 februari Complexiteit Toestand-actie-ruimte

Derde college algoritmiek. 22 februari Complexiteit Toestand-actie-ruimte Algoritmiek 2019/Complexiteit Derde college algoritmiek 22 februari 2019 Complexiteit Toestand-actie-ruimte 1 Algoritmiek 2019/Complexiteit Opgave 1 bomenpracticum Niet de bedoeling: globale (member-)variabele

Nadere informatie

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound Algoritmiek 013/11 College 11 Elfde college algoritmiek 1 mei 013 Dijkstra, Gretige algoritmen en Branch & Bound 1 Algoritmiek 013/11 Voorbeeld -1- A B C D E F G H 9 7 5 A B C D E F G H 0 9 9 7 5 A B C

Nadere informatie

Grafen en BFS. Mark Lekkerkerker. 24 februari 2014

Grafen en BFS. Mark Lekkerkerker. 24 februari 2014 Grafen en BFS Mark Lekkerkerker 24 februari 2014 1 Grafen Wat is een graaf? Hoe representeer je een graaf? 2 Breadth-First Search Het Breadth-First Search Algoritme Schillen De BFS boom 3 Toepassingen

Nadere informatie

8C080 deel BioModeling en bioinformatica

8C080 deel BioModeling en bioinformatica Vijf algemene opmerkingen Tentamen Algoritmen voor BIOMIM, 8C080, 13 maart 2009, 09.00-12.00u. Het tentamen bestaat uit 2 delen, een deel van BioModeling & bioinformatics en een deel van BioMedische Beeldanalyse.

Nadere informatie

Amorized Analysis en Union-Find Algoritmiek

Amorized Analysis en Union-Find Algoritmiek Amorized Analysis en Union-Find Vandaag Amortized analysis Technieken voor tijdsanalyse van algoritmen Union-find datastructuur Datastructuur voor operaties op disjuncte verzamelingen Verschillende oplossingen

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2014 2015, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele

Nadere informatie

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6.

Overzicht. 1. Definities. 2. Basisalgoritme. 3. Label setting methoden. 4. Label correcting methoden. 5. Ondergrenzen. 6. Overzicht 1. Definities 2. Basisalgoritme 3. Label setting methoden 4. Label correcting methoden 5. Ondergrenzen 6. Resultaten Kortste Pad Probleem 1 Definities Een graaf G = (V, E) bestaat uit een verzameling

Nadere informatie

Automaten & Complexiteit (X )

Automaten & Complexiteit (X ) Automaten & Complexiteit (X 401049) Beschrijven van reguliere talen Jeroen Keiren j.j.a.keiren@gmail.com VU University Amsterdam 5 Februari 2015 Talen Vorig college: Talen als verzamelingen Eindige automaten:

Nadere informatie

Tiende college algoritmiek. 14 april Gretige algoritmen

Tiende college algoritmiek. 14 april Gretige algoritmen College 10 Tiende college algoritmiek 1 april 011 Gretige algoritmen 1 Greedy algorithms Greed = hebzucht Voor oplossen van optimalisatieproblemen Oplossing wordt stap voor stap opgebouwd In elke stap

Nadere informatie

Uitgebreide uitwerking tentamen Algoritmiek Dinsdag 2 juni 2009, uur

Uitgebreide uitwerking tentamen Algoritmiek Dinsdag 2 juni 2009, uur Uitgebreide uitwerking tentamen Algoritmiek Dinsdag 2 juni 2009, 10.00 13.00 uur Opgave 1. a. Een toestand wordt bepaald door: het aantal lucifers op tafel, het aantal lucifers in het bezit van Romeo,

Nadere informatie

Algoritmiek. 15 februari Grafen en bomen

Algoritmiek. 15 februari Grafen en bomen Algoritmiek 15 februari 2019 Grafen en bomen 1 Grafen (herhaling) Een graaf G wordt gedefinieerd als een paar (V,E), waarbij V een eindige verzameling is van knopen (vertices) en E een verzameling van

Nadere informatie

Achtste college algoritmiek. 8 april Dynamisch Programmeren

Achtste college algoritmiek. 8 april Dynamisch Programmeren Achtste college algoritmiek 8 april 2016 Dynamisch Programmeren 1 Werkcollege-opgave Dutch Flag Problem Gegeven een array gevuld met R, W, en B. Reorganiseer dit array zo dat van links naar rechts eerst

Nadere informatie

Vierde college complexiteit. 26 februari Beslissingsbomen en selectie Toernooimethode Adversary argument

Vierde college complexiteit. 26 februari Beslissingsbomen en selectie Toernooimethode Adversary argument Complexiteit 2019/04 College 4 Vierde college complexiteit 26 februari 2019 Beslissingsbomen en selectie Toernooimethode Adversary argument 1 Complexiteit 2019/04 Zoeken: samengevat Ongeordend lineair

Nadere informatie

Pythoncursus. week 2. cs.ru.nl/pythoncursus

Pythoncursus. week 2. cs.ru.nl/pythoncursus Pythoncursus week 2 Algoritmes Een algoritme is een eindige reeks instructies die vanuit een gegeven begintoestand naar een beoogd doel leiden. - Wikipedia Een probleem stapsgewijs oplossen While-loops

Nadere informatie

Tweede college complexiteit. 12 februari Wiskundige achtergrond

Tweede college complexiteit. 12 februari Wiskundige achtergrond College 2 Tweede college complexiteit 12 februari 2019 Wiskundige achtergrond 1 Agenda vanmiddag Floor, Ceiling Rekenregels logaritmen Tellen Formele definitie O, Ω, Θ met voorbeelden Stellingen over faculteiten

Nadere informatie

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound Algoritmiek 011/11 College 11 Elfde college algoritmiek 1 april 011 Dijkstra en Branch & Bound 1 Algoritmiek 011/11 Kortste paden Gegeven een graaf G met gewichten op de takken, en een beginknoop s. We

Nadere informatie

Derde college complexiteit. 7 februari Zoeken

Derde college complexiteit. 7 februari Zoeken College 3 Derde college complexiteit 7 februari 2017 Recurrente Betrekkingen Zoeken 1 Recurrente betrekkingen -1- Rij van Fibonacci: 0,1,1,2,3,5,8,13,21,... Vanaf het derde element: som van de voorgaande

Nadere informatie

Twaalfde college algoritmiek. 23 mei Branch & Bound, Heapsort

Twaalfde college algoritmiek. 23 mei Branch & Bound, Heapsort College 12 Twaalfde college algoritmiek 23 mei 2013 Branch & Bound, Heapsort 1 Handelsreizigersprobleem Traveling Salesman Problem (handelsreizigersprobleem) Gegeven n steden waarvan alle onderlinge afstanden

Nadere informatie

Tiende college algoritmiek. 2 mei Gretige algoritmen, Dijkstra

Tiende college algoritmiek. 2 mei Gretige algoritmen, Dijkstra College 10 Tiende college algoritmiek mei 013 Gretige algoritmen, Dijkstra 1 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag van n (n 0) eurocent. Alle

Nadere informatie

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS Algoritmiek 2016/Dynamisch Programmeren Tiende college algoritmiek 14 april 2016 Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS 1 Algoritmiek 2016/Dynamisch Programmeren Houtzaagmolen

Nadere informatie

2 Recurrente betrekkingen

2 Recurrente betrekkingen WIS2 1 2 Recurrente betrekkingen 2.1 Fibonacci De getallen van Fibonacci Fibonacci (= Leonardo van Pisa), 1202: Bereken het aantal paren konijnen na één jaar, als 1. er na 1 maand 1 paar pasgeboren konijnen

Nadere informatie

Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1.

Zoek de unieke oplossing van het stelsel π = π P waarvoor bovendien geldt dat i S π i = 1. LIMIETGEDRAG VAN REDUCIBELE MARKOV KETEN In het voorgaande hebben we gezien hoe we de limietverdeling van een irreducibele, aperiodieke Markov keten kunnen berekenen: Voorbeeld 1: Zoek de unieke oplossing

Nadere informatie

Twaalfde college algoritmiek. 11/12 mei Branch & Bound

Twaalfde college algoritmiek. 11/12 mei Branch & Bound Twaalfde college algoritmiek 11/12 mei 2017 Branch & Bound 1 Backtracking Backtracking - bouwt een oplossing component voor component op - kijkt tijdens de stap-voor-stap constructie of de deeloplossing

Nadere informatie

Optimalisatiealgoritmen voor distributieproblemen

Optimalisatiealgoritmen voor distributieproblemen Vakgroep Toegepaste Wiskunde, Informatica en Statistiek Optimalisatiealgoritmen voor distributieproblemen Nathan Sinnesael Promotor: prof. dr. V. Fack Masterproef ingediend tot het behalen van de academische

Nadere informatie

Semantiek (2IT40) Bas Luttik. HG 7.14 tel.: Hoorcollege 8 (7 juni 2007)

Semantiek (2IT40) Bas Luttik.  HG 7.14 tel.: Hoorcollege 8 (7 juni 2007) Bas Luttik s.p.luttik@tue.nl http://www.win.tue.nl/~luttik HG 7.14 tel.: 040 247 5152 Hoorcollege 8 (7 juni 2007) Functionele talen Idee: een programma definieert reeks (wiskundige) functies. Programma

Nadere informatie

Twaalfde college algoritmiek. 17 mei Branch & Bound

Twaalfde college algoritmiek. 17 mei Branch & Bound Twaalfde college algoritmiek 17 mei 2019 Branch & Bound 1 Backtracking Backtracking - bouwt een oplossing component voor component op - kijkt tijdens de stap-voor-stap constructie of de deeloplossing die

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 7 Leo van Iersel Technische Universiteit Delft 26 oktober 2016 Leo van Iersel (TUD) TW2020 Optimalisering 26 oktober 2016 1 / 28 Deze week: analyseren van algoritmes Hoe

Nadere informatie

Bepaling energie en soortelijke warmte 2D-atoomrooster m.b.v. de Metropolis Monte Carlo methode

Bepaling energie en soortelijke warmte 2D-atoomrooster m.b.v. de Metropolis Monte Carlo methode Bepaling energie en soortelijke warmte 2D-atoomrooster m.b.v. de Metropolis Monte Carlo methode Verslag Computational Physics Sietze van Buuren Begeleider: Prof.Dr. H. de Raedt 29 december 25 Samenvatting

Nadere informatie

Uitwerking tentamen Algoritmiek 9 juni :00 17:00

Uitwerking tentamen Algoritmiek 9 juni :00 17:00 Uitwerking tentamen Algoritmiek 9 juni 2015 14:00 17:00 1. Clobber a. Toestanden: m x n bord met in elk hokje een O, een X of een -. Hierbij is het aantal O gelijk aan het aantal X of er is hooguit één

Nadere informatie

Korte uitleg: Wat doet de shell met mijn commandoregel?

Korte uitleg: Wat doet de shell met mijn commandoregel? Korte uitleg: Wat doet de shell met mijn commandoregel? Het onderstaande is heel erg Bash gericht, maar geldt i.h.a. ook voor andere shells. Vooral als het om "begrip" gaat. Iedere regel die aan de shell

Nadere informatie

[14] Functies. Volg mee via 14_Functies-1.py. We beginnen met een eenvoudig voorbeeldje:

[14] Functies. Volg mee via 14_Functies-1.py. We beginnen met een eenvoudig voorbeeldje: [14] Functies Een goede programmeur doet altijd zijn best om zoveel mogelijk aan hergebruik van code te doen. Je probeert in je programma code te gebruiken die iemand anders heeft gemaakt, of code die

Nadere informatie

Benaderingsalgoritmen

Benaderingsalgoritmen Benaderingsalgoritmen Eerste hulp bij NP-moeilijkheid 1 Herhaling NP-volledigheid (1) NP: er is een polynomiaal certificaat voor jainstanties dat in polynomiale tijd te controleren is Een probleem A is

Nadere informatie