Dynamisch Programmeren III. Algoritmiek

Maat: px
Weergave met pagina beginnen:

Download "Dynamisch Programmeren III. Algoritmiek"

Transcriptie

1 Dynamisch Programmeren III

2 Vandaag Dynamisch programmeren met wat lastiger voorbeelden: Handelsreiziger Longest common subsequence Optimale zoekbomen Knapsack 2 - DP2

3 Handelsreiziger Een handelsreiziger moet een aantal steden bezoeken: Elke stad 1 keer Elk paar steden v, w heeft een afstand d(v,w) Beginstad = eindstad Wat is de kortste route? 3 - DP2

4 a 2 c b 4 d Optimaal: totale lengte 13 a 2 c b 4 d Niet optimaal: Totale lengte DP2

5 Toepassingen Logistiek (belangrijk!!) Robot (printplaten, productie, ) Data van een disk halen Verfmachine Sommige toepassingen zijn asymmetrisch: d(v,w) hoeft niet hetzelfde te zijn als d(w,v) 5 - DP2

6 Held-Karp Held-Karp algoritme voor Handelsreiziger: Lost het probleem in O(2 n n 2 ) tijd op Werkt ook voor sommige generalisaties Ook als probleem asymetrisch is Langzaam (exponentieel) dus alleen handig als n klein is, maar wel sneller dan naief O(n!) Vandaag: algoritme voor: foto s in de dierentuin 6 - DP2

7 n! en 2 n n 2 n n! 2 n n ^ ,43 10^18 4,19 10^8 7 - DP2

8 Foto s in de dierentuin n dieren Afstandentabel: tussen elk paar dieren de tijd in minuten om van het ene dier naar het andere te lopen omdat de dierentuin heuvelachtig is, hoeft deze niet symmetrisch te zijn Ik wil van elk dier een foto maken: hoe doe ik dat zo snel mogelijk? 8 - DP2

9 Oplossen met dynamisch Wat is de rij keuzes? programmeren Welk dier bezoeken we eerst? Welk dier als 2e? Welk dier als 3e Etc. Top choice: laatste bezochte dier Deelstuk van keuzes: een rijtje van de eerste i bezochte dieren? 9 - DP2

10 Wat is een deelprobleem - I Dit lukt niet: Hoeveel tijd kost het om i dieren te bezoeken? Ik mis belangrijke informatie over de deeloplossing Snelste route voor drie dieren hoeft geen deel te zijn van een snelste route voor vier dieren 10 - DP2

11 Wat is een deelprobleem - II Dit lukt ook niet: Welke verzameling van i dieren bezoek ik? DP2

12 Aanpak Deelprobleem: Gegeven een verzameling dieren S en een dier k, wat is de minimum tijd om alle dieren in S te bezoeken (begin bij dier 1) en te eindigen bij dier k? Handige notatie: S is alle dieren tussen 1 en k, dus we bezoeken S U {1,k } A(S,k) = minimum tijd als we beginnen in 1, dan alle dieren in S bezoeken (met de beste volgorde) en dan naar k gaan 12 - DP2

13 Recurrente betrekking A(,g) = d(1,g) Als S >0, dan ( beste geval over alle mogelijkheden voor top-choice) A(S,k) = min { A(S {g}, g) + d(g,k) g in S} 13 - DP2

14 Uiteindelijk antwoord min { A(V-{1,k},k) k V-{1} } Als we niet naar het begin terug moeten Beste over alle mogelijkheden voor laatst bezochte dier Variant waar we een rondje lopen (terug naar het begin): min { A(V-{1,k},k) + d(k,1) k V-{1} } 14 - DP2

15 Algoritme 1: memorisatie Maak een hashtabel Q, initieel leeg Best = maxint For all g {2,, n} do Best = min (Best, Compute(V {1,g},g)) Output Best Met Compute een recursief algoritme met memorisatie (next) 15 - DP2

16 Compute Compute (S, g) {volgt recurrente betrekking} If (S,g) in Q, then return Q(S,g) Else: If S= then return d(1,g) Else antw = maxint; For k S do antw = min {antw, Compute(S {g}, g) + d(g,k)) Zet Q(S,g) op antw Return antw 16 - DP2

17 Andere aanpak Reken alle A(S,g) uit: Eerst alleen S = Dan alle S met een dier Dan alle S met twee dieren Dan alle S met drie dieren Etc Of representeer S als integer Ook practisch: reken bij elke verzameling de opvolgende oplossingen uit (met heuristieken om stukken die nooit optimaal kunnen zijn weg te laten) 17 - DP2

18 Over dit algoritme Tijd: we kijken naar alle deelverzamelingen: 2 n Per verzameling n keuzes voor laatste dier Per combinatie n tijd, want kijken naar elk een-nalaatste dier: O(2 n n 2 ) Generalisatie: bijvoorbeeld: hoeveel dieren kan je binnen k tijd bezoeken? (Tussen openingstijd en sluitingstijd?) 18 - DP2

19 Longest common subsequence Toepassing: DNA vergelijking Sequence: rij elementen <x(1),, x(m)> Deelsequence: voor 1 i 1 < i 2 < i 3 < < i k m de rij elementen <x(i 1 ), x(i 2 ), x(i 3 ), x(i k ) > Deelsequences van <7, 2, 4, 3, 7> zijn bijv: <7,2> of <7,4,7> of <3> of <> of <7,2,4,3,7> of <2,3> Probleem: gegeven twee sequences, vind een sequence die een deelsequence van beide sequences is en zo lang mogelijk is. Bijv.: <3,6,7,1,8,2,8> en <3,4,8,6,7,3,8> geeft <3,6,7,8> als antwoord 19

20 Wat notatie Subsequence Gemeenschappelijke (common) subsequence Prefix (beginstuk) X i =<x(1),, x(i)> is een prefix van X=<x(1),, x(m)> (0 i m) Z 3 =<7,2,4> is prefix van Z=<7,2,4,5,6,7,8> LCS van X en Y: longest common subsequence 20

21 Optimaliteitsprincipe Als Z=<z(1),, z(k)> is een LCS van X=<x(1),, x(m)> en Y=<y(1),, y(n)>, dan: Als x(m)=y(n) dan: z(k)=x(m)=y(n) en Z k 1 is een LCS van X m-1 en Y n-1 Als x(m) y(n) dan: Als z(k) x(m) dan Z is een LCS van X m-1 en Y Als z(k) y(n) dan Z is een LCS van X en Y n-1 21

22 Deelproblemen Voor elke prefix van X en elke prefix van Y, kijk naar de lengte van de LCS c[i,j] = lengte van LCS van X i en Y j. Voor elke i, 0 i m en elke j, 0 j n. Topkeuze: laatste letter van LCS 22

23 Recurrente betrekking Als i = 0 of j = 0, dan c[i,j] = 0. Als i>0 en j>0 en x(i) = y(j) dan c[i,j] = c[i-1,j-1] +1. Als i>0 en j>0 en x(i) y(j) dan c[i,j] = max( c[i,j-1], c[i-1,j] ). 23

24 Berekeningsvolgorde c[i,j] heeft nodig evt c[i-1,j], c[i,j-1], c[i-1,j-1]. Dus, bijv. For i = 0 to m Do for j = 0 to n Bereken c[i,j] 24

25 Code om lengte LCS te berekenen m = lengte (X) n = lengte Y Maak array c[0 m, 0 n] For i = 1 to m do c[i,0] = 0 For j = 0 to n do c[0,j] = 0 For i = 1 to m do For j = 1 to n do If x(i) == y(j) then c[i,j] = c[i-1,j-1] +1 Else c[i,j] = max( c[i,j-1], c[i-1,j] ) Return c[m,n] 25

26 Tijd O(mn) m = lengte (X) n = lengte Y Maak array c[0 m, 0 n] For i = 1 to m do c[i,0] = 0 For j = 0 to n do c[0,j] = 0 For i = 1 to m do For j = 1 to n do If x(i) == y(j) then c[i,j] = c[i-1,j-1] +1 Else c[i,j] = max( c[i,j-1], c[i-1,j] ) Return c[m,n] 26

27 27 Constructieve versie: Houd bij waar je vandaankwam m = lengte (X); n = lengte Y Maak array c[0 m, 0 n] For i = 1 to m do c[i,0] = 0 For j = 0 to n do c[0,j] = 0 For i = 1 to m do For j = 1 to n do If x(i) == y(j) then c[i,j] = c[i-1,j-1] +1; b[i,j]= LO Else if c[i-1,j] c[i,j-1] Then c[i,j] = c[i,j-1] ; b[i,j] = O Else c[i,j] = c[i-1,j]; b[i,j] = L Print-LCS(b,X,m,n) Print-LCS(b,X,i,j) If i==0 or j==0 then return If b[i,j] = LO then Print- LCS(b,X,i-1,j-1); print x(i) Elseif b[i,j] = O then Print- LCS(b,X,i,j-1) Else {b[i,j] = L} Print-LCS(b,X,i-1,j)

28 Opmerkingen Tabel b is handig voor constructie, maar constructie kan ook zonder tabel b. Als we alleen de lengte willen weten, kunnen we met twee rijen van de tabel volstaan 28

29 Zoekbomen Zoekboom voor het vinden van keys Keys zijn (bijv. lexicographisch) geordend. Keys hebben verschillende frequenties Welke zoekboom kost kleinste gemiddelde aantal stappen? Diepte: aantal kanten tot wortel. (Je bekijkt dus diepte+1 knopen in boom.) 29

30 Twee zoekbomen appel een is appel gezond is gezond wel een wel 30

31 Input van probleem Gegeven: Keys k(1),, k(n), (geordend) Frequenties p(1),, p(n), p(i) geeft de frequentie waarmee key k(i) gezocht wordt Frequenties q(0), q(1),, q(n) q(i) geeft de frequentie aan waarmee we een key zoeken die ligt tussen k(i-1) en k(i). q(0) voor keys kleiner dan k(1), q(n) voor keys groter dan k(n) Som van alle p(i) s en q(i) s is precies 1. 31

32 Voorbeeld van zoekboom k(3) k(1) k(4) d(0) k(2) d(1) d(2) d(3) d(4) k(5) d(5) 32

33 Zoekboom en gemiddelde tijd Geordende binare boom met keys als interne knopen, en knopen d(i) als bladeren (geven aan als gezochte key niet in boom zit) Verwachtte tijd van een zoekactie bij boom T: n ( depth ( k( i)) 1)* p( i) T i 1 i 0 1 n depth ( k( i))* = p( i) n T i 1 i 0 n ( depth depth T T ( d( i)) 1)* q( i) ( d( i))* q( i) 33

34 Probleem Gegeven keys, en frequenties p(i) en q(i), vind een zoekboom voor de keys met minimum verwachtte tijd van een zoekactie Nagaan van alle mogelijke zoekbomen is veel te duur (er zijn W(4 n /n 3/2 ) mogelijke bomen als we n keys hebben). DP algoritme kan dit probleem in O(n 3 ) tijd oplossen 34

35 Subproblemen: structuur k(b) k(l) k(r) k(?) Bevat dummy keys d(b+1) d(r-1) : gebruik een optimale boom voor de keys k(b+1) k(r-1) 35

36 Deelproblemen e(i,j): minimum gemiddelde zoektijd voor een zoekboom met keys k(i) k(j) en dummy keys d(i-1) d(j) (en bijbehorende frequenties p(i) p(j) en q(i-1) q(j).) 1 j l i depth T ( k( l))* p( l) l i 1 Speciaal geval: e(i,i-1): zoekboom bevat alleen dummy key d(i-1) j depth T ( d( l))* q( l) 36

37 Recurrente betrekking e(i,i-1) = q(i-1) Als i j, dan: neem minimum over alle keuzes van key als wortel: j j e( i, j) min e( i, r 1) e( r 1, j) p( l) q( l) i r j l i l i 1 Werk in linkerboom Werk in rechterboom Tijd voor bekijken van de wortel 37

38 Rekenvolgorde Weer rij-gewijs, maar van elke rij alleen maar een stukje: Eerst alle e(i,i-1) uitrekenen For l = 1 to n do For i = 1 to n l + 1 do j = i + l 1; Bereken e(i,j) 38

39 Preprocessing Steeds direct berekenen van termen: w( i, j) kan lang duren. Dus tabelleren we die. Neem matrix w[1 n,0 n]. For i=1 to n+1 do w[i,i-1] = q(i-1) For i=1 to n+1 do For j = 0 to n do w[i,j] = w[i,j-1] + p(j)+q(j) j l i p( l) O(n 2 ) j l i 1 q( l) 39

40 DP algoritme voor optimale zoekbomen probleem Tabelleer w. For i = 1 to n+1 do e[i,i+1] = q(i-1) For l = 1 to n do For i = 1 to n l + 1 do j = i + l 1; e[i,j] = maxint; For r = i to j do t = e[i,r-1]+ e[r+1,j] + w[i,j] If t < e[i,j] Then e[i,j] = t; root[i,j] = r De tabel root staat ons in staat de gezochte boom te construeren Uitrekenen van minimum uit recurrente betrekking 40

41 Slotopmerkingen Maken van boom zelf kan met behulp van terugredeneren met tabel root Tijd van algoritme is O(n 3 ) Er bestaat een versie van het algoritme dat O(n 2 ) tijd gebruikt (Knuth, 1971). 41

42 Knapsack probleem Voorwerpen met Waardes v 1, v n Gewichten w 1,, w n Maximum gewicht W Zoek verzameling voorwerpen met totaalgewicht hooguit W en maximum waarde 42 - DP2

43 Deelproblemen en recurrente betrekking K[i,b] = maximum waarde van deelverzameling van de eerste i voorwerpen met totaalgewicht hooguit b. K[0,b] = 0 (voor elke niet negatieve b) K[i, b] = max (K[i-1,b], K[i-1,b-W[i]] + V[i]) 43 - DP2

44 En dan Berekeningsvolgorde: matrix bijv. rij-gewijs vullen. Dubbele loop Constructie-versie 44 - DP2

45 Conclusies Soms meer inzicht nodig voor ontwerp van DP algoritme. Steeds het stappenplan volgen; bij de eerste stap kijken naar deelbeslissingen en wat voor soort deelproblemen je dan overhoudt. 45

Heuristieken en benaderingsalgoritmen. Algoritmiek

Heuristieken en benaderingsalgoritmen. Algoritmiek Heuristieken en benaderingsalgoritmen Wat te doen met `moeilijke optimaliseringsproblemen? Voor veel problemen, o.a. optimaliseringsproblemen is geen algoritme bekend dat het probleem voor alle inputs

Nadere informatie

Greedy algoritmes. Algoritmiek

Greedy algoritmes. Algoritmiek Greedy algoritmes Algoritmiek Algoritmische technieken Trucs, methoden, paradigma s voor het ontwerpen van algoritmen Dynamisch Programmeren Divide & Conquer Greedy 2 Greedy algoritme Bouwt de oplossing

Nadere informatie

Achtste college algoritmiek. 8 april Dynamisch Programmeren

Achtste college algoritmiek. 8 april Dynamisch Programmeren Achtste college algoritmiek 8 april 2016 Dynamisch Programmeren 1 Werkcollege-opgave Dutch Flag Problem Gegeven een array gevuld met R, W, en B. Reorganiseer dit array zo dat van links naar rechts eerst

Nadere informatie

Kortste Paden. Algoritmiek

Kortste Paden. Algoritmiek Kortste Paden Vandaag Kortste Paden probleem All pairs / Single Source / Single Target versies DP algoritme voor All Pairs probleem (Floyd s algoritme) Dijkstra s algoritme voor Single Source Negatieve

Nadere informatie

Negende college algoritmiek. 15 april Dynamisch Programmeren

Negende college algoritmiek. 15 april Dynamisch Programmeren Negende college algoritmiek 15 april 2016 Dynamisch Programmeren 1 algemeen Uit college 8: DP: - nuttig bij problemen met overlappende deelproblemen - druk een oplossing van het probleem uit in oplossingen

Nadere informatie

Algoritmiek 2016 / Algoritmiek 1

Algoritmiek 2016 / Algoritmiek 1 2016 / 2017 1 Waarom dit vak? Omdat Mensen ongeduldig zijn Het belangrijk is dat antwoorden (van berekeningen door computers) snel / op tijd komen (en juist zijn) Dus leren we Algoritmische technieken

Nadere informatie

Algoritmiek 2015 / Algoritmiek 1

Algoritmiek 2015 / Algoritmiek 1 2015 / 2016 1 Waarom dit vak? Omdat Mensen ongeduldig zijn Het belangrijk is dat antwoorden (van berekeningen door computers) snel / op tijd komen (en juist zijn) Dus leren we Algoritmische technieken

Nadere informatie

Algoritmiek 2017 / Algoritmiek 1

Algoritmiek 2017 / Algoritmiek 1 2017 / 2018 1 Waarom dit vak? Omdat Mensen ongeduldig zijn Het belangrijk is dat antwoorden (van berekeningen door computers) snel / op tijd komen (en juist zijn) Dus leren we Algoritmische technieken

Nadere informatie

Divide & Conquer: Verdeel en Heers vervolg. Algoritmiek

Divide & Conquer: Verdeel en Heers vervolg. Algoritmiek Divide & Conquer: Verdeel en Heers vervolg Algoritmiek Algoritmische technieken Vorige keer: Divide and conquer techniek Aantal toepassingen van de techniek Analyse met Master theorem en substitutie Vandaag:

Nadere informatie

Greedy algorithms. Algoritmiek

Greedy algorithms. Algoritmiek Greedy algorithms Vandaag Greedy algorithms: wat zijn dat? Voorbeelden: gepast betalen met euromunten AB-rijtje Knapsack probleem Twee scheduling problemen Later: meer voorbeelden, algemene structuur,

Nadere informatie

Discrete Wiskunde, College 12. Han Hoogeveen, Utrecht University

Discrete Wiskunde, College 12. Han Hoogeveen, Utrecht University Discrete Wiskunde, College 12 Han Hoogeveen, Utrecht University Dynamische programmering Het basisidee is dat je het probleem stap voor stap oplost Het probleem moet voldoen aan het optimaliteitsprincipe

Nadere informatie

Uitwerking tentamen Analyse van Algoritmen, 29 januari

Uitwerking tentamen Analyse van Algoritmen, 29 januari Uitwerking tentamen Analyse van Algoritmen, 29 januari 2007. (a) De buitenste for-lus kent N = 5 iteraties. Na iedere iteratie ziet de rij getallen er als volgt uit: i rij na i e iteratie 2 5 4 6 2 2 4

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Vandaag Netwerkstroming: definitie en toepassing Het rest-netwerk Verbeterende paden Ford-Fulkerson algoritme Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp Toepassing: koppelingen

Nadere informatie

Tiende college algoritmiek. 14 april Gretige algoritmen

Tiende college algoritmiek. 14 april Gretige algoritmen College 10 Tiende college algoritmiek 1 april 011 Gretige algoritmen 1 Greedy algorithms Greed = hebzucht Voor oplossen van optimalisatieproblemen Oplossing wordt stap voor stap opgebouwd In elke stap

Nadere informatie

Negende college algoritmiek. 6/7 april Dynamisch Programmeren

Negende college algoritmiek. 6/7 april Dynamisch Programmeren Negende college algoritmiek 6/7 april 2017 Dynamisch Programmeren 1 algemeen Uit college 8: DP: - nuttig bij problemen met overlappende deelproblemen - druk een oplossing van het probleem uit in oplossingen

Nadere informatie

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST College 12 Twaalfde college complexiteit 11 mei 2012 Overzicht, MST 1 Agenda voor vandaag Minimum Opspannende Boom (minimum spanning tree) als voorbeeld van greedy algoritmen Overzicht: wat voor technieken

Nadere informatie

Vierde college complexiteit. 26 februari Beslissingsbomen en selectie Toernooimethode Adversary argument

Vierde college complexiteit. 26 februari Beslissingsbomen en selectie Toernooimethode Adversary argument Complexiteit 2019/04 College 4 Vierde college complexiteit 26 februari 2019 Beslissingsbomen en selectie Toernooimethode Adversary argument 1 Complexiteit 2019/04 Zoeken: samengevat Ongeordend lineair

Nadere informatie

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra

Tiende college algoritmiek. 13/21 april Gretige Algoritmen Algoritme van Dijkstra Algoritmiek 017/Gretige Algoritmen Tiende college algoritmiek 13/1 april 017 Gretige Algoritmen Algoritme van Dijkstra 1 Algoritmiek 017/Gretige Algoritmen Muntenprobleem Gegeven onbeperkt veel munten

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2012 2013, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele

Nadere informatie

Zevende college algoritmiek. 24 maart Verdeel en Heers

Zevende college algoritmiek. 24 maart Verdeel en Heers Zevende college algoritmiek 24 maart 2016 Verdeel en Heers 1 Verdeel en heers 1 Divide and Conquer 1. Verdeel een instantie van het probleem in twee (of meer) kleinere instanties 2. Los de kleinere instanties

Nadere informatie

Greedy algorithms. Algoritmiek

Greedy algorithms. Algoritmiek Greedy algorithms Vandaag Greedy algorithms: wat zijn dat? Voorbeelden: gepast betalen met euromunten AB-rijtje Knapsack probleem Twee scheduling problemen Later: meer voorbeelden, algemene structuur,

Nadere informatie

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS

Tiende college algoritmiek. 14 april Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS Algoritmiek 2016/Dynamisch Programmeren Tiende college algoritmiek 14 april 2016 Dynamisch Programmeren, Gretige Algoritmen, Kortste Pad met BFS 1 Algoritmiek 2016/Dynamisch Programmeren Houtzaagmolen

Nadere informatie

Doorzoeken van grafen. Algoritmiek

Doorzoeken van grafen. Algoritmiek Doorzoeken van grafen Algoritmiek Vandaag Methoden om door grafen te wandelen Depth First Search Breadth First Search Gerichte Acyclische Grafen en topologische sorteringen 2 Doolhof start eind 3 Depth

Nadere informatie

Tiende college algoritmiek. 26 april Gretige algoritmen

Tiende college algoritmiek. 26 april Gretige algoritmen Algoritmiek 01/10 College 10 Tiende college algoritmiek april 01 Gretige algoritmen 1 Algoritmiek 01/10 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag

Nadere informatie

Het minimale aantal sleutels op niveau h is derhalve

Het minimale aantal sleutels op niveau h is derhalve 1 (a) In een B-boom van orde m bevat de wortel minimaal 1 sleutel en maximaal m 1 sleutels De andere knopen bevatten minimaal m 1 sleutels en maximaal m 1 sleutels (b) In een B-boom van orde 5 bevat elke

Nadere informatie

ALGORITMIEK: antwoorden werkcollege 5

ALGORITMIEK: antwoorden werkcollege 5 ALGORITMIEK: antwoorden werkcollege 5 opgave 1. a. Brute force algoritme, direct afgeleid uit de observatie: loop v.l.n.r. door de tekst; als je een A tegenkomt op plek i (0 i < n 1), loop dan van daaruit

Nadere informatie

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 )

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 ) OI 2010 Finale 12 Mei 2010 Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub VOORNAAM :....................................................... NAAM :..............................................................

Nadere informatie

Snelle algoritmen voor Min en Max filters

Snelle algoritmen voor Min en Max filters Snelle algoritmen voor Min en Max filters Michael H.F. Wilkinson Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen 27 augustus 2007 Morfologie: Dilatie en Erosie 1 of 18 Links beeld X.

Nadere informatie

Achtste college algoritmiek. 12 april Verdeel en Heers. Dynamisch Programmeren

Achtste college algoritmiek. 12 april Verdeel en Heers. Dynamisch Programmeren Achtste college algoritmiek 12 april 2019 Verdeel en Heers Dynamisch Programmeren 1 Uit college 7: Partitie Partitie Partitie(A[l r]) :: // partitioneert een (sub)array, met A[l] als spil (pivot) p :=

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2016 2017, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

Zevende college Algoritmiek. 6 april Verdeel en Heers

Zevende college Algoritmiek. 6 april Verdeel en Heers Zevende college Algoritmiek 6 april 2018 Verdeel en Heers 1 Algoritmiek 2018/Backtracking Programmeeropdracht 2 Puzzel 2: D O N A L D G E R A L D + R O B E R T Elke letter stelt een cijfer voor (0,1,...,9)

Nadere informatie

9. Strategieën en oplossingsmethoden

9. Strategieën en oplossingsmethoden 9. Strategieën en oplossingsmethoden In dit hoofdstuk wordt nog even terug gekeken naar alle voorgaande hoofdstukken. We herhalen globaal de structuren en geven enkele richtlijnen voor het ontwerpen van

Nadere informatie

Datastructuren en algoritmen voor CKI

Datastructuren en algoritmen voor CKI Datastructuren en algoritmen voor CKI Jeroen Bransen 1 9 oktober 2015 1 met dank aan Hans Bodlaender en Gerard Tel Zoekbomen Binaire boom Bestaat uit knopen Beginknoop is de wortel (root) Elke knoop heeft

Nadere informatie

(On)Doenlijke problemen

(On)Doenlijke problemen Fundamentele Informatica In3 005 Deel 2 College 1 Cees Witteveen Parallelle en Gedistribueerde Systemen Faculteit Informatie Technologie en Systemen Overzicht Inleiding - Relatie Deel 1 en Deel 2 - Doenlijke

Nadere informatie

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument Complexiteit 2017/05 College 5 Vijfde college complexiteit 21 februari 2017 Selectie Toernooimethode Adversary argument 1 Complexiteit 2017/05 Opgave 28 Gegeven twee oplopend gesorteerde even lange rijen

Nadere informatie

Elfde college algoritmiek. 18 mei Algoritme van Dijkstra, Heap, Heapify & Heapsort

Elfde college algoritmiek. 18 mei Algoritme van Dijkstra, Heap, Heapify & Heapsort Algoritmiek 018/Algoritme van Dijkstra Elfde college algoritmiek 18 mei 018 Algoritme van Dijkstra, Heap, Heapify & Heapsort 1 Algoritmiek 018/Algoritme van Dijkstra Uit college 10: Voorb. -1- A B C D

Nadere informatie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Sietse Achterop Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 3 maart 2008 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren

Nadere informatie

Tweede college algoritmiek. 12 februari Grafen en bomen

Tweede college algoritmiek. 12 februari Grafen en bomen College 2 Tweede college algoritmiek 12 februari 2016 Grafen en bomen 1 Grafen (herhaling) Een graaf G wordt gedefinieerd als een paar (V,E), waarbij V een eindige verzameling is van knopen (vertices)

Nadere informatie

Uitwerking tentamen Algoritmiek 10 juni :00 13:00

Uitwerking tentamen Algoritmiek 10 juni :00 13:00 Uitwerking tentamen Algoritmiek 10 juni 2014 10:00 13:00 1. Dominono s a. Toestanden: n x n bord met in elk hokje een O, een X of een -. Hierbij is het aantal X gelijk aan het aantal O of hooguit één hoger.

Nadere informatie

String Matching. Algoritmiek

String Matching. Algoritmiek String Matching Algoritmiek String Matching Gegeven string (haystack): aabaabbabaaba zoek patroon abba (needle) 4 algoritmen: Naïef Rabin-Karp Eindige Automaat Knuth-Morris-Pratt 2 String Matching (formeel)

Nadere informatie

String Matching. Algoritmiek

String Matching. Algoritmiek String Matching Algoritmiek String Matching Gegeven string (haystack): aabaabbabaaba zoek patroon abba (needle) 4 algoritmen: Naïef Rabin-Karp Eindige Automaat Knuth-Morris-Pratt 2 String Matching (formeel)

Nadere informatie

Vijfde college algoritmiek. 2/3 maart Exhaustive search

Vijfde college algoritmiek. 2/3 maart Exhaustive search Vijfde college algoritmiek 2/3 maart 2017 Exhaustive search 1 Voor- en nadelen Brute force: Voordelen: - algemeen toepasbaar - eenvoudig - levert voor een aantal belangrijke problemen (zoeken, patroonherkenning)

Nadere informatie

Zevende college algoritmiek. 23/24 maart Verdeel en Heers

Zevende college algoritmiek. 23/24 maart Verdeel en Heers Zevende college algoritmiek 23/24 maart 2017 Verdeel en Heers 1 Algoritmiek 2017/Backtracking Tweede Programmeeropdracht 0 1 2 3 0 1 2 3 4 1 2 3 4 5 2 Algoritmiek 2017/Backtracking Tweede Programmeeropdracht

Nadere informatie

Uitwerking tentamen Algoritmiek 9 juni :00 17:00

Uitwerking tentamen Algoritmiek 9 juni :00 17:00 Uitwerking tentamen Algoritmiek 9 juni 2015 14:00 17:00 1. Clobber a. Toestanden: m x n bord met in elk hokje een O, een X of een -. Hierbij is het aantal O gelijk aan het aantal X of er is hooguit één

Nadere informatie

Tiende college algoritmiek. 4 mei Gretige Algoritmen Algoritme van Dijkstra

Tiende college algoritmiek. 4 mei Gretige Algoritmen Algoritme van Dijkstra Tiende college algoritmiek mei 018 Gretige Algoritmen Algoritme van Dijkstra 1 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag van n (n 0) eurocent. Alle

Nadere informatie

Tiende college algoritmiek. 2 mei Gretige algoritmen, Dijkstra

Tiende college algoritmiek. 2 mei Gretige algoritmen, Dijkstra College 10 Tiende college algoritmiek mei 013 Gretige algoritmen, Dijkstra 1 Muntenprobleem Gegeven onbeperkt veel munten van d 1,d,...d m eurocent, en een te betalen bedrag van n (n 0) eurocent. Alle

Nadere informatie

Vierde college algoritmiek. 2 maart Toestand-actie-ruimte Exhaustive Search

Vierde college algoritmiek. 2 maart Toestand-actie-ruimte Exhaustive Search Algoritmiek 2018/Toestand-actie-ruimte Vierde college algoritmiek 2 maart 2018 Toestand-actie-ruimte Exhaustive Search 1 Algoritmiek 2018/Toestand-actie-ruimte Kannen Voorbeeld 4: Kannenprobleem We hebben

Nadere informatie

Vierde college complexiteit. 14 februari Beslissingsbomen

Vierde college complexiteit. 14 februari Beslissingsbomen College 4 Vierde college complexiteit 14 februari 2017 Restant zoeken Beslissingsbomen 1 Binair zoeken Links := 1; Rechts := n; while Links Rechts do Midden := Links + Rechts 2 ; if X = A[Midden] then

Nadere informatie

Minimum Spanning Tree

Minimum Spanning Tree Minimum Spanning Tree Wat is MST? Minimum spanning tree De meest efficiënte manier vinden om een verbonden netwerk op te bouwen Wat is een tree/boom? Graaf G: een verzameling knopen (vertices): V een verzameling

Nadere informatie

ALGORITMIEK: antwoorden werkcollege 5

ALGORITMIEK: antwoorden werkcollege 5 1 ALGORITMIEK: antwoorden werkcollege 5 opgave 1. a. Brute force algoritme, direct afgeleid uit de observatie: loop v.l.n.r. door de tekst; als je een A tegenkomt op plek i (0 i < n 1), loop dan van daaruit

Nadere informatie

ALGORITMIEK: antwoorden werkcollege 5

ALGORITMIEK: antwoorden werkcollege 5 ALGORITMIEK: antwoorden werkcollege 5 opgave 1. a. Brute force algoritme, direct afgeleid uit de observatie: loop v.l.n.r. door de tekst; als je een A tegenkomt op plek i (0 i < n 1), loop dan van daaruit

Nadere informatie

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route

Kosten. Zoekalgoritmen ( ) College 5: Zoeken met kosten. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route Kosten Zoekalgoritmen (00 00) ollege 5: Zoeken met kosten Peter de Waal, Tekst: Linda van der aag Veel zoekproblemen omvatten kosten: een afstand in kilometers; een geldbedrag; een hoeveelheid tijd; ongemak;...

Nadere informatie

Kosten. Computationale Intelligentie. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route. Zoeken met kosten.

Kosten. Computationale Intelligentie. Een zoekprobleem met stapkosten. Een voorbeeld: het vinden van een route. Zoeken met kosten. Kosten omputationale Intelligentie Zoeken met kosten Veel zoekproblemen omvatten kosten: een afstand in kilometers; een geldbedrag; een hoeveelheid tijd;... Voorbeelden van dergelijke problemen zijn: het

Nadere informatie

Vierde college algoritmiek. 23/24 februari Complexiteit en Brute Force

Vierde college algoritmiek. 23/24 februari Complexiteit en Brute Force Algoritmiek 2017/Complexiteit Vierde college algoritmiek 23/24 februari 2017 Complexiteit en Brute Force 1 Algoritmiek 2017/Complexiteit Tijdcomplexiteit Complexiteit (= tijdcomplexiteit) van een algoritme:

Nadere informatie

Vijfde college algoritmiek. 9 maart Brute Force. Exhaustive search

Vijfde college algoritmiek. 9 maart Brute Force. Exhaustive search Vijfde college algoritmiek 9 maart 2018 Brute Force Exhaustive search 1 Before I say another word Opdracht 1 partner? deadline: 21/22 maart 2018 vragenuren vanmiddag, 15.30 uur (Jacob) woensdag 21 maart,

Nadere informatie

Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms

Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms Onafhankelijke verzamelingen en Gewogen Oplossingen, door Donald E. Knuth, The Art of Computer Programming, Volume 4, Combinatorial Algorithms Giso Dal (0752975) Pagina s 5 7 1 Deelverzameling Representatie

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 23 februari 2009 GRAFEN & BOMEN Paragrafen 6.1-6.4 Discrete Structuren Week 3 en 4:

Nadere informatie

Benaderingsalgoritmen

Benaderingsalgoritmen Benaderingsalgoritmen Eerste hulp bij NP-moeilijkheid 1 Herhaling NP-volledigheid (1) NP: er is een polynomiaal certificaat voor jainstanties dat in polynomiale tijd te controleren is Een probleem A is

Nadere informatie

Datastructuren en Algoritmen

Datastructuren en Algoritmen Datastructuren en Algoritmen Tentamen Vrijdag 6 november 2015 13.30-16.30 Toelichting Bij dit tentamen mag je gebruik maken van een spiekbriefje van maximaal 2 kantjes. Verder mogen er geen hulpmiddelen

Nadere informatie

Combinatorische Algoritmen: Binary Decision Diagrams, Deel III

Combinatorische Algoritmen: Binary Decision Diagrams, Deel III Combinatorische Algoritmen: Binary Decision Diagrams, Deel III Sjoerd van Egmond LIACS, Leiden University, The Netherlands svegmond@liacs.nl 2 juni 2010 Samenvatting Deze notitie beschrijft een nederlandse

Nadere informatie

NP-volledigheid. Algoritmiek

NP-volledigheid. Algoritmiek NP-volledigheid Polynomiale algoritmen of moeilijke problemen? Algoritme A is polynomiaal, als er een constante c bestaat, zodat het algoritme bij inputs van formaat n O(n c ) tijd gebruikt. Sommige problemen

Nadere informatie

Tiende college algoritmiek. 3 mei Dynamisch programmeren Gretige Algoritmen Algoritme van Dijkstra

Tiende college algoritmiek. 3 mei Dynamisch programmeren Gretige Algoritmen Algoritme van Dijkstra Tiende college algoritmiek 3 mei 019 Dynamisch programmeren Gretige Algoritmen Algoritme van Dijkstra 1 Houtzaagmolen Een houtzaagmolen rekent voor het in twee stukken zagen van een stam van lengte l precies

Nadere informatie

Tree traversal. Bomen zijn overal. Ferd van Odenhoven. 15 november 2011

Tree traversal. Bomen zijn overal. Ferd van Odenhoven. 15 november 2011 15 november 2011 Tree traversal Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 15 november 2011 ODE/FHTBM Tree traversal 15 november 2011 1/22 1 ODE/FHTBM Tree

Nadere informatie

Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ.

Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ. Tweede Toets Datastructuren 29 juni 2016, 13.30 15.30, Educ-Γ. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe

Nadere informatie

Modeluitwerking Tentamen Computationele Intelligentie Universiteit Leiden Informatica Vrijdag 11 Januari 2013

Modeluitwerking Tentamen Computationele Intelligentie Universiteit Leiden Informatica Vrijdag 11 Januari 2013 Modeluitwerking Tentamen Computationele Intelligentie Universiteit Leiden Informatica Vrijdag Januari 20 Opgave. Python Gegeven is de volgende (slechte) Python code:. def t(x): 2. def p(y):. return x*y

Nadere informatie

Algoritmiek. 15 februari Grafen en bomen

Algoritmiek. 15 februari Grafen en bomen Algoritmiek 15 februari 2019 Grafen en bomen 1 Grafen (herhaling) Een graaf G wordt gedefinieerd als een paar (V,E), waarbij V een eindige verzameling is van knopen (vertices) en E een verzameling van

Nadere informatie

Netwerkstroming. Algoritmiek

Netwerkstroming. Algoritmiek Netwerkstroming Netwerkstroming Toepassingen in Logistiek Video-streaming Subroutine in algoritmen 2 Vandaag Netwerkstroming: wat was dat ook alweer? Minimum Snede Maximum Stroming Stelling Variant: Edmonds-Karp

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2008 2009, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees elke

Nadere informatie

Programmeermethoden. Recursie. week 11: november kosterswa/pm/

Programmeermethoden. Recursie. week 11: november kosterswa/pm/ Programmeermethoden Recursie week 11: 21 25 november 2016 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Pointers Derde programmeeropgave 1 Het spel Gomoku programmeren we als volgt: week 1: pointerpracticum,

Nadere informatie

Recapitulatie: Ongeïnformeerd zoeken. Zoekalgoritmen ( ) College 2: Ongeïnformeerd zoeken. Dynamische breadth-first search

Recapitulatie: Ongeïnformeerd zoeken. Zoekalgoritmen ( ) College 2: Ongeïnformeerd zoeken. Dynamische breadth-first search Recapitulatie: Ongeïnformeerd zoeken Zoekalgoritmen (009 00) College : Ongeïnformeerd zoeken Peter de Waal, Tekst: Linda van der Gaag een algoritme voor ongeïnformeerd zoeken doorzoekt de zoekruimte van

Nadere informatie

Elfde college algoritmiek. 10 mei Algoritme van Dijkstra, Gretige Algoritmen

Elfde college algoritmiek. 10 mei Algoritme van Dijkstra, Gretige Algoritmen lgoritmiek 019/lgoritme van ijkstra lfde college algoritmiek 10 mei 019 lgoritme van ijkstra, Gretige lgoritmen 1 lgoritmiek 019/ynamisch programmeren Programmeeropdracht 3 Lange Reis 0 10 10 1 1 100 0

Nadere informatie

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel.

Grafen. Indien de uitgraad van ieder punt 1 is, dan bevat de graaf een cykel. Indien de ingraad van ieder punt 1 is, dan bevat de graaf een cykel. Grafen Grafen Een graaf bestaat uit een verzameling punten (ook wel knopen, of in het engels vertices genoemd) en een verzameling kanten (edges) of pijlen (arcs), waarbij de kanten en pijlen tussen twee

Nadere informatie

Uitwerking tentamen Algoritmiek 9 juli :00 13:00

Uitwerking tentamen Algoritmiek 9 juli :00 13:00 Uitwerking tentamen Algoritmiek 9 juli 0 0:00 :00. (N,M)-game a. Toestanden: Een geheel getal g, waarvoor geldt g N én wie er aan de beurt is (Tristan of Isolde) b. c. Acties: Het noemen van een geheel

Nadere informatie

Zevende college complexiteit. 17 maart Ondergrens sorteren, Quicksort

Zevende college complexiteit. 17 maart Ondergrens sorteren, Quicksort College 7 Zevende college complexiteit 17 maart 2008 Ondergrens sorteren, Quicksort 1 Sorteren We bekijken sorteeralgoritmen gebaseerd op het doen van vergelijkingen van de vorm A[i] < A[j]. Aannames:

Nadere informatie

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound

Elfde college algoritmiek. 21 april Dijkstra en Branch & Bound Algoritmiek 011/11 College 11 Elfde college algoritmiek 1 april 011 Dijkstra en Branch & Bound 1 Algoritmiek 011/11 Kortste paden Gegeven een graaf G met gewichten op de takken, en een beginknoop s. We

Nadere informatie

Divide & Conquer: Verdeel en Heers. Algoritmiek

Divide & Conquer: Verdeel en Heers. Algoritmiek Divide & Conquer: Verdeel en Heers Algoritmiek Algoritmische technieken Trucs; methoden; paradigma s voor het ontwerp van algoritmen Gezien: Dynamisch Programmeren Hierna: Greedy Vandaag: Divide & Conquer

Nadere informatie

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound

Elfde college algoritmiek. 16 mei Dijkstra, Gretige algoritmen en Branch & Bound Algoritmiek 013/11 College 11 Elfde college algoritmiek 1 mei 013 Dijkstra, Gretige algoritmen en Branch & Bound 1 Algoritmiek 013/11 Voorbeeld -1- A B C D E F G H 9 7 5 A B C D E F G H 0 9 9 7 5 A B C

Nadere informatie

Algoritmen en programmeren: deel 2 - basis

Algoritmen en programmeren: deel 2 - basis Algoritmen en programmeren: deel 2 - basis Ruud van Damme Creation date: 25 april 2005 Update: 16 november 2006, 9 september 2007 Overzicht 1 Basisbenodigdheden voor alle problemen 2 Alles in stukjes op

Nadere informatie

Getallensystemen, verzamelingen en relaties

Getallensystemen, verzamelingen en relaties Hoofdstuk 1 Getallensystemen, verzamelingen en relaties 1.1 Getallensystemen 1.1.1 De natuurlijke getallen N = {0, 1, 2, 3,...} N 0 = {1, 2, 3,...} 1.1.2 De gehele getallen Z = {..., 4, 3, 2, 1, 0, 1,

Nadere informatie

Kortste Paden. Algoritmiek

Kortste Paden. Algoritmiek Kortste Paden Toepassingen Kevin Bacon getal Six degrees of separation Heeft een netwerk de small-world eigenschap? TomTom / Google Maps 2 Kortste paden Gerichte graaf G=(N,A), en een lengte L(v,w) voor

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2006 2007, tweede zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. 1. Verzamelingen:

Nadere informatie

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk.

Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Netwerkanalyse (H3) Sommige praktische IP problemen kunnen worden geformuleerd als optimalisering op een netwerk. Deze problemen kunnen vaak als continu LP probleem worden opgelost. Door de speciale structuur

Nadere informatie

Programmeermethoden. Recursie. Walter Kosters. week 11: november kosterswa/pm/

Programmeermethoden. Recursie. Walter Kosters. week 11: november kosterswa/pm/ Programmeermethoden Recursie Walter Kosters week 11: 20 24 november 2017 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Vierde programmeeropgave 1 De Grote getallen programmeren we als volgt: week 1: pointerpracticum,

Nadere informatie

2 Recurrente betrekkingen

2 Recurrente betrekkingen WIS2 1 2 Recurrente betrekkingen 2.1 Fibonacci De getallen van Fibonacci Fibonacci (= Leonardo van Pisa), 1202: Bereken het aantal paren konijnen na één jaar, als 1. er na 1 maand 1 paar pasgeboren konijnen

Nadere informatie

5.4.2 a. Neen: dit lukt alléén met 1, 3, 7 enzovoort. b. Ja: dit lukt met elk aantal knopen! Bijvoorbeeld de volgende boom: 1

5.4.2 a. Neen: dit lukt alléén met 1, 3, 7 enzovoort. b. Ja: dit lukt met elk aantal knopen! Bijvoorbeeld de volgende boom: 1 c. het langste gerichte pad: 4 2 3 met lengte twee. d. het langste on -gerichte pad is oneindig lang: je mag bijvoorbeeld voortdurend tussen twee knopen heen en weer wandelen. e. ja: elke knoop heeft maximaal

Nadere informatie

Datastructuren Uitwerking jan

Datastructuren Uitwerking jan Datastructuren Uitwerking jan 2015 1 1a. Een abstracte datastructuur is een beschrijving van een datastructuur, met de specificatie van wat er opgeslagen wordt (de data en hun structuur) en welke operaties

Nadere informatie

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search

Overzicht. Inleiding. Toepassingen. Verwante problemen. Modellering. Exacte oplosmethode: B&B. Insertie heuristieken. Local Search Overzicht Inleiding Toepassingen Verwante problemen Modellering Exacte oplosmethode: B&B Insertie heuristieken Local Search Handelsreizigersprobleem 1 Cyclische permutatie van steden b 3 77 a 93 21 42

Nadere informatie

TW2020 Optimalisering

TW2020 Optimalisering TW2020 Optimalisering Hoorcollege 8 Leo van Iersel Technische Universiteit Delft 28 oktober 2015 Leo van Iersel (TUD) TW2020 Optimalisering 28 oktober 2015 1 / 25 Definitie Een boom is een samenhangende

Nadere informatie

Uitgebreide uitwerking Tentamen Complexiteit, mei 2007

Uitgebreide uitwerking Tentamen Complexiteit, mei 2007 Uitgebreide uitwerking Tentamen Complexiteit, mei 007 Opgave. a. Een beslissingsboom beschrijft de werking van het betreffende algoritme (gebaseerd op arrayvergelijkingen) op elke mogelijke invoer. In

Nadere informatie

Tree traversal. Ferd van Odenhoven. 15 november Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering. Doorlopen van bomen

Tree traversal. Ferd van Odenhoven. 15 november Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering. Doorlopen van bomen Tree traversal Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 15 november 2011 ODE/FHTBM Tree traversal 15 november 2011 1/22 1 ODE/FHTBM Tree traversal 15 november

Nadere informatie

Amorized Analysis en Union-Find Algoritmiek

Amorized Analysis en Union-Find Algoritmiek Amorized Analysis en Union-Find Vandaag Amortized analysis Technieken voor tijdsanalyse van algoritmen Union-find datastructuur Datastructuur voor operaties op disjuncte verzamelingen Verschillende oplossingen

Nadere informatie

Computationale Intelligentie Dirk Thierens

Computationale Intelligentie Dirk Thierens Computationale Intelligentie Dirk Thierens Organisatie Onderwijsvormen: Docent: Topic: Collegemateriaal: Boek: Beoordeling: hoorcollege, practicum, werkcollege Dirk Thierens Deel : Zoekalgoritmen Toets

Nadere informatie

Inleiding Programmeren 2

Inleiding Programmeren 2 Inleiding Programmeren 2 Gertjan van Noord November 28, 2016 Stof week 3 nogmaals Zelle hoofdstuk 8 en recursie Brookshear hoofdstuk 5: Algoritmes Datastructuren: tuples Een geheel andere manier om te

Nadere informatie

NP-Volledigheid. Wil zo snel mogelijke algoritmes om problemen op te lossen. De looptijd is polynomiaal: O n k - dat is heel erg mooi

NP-Volledigheid. Wil zo snel mogelijke algoritmes om problemen op te lossen. De looptijd is polynomiaal: O n k - dat is heel erg mooi NP-Volledigheid Wil zo snel mogelijke algoritmes om problemen op te lossen Gezien: selectie [O(n)], DFS [O(n + m)], MaxFlow [O nm n + m ], MST [O(n + m)], etc De looptijd is polynomiaal: O n k - dat is

Nadere informatie

Een eenvoudig algoritme om permutaties te genereren

Een eenvoudig algoritme om permutaties te genereren Een eenvoudig algoritme om permutaties te genereren Daniel von Asmuth Inleiding Er zijn in de vakliteratuur verschillende manieren beschreven om alle permutaties van een verzameling te generen. De methoden

Nadere informatie

Divide & Conquer: Verdeel en Heers. Algoritmiek

Divide & Conquer: Verdeel en Heers. Algoritmiek Divide & Conquer: Verdeel en Heers Algoritmiek Algoritmische technieken Trucs; methoden; paradigma s voor het ontwerp van algoritmen Gezien: Dynamisch Programmeren Volgend college: Greedy Vandaag: Divide

Nadere informatie

Eerste deeltoets Algoritmiek 4 maart 2015, , Educ-β.

Eerste deeltoets Algoritmiek 4 maart 2015, , Educ-β. Eerste deeltoets Algoritmiek 4 maart 2015, 8.30 10.30, Educ-β. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe

Nadere informatie

8C080 deel BioModeling en bioinformatica

8C080 deel BioModeling en bioinformatica Vijf algemene opmerkingen Tentamen Algoritmen voor BIOMIM, 8C080, 22 april 2009,14.00-17.00u. Het tentamen bestaat uit 2 delen, een deel van BioModeling & bioinformatics en een deel van BioMedische Beeldanalyse.

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2012 2013, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele

Nadere informatie