Tweede Huiswerk Security 26 of 28 oktober, 11.00, Nabespreken op Werkcollege.

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Tweede Huiswerk Security 26 of 28 oktober, 11.00, Nabespreken op Werkcollege."

Transcriptie

1 Tweede Huiswerk Security 26 of 28 oktober, 11.00, Nabespreken op Werkcollege. Kijk het huiswerk van je collega s na en schrijf de namen van de nakijkers linksboven en het totaalcijfer rechts onder de namen van de makers. Bespreek het werk met de makers op het werkcollege van 26 of 28 oktober en geef het huiswerk dan aan de assistenten. Cijfer: Te halen 16.5 pt (excl. bonus), resultaat is totaal gedeeld door 1.6 (max. 10). 1. Inverse: Bepaal met behulp van het algoritme van Euclides een oplossing voor: (a) 38x + 43y = 1 (b) 43x + 5y = 3 (c) 112x + 60y + 32z = 33 Bepaal met behulp van het algoritme van Euclides de inverse voor: (I) 38 in Z 43 (II) 86 in Z 264 (III) in Z Oplossing: (a-c) Er zijn meerdere antwoorden mogelijk. Bepaal steeds de GGD van de coefficiënten, bij (a) is dit 1 en krijg je uit Extended Euclides dus gelijk een oplossing. Bij (b) is de GGD ook 1, dus EE geeft oplossingen voor y = 1 - doe die oplossingen keer 3 om de oplossingen van 43x + 5y = 3 te krijgen. Bij (c) moet je twee keer Euclides toepassen: bepaal eerst de GGD van éń paar getallen, en neem dan de GGD van die GGD en de overgebleven coefficiënt. Goede oplossingen zijn bv: (a) x = 17, y = 15, (b) x = 6, y = 51, (c) is onoplosbaar want alle getallen links zijn even, rhs is oneven. (I-III) Bepaal steeds via Extended Euclides wanneer geldt dat een lineare combinatie van het getal en de modulo gelijk is aan 1. Bepaal aan de hand hiervan de inverse. Voor (I) is dit 17, merk op dat dit overeenkomt met de 17 uit vraag (a). Voor (II) is de GGD groter dan 1, dus is er geen inverse. Voor (III) is de inverse Beoordeling: 0.5pt per vergelijking. Totaal 3pt.

2 2. Elgamal: Elgamal encryptie werkt met een generator g van Z p. (a) Waarom zou je willen dat g een generator is? (b) Bewijs dat de decryptie van een encryptie in het Elgamal-algoritme de originele tekst teruggeeft. (c) Wat is de looptijd van encryptie en decryptie in het Elgamal-algoritme (grote O- notatie)? Welk van beide is sneller? Oplossing: (a) Omdat zo elke k Z p als publieke sleutel of blinder kan voorkomen. (b) Toon aan: D(E(x)) = x. Tijdens encryptie geldt dat v = z x, de decryptie geeft de tekst x = v z 1. Substitutie van v in de tweede formule geeft x = z x z 1. Nu geldt dat z = z, want z = u a = (g k ) a = (g a ) k = b k = z. Dus x = z z 1 x = 1 x. Nu geldt dat x = x, de decryptie van een encryptie geeft dus de originele tekst. (c) Voor zowel encryptie als decryptie blijkt dat de exponentiatie de zwaarste operatie is. Deze operatie kost O(k 3 ) tijd. Omdat encryptie 2 en decryptie 1 exponentiatie kent, is decryptie ongeveer 2x zo snel als encryptie. Beoordeling: 0,5pnt voor (a), 1pt voor (b), 1pnt voor (0.5 voor complexiteit, 0.5 voor snelste)(c) Totaal 2.5pt.

3 3. Worteltjestaart: De bakker moet berekenen hoeveel worteltjes hij voor zijn worteltjestaart nodig heeft. Hij heeft wel een recept, maar hij heeft de modulaire wortel nodig om de goede hoeveelheden te vinden. Op een dag komt er een konijn langs. Het konijn kan modulair wortel trekken, maar wil niet verklappen hoe. Het konijn zegt dat hij wel de modulaire wortel wil uitrekenen zolang hij maar een stukje worteltjestaart krijgt. Eerst moet de bakker de modulus m geven en een getal b < m. Daarna geeft de konijn een getal a (als het bestaat) dat voldoet aan a 2 = b(mod m). (a) Laat zien hoe de bakker slim zijn getallen kan kiezen zodat hij de factoren van m kunt vinden. (b) Nu de bakker de factoren kan vinden, vindt hij dat de factoren van 1333, 31 en 43 zijn. Nu wil hij nog weten welke vier getallen in Z 1333 kwadraat 1 hebben. Welke getallen zijn dit? (c) De bakker denkt dat hij samen met het konijn P = NP heeft bewezen, ze kunnen namelijk samen getallen factoriseren. Kunnen de bakker en het konijn de milleniumprijs gaan innen? Leg uit. Oplossing: (a) Als m priem is, is m zelf de enige factor en ben je klaar. Als m even is, deel door 2 tot het resultaat oneven is. Als m oneven en samengesteld is, zijn er bij elke b minstens vier getallen met b als kwadraat. Neem een random c en bereken b = c 2, en gebruik het konijn om een a te vinden met a 2 = c 2. Omdat c random gekozen is, is er een kans van minstens 1/2 dat c noch aan a, noch aan a gelijk is. Herhaal het kiezen van c tot dit optreedt. Je beschikt dan over twee niet-complementaire getallen met gelijk kwadraat, waarmee je een factor van m vindt als ggd(m, a + c). (b) Bij elke modulus geldt 1 2 = 1 en ( 1) 2 = 1, dus we hebben de eerste twee wortels 1 en 1332 al te pakken. Om de andere twee te vinden gebruiken we CRT en zoeken een getal dat 1 is modulu 43 en 1 modulo 31. Dit is W 43 W 31 = Het vierde getal is ofwel 216. (c) Nee want Factoriseren is wel in NP, maar voor zover we weten niet NP-compleet. Dus helaas nog geen millenniumprijs. Maar als konijntje inderdaad kan worteltrekken met een modulus van de bakker, kan hij willekeurige getallen factoriseren, dus ergens zal een prijsje er toch wel in zitten. Beoordeling: 1.5pt voor (a); 1pt voor (b); 1pt voor (c), totaal 3 pt.

4 4. RSA: We bekijken het cryptosysteem RSA met modulus n = p.q van k bits, public key e en private key d. (a) Waarom is het aanroepen van de decryptie veel duurder dan de encryptie bij RSA? (b) Hoeveel rekentijd kost het versleutelen of ontsleutelen van een bericht (als functie van k)? Reken voor de vermenigvuldiging van 2 k-bits getallen O(k 2 ). Oplossing: (a) De publieke exponent e kan klein worden gekozen zodat weinig vermenigvuldigingen nodig zijn. Voor de geheime exponent d kan dit niet en zijn O(k) vermenigvuldigingen nodig. (b) Een getal n heeft een lengte k = lg n. Voor encyptie (resp. decryptie) van een tekst x moet je x e (resp. x d ) berekenen (modulo n). Hierbij is e (resp. d) een getal dat hoogstens φ(n) is en dus maximaal k bits lang. Als je Indisch machtsverheft kun je die exponentiatie met hoogstens 2k vermenigvuldigingen doen, de rekentijd is dus O(k 3 ). Meestal wordt bij RSA een small exponent variant gebruikt, waarbij voor e een vast, klein getal wordt gekozen (bv. 17 of 65537) onafhankelijk van k. Dan is het aantal vermenigvuldigingen onafhankelijk van k en kost encryptie maar O(k 2 ). Beoordeling: Totaal 1.5pt, 0.5pt voor (a), 1 pt voor (b). E = Geen punten voor een looptijd die exponentieel is (wat je zou krijgen als je x d berekent met d of d 1 vermenigvuldigingen). 5. Blinde Handtekening: Alice heeft een bericht M dat ze door Bob wil laten ondertekenen (met RSA) maar zonder dat Bob de inhoud ziet. Bob stemt erin toe, voor Alice één ongezien bericht te tekenen. (a) Bewijs dat voor een correcte RSA handtekening geldt S e = M (mod n). (b) Om welke veiligheidsreden zal Bob liever zijn handtekening onder de hash van M zetten? Waar moet deze hash aan voldoen? (c) Kan bij een geblindeerde RSA handtekening nog gebruik gemaakt worden van de hash? (Zo nee, waarom niet; zo ja, bewijs dat dit kan). (d) Op welke drie manieren kan Bob zorgen dat een blinde handtekening onder het juiste soort token gezet wordt? Oplossing: (a) S = M d dus geldt dat S e = M de (mod n). Omdat d is gekozen als e 1 in Z φ(m) kan dit herschreven worden tot M e e 1 = M. (b) Bob weet dat door de hash een existentiele aanval niet mogelijk is. Voor een hash moet wel gelden dat hij sterk botsingsvrij is. (De andere eisen volgen hieruit). (c) Dit kan door de hash te nemen van het bericht: h = H(M). Dit wordt geblindeerd met b = k e, dus Alice stuurt Bob h.b. Bob berekent (h.b) d = (H(M) k e ) d = H(M) d k ed = k H(M) d. (1) Alice deelt door k, dwz., vermenigvuldigt dit getal met k 1, nu houd ze de ondertekening van het gehashte bericht over. (d)er zijn volgens het dictaat drie mogelijkheden voor controle: Verschillende sleutels gebruiken voor verschillende soorten berichten of gebruik maken van de Cut-and-choose methode of werken met een zero knowledge proof. Beoordeling: Totaal 4pt: 1pt voor (a); 1pt voor (b) (0,5 per subvraag); 1,5pt voor (c); 0,5pt voor (d).

5 6. Zero Knowledge: Voor het identicatieprotocol van Feige, Fiat en Shamir heeft Alice een geheim getal a en een publiek getal b = a 2. De Commit van Alice is een getal s = r 2, Bobs Challenge is een random c {0, 1}, en Alice Respons is y = r a c. (a) Welke Check doet Bob op het antwoord van Alice? (b) Hoe zien de stappen eruit bij de niet-interactieve versie van het Feige, Fiat en Shamir zero knowledge proof? (c) Welke eigenschap van het zero knowledge proof verliezen we door het niet-interactief te maken? Oplossing: (a) Bob checkt dat y 2 = s b c. (b) Genereren van een niet-interactief bewijs, iets te simpel: 1: Kies s = r 2 voor random r. 2: Kies c = H(s). 3: Kies y = r + a c. Na het ontvangen van het paar (s, y): 1: bereken c = H(s) 2: controleer of y 2 = s b c. Omdat er bij FFS maar twee waarden van c zijn, kan een bedrieger met kans 1/2 de challenge raden en valselijk slagen. Daarom moet je, net als bij het interactieve protocol, meerdere challenges vragen en dat moet in een hash worden gecombineerd: 1: Kies s i = r 2 i voor random r i, i = : Kies c = H( s). 3: Kies y i = r i + a c i. (c) Het bewijs is nu overdraagbaar geworden, dus je weet niet meer zeker of de afzender het ook echt zelf heeft berekend. Beoordeling: Totaal 2pt. 0.5pt voor (a); 1pt voor (b); 0.5pt voor (c).

Tweede Deeltoets Security 3 juli 2015, 8.30 10.30, Educatorium-Γ.

Tweede Deeltoets Security 3 juli 2015, 8.30 10.30, Educatorium-Γ. Tweede Deeltoets Security 3 juli 2015, 8.30 10.30, Educatorium-Γ. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op

Nadere informatie

Tweede Toets Security 2 november 2015, , Educ-α.

Tweede Toets Security 2 november 2015, , Educ-α. Tweede Toets Security 2 november 2015, 8.30 10.30, Educ-α. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe je

Nadere informatie

RSA. F.A. Grootjen. 8 maart 2002

RSA. F.A. Grootjen. 8 maart 2002 RSA F.A. Grootjen 8 maart 2002 1 Delers Eerst wat terminologie over gehele getallen. We zeggen a deelt b (of a is een deler van b) als b = qa voor een of ander geheel getal q. In plaats van a deelt b schrijven

Nadere informatie

Hoe je het cryptosysteem RSA soms kunt kraken. Benne de Weger

Hoe je het cryptosysteem RSA soms kunt kraken. Benne de Weger Hoe je het cryptosysteem RSA soms kunt kraken Benne de Weger 28 aug. / 4 sept. RSA 1/38 asymmetrisch cryptosysteem versleutelen met de publieke sleutel ontsleutelen met de bijbehorende privé-sleutel gebaseerd

Nadere informatie

Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002

Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 19.a) Laat zien dat 5 een voortbrenger is van F 37. b) In het sleuteldistributiesysteem van Diffie en Hellman (met G = F 37, α =

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

OPLOSSINGEN VAN DE OEFENINGEN

OPLOSSINGEN VAN DE OEFENINGEN OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal

Nadere informatie

niet: achterop een ansichtkaart schrijven postbode (en wie al niet meer) leest mee

niet: achterop een ansichtkaart schrijven postbode (en wie al niet meer) leest mee Het geheim van goede koffie Benne de Weger oktober 2013 b.m.m.d.weger@tue.nl http://www.win.tue.nl/~bdeweger versturen van geheimen hoe moet je een geheim opsturen als onderweg iemand kan afluisteren?

Nadere informatie

Het RSA Algoritme. Erik Aarts - 1 -

Het RSA Algoritme. Erik Aarts - 1 - Het RSA Algoritme Erik Aarts - 1 - 1 Wiskunde... 3 1.1 Het algoritme van Euclides... 3 1.1.1 Stelling 1... 4 1.2 Het uitgebreide algoritme van Euclides... 5 1.3 Modulo rekenen... 7 1.3.1 Optellen, aftrekken

Nadere informatie

De wiskunde achter de Bitcoin

De wiskunde achter de Bitcoin De wiskunde achter de Bitcoin Bas Edixhoven Universiteit Leiden NWD, Noordwijkerhout, 2015/01/31 Deze aantekeningen zal ik op mijn homepage plaatsen. Bas Edixhoven (Universiteit Leiden) De wiskunde achter

Nadere informatie

Priemfactoren. Grote getallen. Geavanceerde methoden. Hoe ontbind je een getal N in priemfactoren?

Priemfactoren. Grote getallen. Geavanceerde methoden. Hoe ontbind je een getal N in priemfactoren? Docentenhandleiding Inhoudsopgave Docentenhandleiding... 1 Inhoudsopgave... 2 Priemfactoren... 3 Grote getallen... 3 Geavanceerde methoden... 3 Primaliteit en factorisatie... 4 Literatuur... 4 Software...

Nadere informatie

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen Worteltrekken modulo een priemgetal: van klok tot cutting edge Roland van der Veen Modulorekenen Twee getallen a en b zijn gelijk modulo p als ze een veelvoud van p verschillen. Notatie: a = b mod p Bijvoorbeeld:

Nadere informatie

4Passief: n Afluisteren. n Geen gegevens gewijzigd of vernietigd. n Via de routers van WAN. n Via draadloze verbindingen. 4Fysieke afsluiting

4Passief: n Afluisteren. n Geen gegevens gewijzigd of vernietigd. n Via de routers van WAN. n Via draadloze verbindingen. 4Fysieke afsluiting Telematica Hoofdstuk 20 4Passief: n Afluisteren Bedreigingen n Alleen gegevens (inclusief passwords) opgenomen n Geen gegevens gewijzigd of vernietigd n Op LAN kan elk station alle boodschappen ontvangen

Nadere informatie

Cryptografie met krommen. Reinier Bröker. Universiteit Leiden

Cryptografie met krommen. Reinier Bröker. Universiteit Leiden Cryptografie met krommen Reinier Bröker Universiteit Leiden Nationale Wiskundedagen Februari 2006 Cryptografie Cryptografie gaat over geheimschriften en het versleutelen van informatie. Voorbeelden. Klassieke

Nadere informatie

Getaltheorie groep 3: Primitieve wortels

Getaltheorie groep 3: Primitieve wortels Getaltheorie groep 3: Primitieve wortels Trainingsweek juni 2008 Inleiding Voor a relatief priem met m hebben we de orde van a modulo m gedefinieerd als ord m (a) = min { n Z + a n 1 (mod m) }. De verzameling

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule Heron driehoek 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule = s(s a)(s b)(s c) met s = a + b + c 2 die gebruikt wordt om de oppervlakte van een driehoek te berekenen in

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

Opgeloste en onopgeloste mysteries in de getaltheorie

Opgeloste en onopgeloste mysteries in de getaltheorie Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Cryptografie met behulp van elliptische krommen

Cryptografie met behulp van elliptische krommen Cryptografie met behulp van elliptische krommen Bachelorscriptie Wiskunde Erik van der Kouwe Studentnummer 1397273 E-mail: erik@erisma.nl Vrije Universiteit Amsterdam Faculteit Exacte Wetenschappen Afdeling

Nadere informatie

Netwerken. Beveiliging Cryptografie

Netwerken. Beveiliging Cryptografie Netwerken 15 Beveiliging Cryptografie Lennart Herlaar 2 november 2016 Onderwerpen Beveiliging Cryptografie Cryptografische algoritmen en protocollen Toepassing van cryptografie in beveiliging Lennart Herlaar

Nadere informatie

Public Key Cryptography. Wieb Bosma

Public Key Cryptography. Wieb Bosma Public Key Cryptography de wiskunde van het perfecte kopje koffie Wieb Bosma Radboud Universiteit Nijmegen Bachelordag 2 april 2011 Nijmegen, 6 november 2010 0 Nijmegen, 6 november 2010 1 cryptografie

Nadere informatie

Geheimschrift op de TI-83+ Gerard Tel

Geheimschrift op de TI-83+ Gerard Tel Geheimschrift op de TI-83+ Gerard Tel Department of Information and Computing Sciences, Utrecht University Technical Report UU-CS-2006-017 www.cs.uu.nl ISSN: 0924-3275 Geheimschrift op de TI-83+ Gerard

Nadere informatie

Getaltheorie II. ax + by = c, a, b, c Z (1)

Getaltheorie II. ax + by = c, a, b, c Z (1) Lesbrief 2 Getaltheorie II 1 Lineaire vergelijkingen Een vergelijking van de vorm ax + by = c, a, b, c Z (1) heet een lineaire vergelijking. In de getaltheorie gaat het er slechts om gehele oplossingen

Nadere informatie

Hoe je het cryptosysteem RSA soms kunt kraken

Hoe je het cryptosysteem RSA soms kunt kraken Hoe je het cryptosysteem RSA soms kunt kraken Benne de Weger Technische Universiteit Eindhoven Inleiding. RSA RSA is een veelgebruikt cryptografisch systeem, bijvoorbeeld voor het beveiligen van internetverkeer.

Nadere informatie

??? Peter Stevenhagen. 7 augustus 2008 Vierkant voor wiskunde

??? Peter Stevenhagen. 7 augustus 2008 Vierkant voor wiskunde 1 ??? Peter Stevenhagen 7 augustus 2008 Vierkant voor wiskunde 2 Wiskunde en cryptografie Peter Stevenhagen 7 augustus 2008 Vierkant voor wiskunde 3 Crypto is voor iedereen Peter Stevenhagen 7 augustus

Nadere informatie

Groepen, ringen en velden

Groepen, ringen en velden Groepen, ringen en velden Groep Een groep G is een verzameling van elementen en een binaire operator met volgende eigenschappen: 1. closure (gesloten): als a en b tot G behoren, doet a b dat ook. 2. associativiteit:

Nadere informatie

Toepassingen van de Wiskunde in de Digitale Wereld

Toepassingen van de Wiskunde in de Digitale Wereld Toepassingen van de Wiskunde in de Digitale Wereld Eindhoven 17 juli 2010 Henk van Tilborg Technische Universiteit Eindhoven 1 Beschermen van digitale gegevens. Bijna alle informatie (muziek, video, foto's,

Nadere informatie

Geheimschrift op de TI-83+

Geheimschrift op de TI-83+ Geheimschrift op de TI-83+ Gerard Tel Universiteit Utrecht, Departement Informatica 11 november 2015 Wat kun je verwachten? Cryptografie is: het verzinnen en gebruiken van geheimschriften, oftewel codes

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Code signing. Door: Tom Tervoort

Code signing. Door: Tom Tervoort Code signing Door: Tom Tervoort Wat is code signing? Digitale handtekening onder stuk software Geeft garanties over bron Voorkomt modificatie door derden Bijvoorbeeld met doel malware toe te voegen Ontvanger

Nadere informatie

Oplossing van opgave 6 en van de kerstbonusopgave.

Oplossing van opgave 6 en van de kerstbonusopgave. Oplossing van opgave 6 en van de kerstbonusopgave. Opgave 6 Lesbrief, opgave 4.5 De getallen m en n zijn verschillende positieve gehele getallen zo, dat de laatste drie cijfers van 1978 m en 1978 n overeenstemmen.

Nadere informatie

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties Hoofdstuk 6 Congruentierekening 6.1 Congruenties We hebben waarschijnlijk allemaal wel eens opgemerkt dat bij vermenigvuldigen van twee getallen de laatste cijfers als het ware meevermenigvuldigen. Stel

Nadere informatie

Aanvulling bij de cursus Calculus 1. Complexe getallen

Aanvulling bij de cursus Calculus 1. Complexe getallen Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Aanvullende tekst bij hoofdstuk 1

Aanvullende tekst bij hoofdstuk 1 Aanvullende tekst bij hoofdstuk 1 Wortels uit willekeurige getallen In paragraaf 1.3.5 hebben we het worteltrekalgoritme besproken. Dat deden we aan de hand van de relatie tussen de (van tevoren gegeven)

Nadere informatie

Lessenserie Cryptografie

Lessenserie Cryptografie Een van de meest tot de verbeelding sprekende voorgestelde keuzeonderwerpen is cryptografie Onafhankelijk van elkaar gingen Monique Stienstra en Harm Bakker aan de slag om lesmateriaal te ontwikkelen en

Nadere informatie

Theorie & Opdrachten

Theorie & Opdrachten Theorie & Opdrachten Inhoudsopgave INHOUDSOPGAVE 3 1. GEHEIMSCHRIFTEN 4 2. CRYPTOSYSTEMEN 5 3. DOOR ELKAAR SCHUDDEN 6 4. KOLOMMEN 7 5. SUBSTITUTIE ALFABET 8 6. DELERS EN PRIEMGETALLEN 9 7. ALGORITME VAN

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

1.1 Tweedegraadsvergelijkingen [1]

1.1 Tweedegraadsvergelijkingen [1] 1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2

Nadere informatie

Cryptograe: Van DES tot Chipknip Gerard Tel, Informatica Instituut email: gerard@cs.uu.nl Dit artikel geeft een uiterst beknopt overzicht van enkele belangrijke technieken op het gebied van de cryptograe

Nadere informatie

Profielwerkstuk Wiskunde 2005

Profielwerkstuk Wiskunde 2005 Profielwerkstuk Wiskunde 2005 Sander Wildeman 6VWO profiel NT Begeleider: Cor Steffens Inhoudsopgave Voorwoord... 2 Introductie... 3 1. Geschiedenis... 4 1.1 De Caesar code... 4 1.2 De Vigenère code...

Nadere informatie

HANDMATIG WORTELTREKKEN

HANDMATIG WORTELTREKKEN HANDMATIG WORTELTREKKEN 1. INLEIDING Boer Jaak bezit een vierkant stuk grond (oppervlakte = 169 m²). Hij wil heel graag een hek zetten langs één kant van dat stuk grond. Hij heeft vroeger niet zo goed

Nadere informatie

Cryptografie: Van DES tot Chipknip

Cryptografie: Van DES tot Chipknip Cryptografie: Van DES tot Chipknip Gerard Tel, Informatica Instituut email: gerard@cs.uu.nl Bij Cryptografie denken we het liefst aan een duister clubje ongeschoren Russische spionnen die met een ingewikkeld

Nadere informatie

Diophantische vergelijkingen

Diophantische vergelijkingen Diophantische vergelijkingen 1 Wat zijn Diophantische vergelijkingen? Een Diophantische vergelijking is een veeltermvergelijking waarbij zowel de coëfficiënten als de oplossingen gehele getallen moeten

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Informatie coderen en kraken

Informatie coderen en kraken 1 Introductie Informatie coderen en kraken een cryptografie workshop door Ben van Werkhoven en Peter Peerdeman In dit practicum cryptografie raak je bekend met een aantal simpele vormen van cryptografie

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Hoofdstuk 12. Sommen van kwadraten. 12.1 Sommen van twee kwadraten

Hoofdstuk 12. Sommen van kwadraten. 12.1 Sommen van twee kwadraten Hoofdstuk 12 Sommen van kwadraten 12.1 Sommen van twee kwadraten In Hoofdstuk 11 hebben we gezien dat als p een oneven priemdeler van a 2 + b 2 is, en p deelt niet zowel a als b, dan is p gelijk aan 1

Nadere informatie

11. Les 11 Vermenigvuldigen met 1. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie.

11. Les 11 Vermenigvuldigen met 1. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie. 11. Les 11 Vermenigvuldigen met 1 Auteur Its Academy Laatst gewijzigd Licentie Webadres 18 December 2014 CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie http://maken.wikiwijs.nl/45945 Dit lesmateriaal

Nadere informatie

Hoofdstuk 9. Cryptografie. 9.1 Geheimtaal

Hoofdstuk 9. Cryptografie. 9.1 Geheimtaal Hoofdstuk 9 Cryptografie 9.1 Geheimtaal Ter bescherming van privacy en van vertrouwelijke mededelingen wordt sinds de oudheid gebruik gemaakt van geheimschriften. Als kind wisselden mijn vriendjes en ik

Nadere informatie

Opgeloste en onopgeloste mysteries in de getaltheorie

Opgeloste en onopgeloste mysteries in de getaltheorie Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

De digitale handtekening

De digitale handtekening De digitale handtekening De rol van de digitale handtekening bij de archivering van elektronische documenten Prof. dr. Jos Dumortier http://www.law.kuleuven.ac.be/icri Probleemstelling: «integriteit» Elektronisch

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

ICT en de digitale handtekening. Door Peter Stolk

ICT en de digitale handtekening. Door Peter Stolk ICT en de digitale handtekening Door Peter Stolk Onderwerpen Elektronisch aanleveren van akten Issues bij de start Aanbieders van akten Hoe krijgen we ze zover? Demonstratie Welke technieken hebben we

Nadere informatie

Credit cards, computationele complexiteit en consistentie uitspraken

Credit cards, computationele complexiteit en consistentie uitspraken Credit cards, computationele complexiteit en consistentie uitspraken Joost J. Joosten 14 december 2005 Praag en bier Sinds enkele maanden werk ik als post-doc aan de Czech Academy of Sciences in Praag.

Nadere informatie

Dan is de waarde van het recessieve allel q dus 0,87, vanwege het feit dat p + q = 1.

Dan is de waarde van het recessieve allel q dus 0,87, vanwege het feit dat p + q = 1. Opgave 1: Wet van Hardy-Weinberg Een populatie van 10.000 individuen voldoet wat betreft de onderlinge voortplanting aan de voorwaarden, genoemd in de wet van Hardy-Weinberg. Van deze populatie is bekend

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Inhoudsopgave. Onderzoeksrapport: SSL; Dion Bosschieter; ITopia

Inhoudsopgave. Onderzoeksrapport: SSL; Dion Bosschieter; ITopia SSL veilig of niet? Dion Bosschieter Dit is een onderzoeksrapport dat antwoord geeft op de vraag: Kan een gebruiker er zeker van zijn dat SSL veilig is? ITopia Dion Bosschieter 23-04- 2012 Inhoudsopgave

Nadere informatie

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen -, aan de Universiteit Hasselt.

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen -, aan de Universiteit Hasselt. Auteursrechterlijke overeenkomst Opdat de Universiteit Hasselt uw eindverhandeling wereldwijd kan reproduceren, vertalen en distribueren is uw akkoord voor deze overeenkomst noodzakelijk. Gelieve de tijd

Nadere informatie

Hoofdstuk 1 : REKENEN

Hoofdstuk 1 : REKENEN 1 / 6 H1 Rekenen Hoofdstuk 1 : REKENEN 1. Wat moet ik leren? (handboek p.3-34) 1.1 Het decimaal stelsel In verband met het decimaal stelsel: a) het grondtal van ons decimaal stelsel geven. b) benamingen

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Trusted Third Party SFTP Extranet via de Filezilla-client

Trusted Third Party SFTP Extranet via de Filezilla-client Trusted Third Party SFTP Extranet via de Filezilla-client Maart 2013 1 INDEX 1.Inleiding...3 2.Een sleutelpaar genereren (publiek-privé)...3 2.1 Starten...3 2.2 Het sleutelpaar genereren en configureren...3

Nadere informatie

Rekenen met de GRM. 1 van 1. Inleiding: algemene zaken. donkerder. lichter

Rekenen met de GRM. 1 van 1. Inleiding: algemene zaken. donkerder. lichter 1 van 1 Rekenen met de GRM De grafische rekenmachine (voortaan afgekort met GRM) ga je bij hoofdstuk 1 voornamelijk als gewone rekenmachine gebruiken. De onderste zes rijen toetsen zijn vergelijkbaar met

Nadere informatie

De Chinese reststelling

De Chinese reststelling De Chinese reststelling 1 Inleiding 1. De Chinese reststelling is een stelling binnen de getaltheorie. De stelling werd voor het eerst beschreven in de vierde eeuw na Chr. door de Chinese wiskundige Sunzi

Nadere informatie

aé=êçä=î~å=çé=åêóéíçäçöáé=éå=çé=çáöáí~äé=ü~åçíéâéåáåö= áåò~âé=çé=îéáäáöüéáç=î~å=éäéâíêçåáëåüé=áåñçêã~íáéj ìáíïáëëéäáåö

aé=êçä=î~å=çé=åêóéíçäçöáé=éå=çé=çáöáí~äé=ü~åçíéâéåáåö= áåò~âé=çé=îéáäáöüéáç=î~å=éäéâíêçåáëåüé=áåñçêã~íáéj ìáíïáëëéäáåö aé=êçä=î~å=çé=åêóéíçäçöáé=éå=çé=çáöáí~äé=ü~åçíéâéåáåö= áåò~âé=çé=îéáäáöüéáç=î~å=éäéâíêçåáëåüé=áåñçêã~íáéj ìáíïáëëéäáåö müáäáééé=p`eo^bmbk éêçãçíçê=w mêçñkçêkáê=cê~åë=ibjbfob = báåçîéêü~åçéäáåö=îççêöéçê~öéå=íçí=üéí=äéâçãéå=î~å=çé=öê~~ç=

Nadere informatie

Dossier 3 PRIEMGETALLEN

Dossier 3 PRIEMGETALLEN Dossier 3 PRIEMGETALLEN atomen van de getallenleer Dr. Luc Gheysens Een priemgetal is een natuurlijk getal met twee verschillende delers, nl. 1 en het getal zelf. De priemgetallen zijn dus 2, 3, 5, 7,

Nadere informatie

Voorkennis. 66 Noordhoff Uitgevers bv 11 0, en y = = ,33 = y = 4x(x 2) y = 19x(1 2x) y = 3x( x + 5) y = 4x(4x + 1)

Voorkennis. 66 Noordhoff Uitgevers bv 11 0, en y = = ,33 = y = 4x(x 2) y = 19x(1 2x) y = 3x( x + 5) y = 4x(4x + 1) Hoofdstuk 0 - De abc-formule Hoofdstuk 0 - De abc-formule Voorkennis V-a y = 5 = 8 5 = en y = ( ) 5 = 8 5 = b y = + 8 = 6 = 6 en y = + 8 = 0,6 6 8 c y = + ( ) = + = = 6 en y = ( ) + ( ) = 9 6 = 9 + 8 =

Nadere informatie

De wortel uit min één. Jaap Top

De wortel uit min één. Jaap Top De wortel uit min één Jaap Top IWI-RuG & DIAMANT j.top@rug.nl 20 maart 2007 1 Marten Toonder, verhaal de minionen (1980) 2 3 4 5 Twee manieren om complexe getallen te beschrijven: algebraïsch, als uitdrukkingen

Nadere informatie

Opgaven bij het vormen van ruimte: van Poincaré tot Perelman

Opgaven bij het vormen van ruimte: van Poincaré tot Perelman Opgaven bij het vormen van ruimte: van Poincaré tot Perelman Roland van der Veen Inleiding Deze reeks opgaven is bedoeld voor de werkcolleges van de vakantiecursus Wiskunde in Wording, Augustus 2013. 1

Nadere informatie

De telduivel. Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen

De telduivel. Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen De telduivel Een slaapverwekkende opdracht voor iedereen die van wiskunde durft te dromen Een praktische opdracht voor leerlingen van 5VWO met wiskunde B DE TELDUIVEL Inleiding Wiskunde? Hou op zeg! Voor

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

v.l.n.r. RSA: Ron Rivest (1947), Adi Shamir (1952), Leonard Adleman (1945)

v.l.n.r. RSA: Ron Rivest (1947), Adi Shamir (1952), Leonard Adleman (1945) Julius Caesar (100-44 v.chr.) Blaise de Vigen!"#$%&'()*&'+,- Whitfield Diffie (1944) Robert Hellman (1945) v.l.n.r. RSA: Ron Rivest (1947), Adi Shamir (1952), Leonard Adleman (1945) VOORBEREIDEND MATERIAAL

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen

Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen Ter inleiding: tellen Turven, maar: onhandig bij grote aantallen. Romeinse cijfers: speciale symbolen voor

Nadere informatie

Inhoud. Kun je die code kraken?

Inhoud. Kun je die code kraken? Dit boekje is een bewerking van de masterclass Informatiebeveiliging: "Kun je die code kraken?", gegeven op 22 maart 2000 door Prof.dr. Henk C.A. van Tilborg. Inhoud 1 Beschermen van digitale gegevens

Nadere informatie

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Bijzondere getallen Oneindig (als getal) TomVerhoeff Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica T.Verhoeff@TUE.NL http://www.win.tue.nl/~wstomv/ Oneindig ... Oneindig 2 Top tien

Nadere informatie

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST

Twaalfde college complexiteit. 11 mei 2012. Overzicht, MST College 12 Twaalfde college complexiteit 11 mei 2012 Overzicht, MST 1 Agenda voor vandaag Minimum Opspannende Boom (minimum spanning tree) als voorbeeld van greedy algoritmen Overzicht: wat voor technieken

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

WISKUNDE B -DAG 2002 1+ 1 = 2. maar en hoe nu verder? 29 november 2002

WISKUNDE B -DAG 2002 1+ 1 = 2. maar en hoe nu verder? 29 november 2002 - 0 - WISKUNDE B -DAG 2002 1+ 1 = 2 maar en hoe nu verder? 29 november 2002 De Wiskunde B-dag wordt gesponsord door Texas Instruments - 1 - Inleiding Snel machtverheffen Stel je voor dat je 7 25 moet uitrekenen.

Nadere informatie

Small Basic Console Uitwerking opdrachten

Small Basic Console Uitwerking opdrachten Opdracht 1 3 getallen => inlezen Gemiddelde uitrekenen Resultaat afdrukken TextWindow.WriteLine("Dit programma berekend het gemiddelde van drie door U in te voeren getallen.") TextWindow.Write("Voer getal

Nadere informatie

Profielwerkstuk Informatica en Wiskunde Is RSA-cryptografie nu veilig genoeg en wat betekent dit voor de toekomst van digitale beveiliging?

Profielwerkstuk Informatica en Wiskunde Is RSA-cryptografie nu veilig genoeg en wat betekent dit voor de toekomst van digitale beveiliging? Profielwerkstuk Informatica en Wiskunde Is RSA-cryptografie nu veilig genoeg en wat betekent dit voor de toekomst van digitale beveiliging? Door Nahom Tsehaie en Jun Feng Begeleiders: David Lans en Albert

Nadere informatie

HOE BEWAAR JE SAMEN EEN GEHEIM

HOE BEWAAR JE SAMEN EEN GEHEIM HOE BEWAAR JE SAMEN EEN GEHEIM KOEN DE NAEGHEL Samenvatting. Dit artikel gaat over hoe een groep mensen samen een waardevol document of een grote som geld in een kluis kunnen bewaren, en wel op zo n manier

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

BWI-werkstuk geschreven door: Aart Valkhof Maart 2003. PGP: Pretty Good Privacy. Een overzicht.

BWI-werkstuk geschreven door: Aart Valkhof Maart 2003. PGP: Pretty Good Privacy. Een overzicht. BWI-werkstuk geschreven door: Aart Valkhof Maart 2003 PGP: Pretty Good Privacy. Een overzicht. PGP: Pretty Good Privacy. Een overzicht. De vrije Universiteit Faculteit der Wiskunde en Informatica Studierichting

Nadere informatie

WISKUNDE-ESTAFETTE 2011 Uitwerkingen

WISKUNDE-ESTAFETTE 2011 Uitwerkingen WISKUNDE-ESTAFETTE 2011 Uitwerkingen 1 C D O A O B Omdat driehoek ACD gelijkbenig is, is CAD = ACD en daarmee zien we dat 2 CAD+ ADC = 180. Maar we weten ook dat 180 = ADC + ADB. Dus ADB = 2 CAD. Driehoek

Nadere informatie

Uitwerkingen van de opgaven bij het vormen van ruimte: van Poincaré tot Perelman

Uitwerkingen van de opgaven bij het vormen van ruimte: van Poincaré tot Perelman Uitwerkingen van de opgaven bij het vormen van ruimte: van Poincaré tot Perelman Roland van der Veen Inleiding Deze reeks opgaven is bedoeld voor de werkcolleges van de vakantiecursus Wiskunde in Wording,

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

SAMENVATTING BASIS & KADER

SAMENVATTING BASIS & KADER SAMENVATTING BASIS & KADER Afronden Hoe je moet afronden hangt af van de situatie. Geldbedragen rond je meestal af op twee decimalen, 15,375 wordt 15,38. Grote getallen rondje meestal af op duizendtallen,

Nadere informatie

Kettingbreuken Frits Beukers. Masterclass Kettingbreuken Utrecht, 14 en 15 oktober 2011

Kettingbreuken Frits Beukers. Masterclass Kettingbreuken Utrecht, 14 en 15 oktober 2011 Kettingbreuken Frits Beukers Masterclass Kettingbreuken Utrecht, 4 en 5 oktober 20 INHOUDSOPGAVE Inhoudsopgave Inleiding 2 Wat is een kettingbreuk? 3 Eerste eigenschappen 3 4 Kettingbreuken van rationale

Nadere informatie

1.3 Rekenen met pijlen

1.3 Rekenen met pijlen 14 Getallen 1.3 Rekenen met pijlen 1.3.1 Het optellen van pijlen Jeweetnuwatdegetallenlijnisendat0nochpositiefnochnegatiefis. Wezullen nu een soort rekenen met pijlen gaan invoeren. We spreken af dat bij

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

REKENVAARDIGHEID BRUGKLAS

REKENVAARDIGHEID BRUGKLAS REKENVAARDIGHEID BRUGKLAS Schooljaar 008/009 Inhoud Uitleg bij het boekje Weektaak voor e week: optellen en aftrekken Weektaak voor e week: vermenigvuldigen Weektaak voor e week: delen en de staartdeling

Nadere informatie

Vermogen- en tijdsanalyse van cryptosystemen gebaseerd op elliptische krommen

Vermogen- en tijdsanalyse van cryptosystemen gebaseerd op elliptische krommen Vermogen- en tijdsanalyse van cryptosystemen gebaseerd op elliptische krommen Nele Mentens, Pieter Rommens en Marian Verhelst 3 de Ir. micro-elektronica 16 mei 23 ii Copyright by K.U.Leuven Zonder voorafgaande

Nadere informatie

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel)

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel) 1 Inleiding Wortels met getallen en letters WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht

Nadere informatie

2 Recurrente betrekkingen

2 Recurrente betrekkingen WIS2 1 2 Recurrente betrekkingen 2.1 Fibonacci De getallen van Fibonacci Fibonacci (= Leonardo van Pisa), 1202: Bereken het aantal paren konijnen na één jaar, als 1. er na 1 maand 1 paar pasgeboren konijnen

Nadere informatie

Opgaven Binair Zoeken en Invarianten Datastructuren, 4 mei 2016, Werkgroep.

Opgaven Binair Zoeken en Invarianten Datastructuren, 4 mei 2016, Werkgroep. Opgaven Binair Zoeken en Invarianten Datastructuren, 4 mei 2016, Werkgroep. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal

Nadere informatie