niet: achterop een ansichtkaart schrijven postbode (en wie al niet meer) leest mee

Maat: px
Weergave met pagina beginnen:

Download "niet: achterop een ansichtkaart schrijven postbode (en wie al niet meer) leest mee"

Transcriptie

1 Het geheim van goede koffie Benne de Weger oktober versturen van geheimen hoe moet je een geheim opsturen als onderweg iemand kan afluisteren? niet: achterop een ansichtkaart schrijven postbode (en wie al niet meer) leest mee al veel beter: in een dichtgeplakte envelop een dichte envelop openen is strafbaar een slimme afluisteraar krijgt hem wel open goed: in een kistje dat op slot kan veilig als het kistje goed stevig is 1 1

2 versleutelen: kistje met een slot twee vrijwilligers: Alice en Bob de rest van de klas is postbode / afluisteraar Alice schrijft een geheim briefje aan Bob Alice krijgt een kistje met een sleuteltje Alice doet het briefje in het kistje en ze doet het kistje op slot Alice geeft het kistje aan een postbode via een paar postbodes komt het kistje bij Bob en dan? Bob s probleem: hoe komt hij aan het sleuteltje? verzin een paar mogelijke oplossingen 2 versleutelen: kistje met een hangslot een hangslot is bijzonder: het kan dichtgedaan worden zonder dat het sleuteltje nodig is Bob stuurt via de postbodes zijn open (!) hangslot naar Alice Alice sluit het kistje af met Bob s hangslot Alice verstuurt het afgesloten kistje naar Bob via de postbodes Bob kan het nu met zijn sleutel openmaken Bob is de enige die dat kan 3 2

3 was dit veilig? was dit handig? de postbodes krijgen alleen een open hangslot en een afgesloten kistje in handen dit is veilig, mits het kistje stevig genoeg is Bob zijn sleuteltje goed bewaakt de postbode geen sleutel kan maken die bij het hangslot past dit is handiger het kistje hoeft maar één keer opgestuurd te worden dergelijke systemen worden veel gebruikt bijvoorbeeld voor internet-bankieren 4 publieke sleutel-cryptografie iedereen heeft een sleutelpaar bestaande uit een publieke sleutel (hangslot) en een privésleutel (sleuteltje) die op elkaar passen iedereen mag een kopie van de publieke sleutel hebben uit de publieke sleutel is de privésleutel niet af te leiden bekendste methode heet RSA gebaseerd op het moeilijk zijn van ontbinden in priemfactoren 5 3

4 gedachtenexperiment Alice en Bob doen het volgende: ze doen elk apart eerst wat berekeningen dan roepen ze wat getallen naar elkaar die de hele klas kan afluisteren dan doen ze elk apart nog wat berekeningen na afloop beschikken ze beide over hetzelfde geheime getal dat de anderen in de klas niet te weten kunnen komen let wel: alle communicatie tussen Alice en Bob is afgeluisterd denk je dat dit kan? 6 Alice, Bob, en de Cipier 7 4

5 de oplossing Alice zet koffie met precies genoeg melk stuurt die naar Bob Bob zet koffie met precies genoeg suiker stuurt die naar Alice Alice doet er precies genoeg melk bij Alice is blij Cipier kan wel beide onderscheppen en bij elkaar doen Bob doet er precies genoeg suiker bij Bob is blij maar dat is teveel koffie Cipier is niet blij 8 Diffie-Hellman ja, dat kan bedacht door Whitfield Diffie en Martin Hellman in 1976 Alice en Bob hebben elk een sleutelpaar ze sturen elkaar hun publieke sleutel die mag iedereen weten, ook de afluisteraar wel moet je weer zeker weten van wie de publieke sleutel is Alice en Bob maken nu ieder dezelfde geheime sleutel daarmee kan Alice een kistje op slot doen en Bob kan het kistje openmaken in de digitale wereld zijn sleutels getallen 9 5

6 modulo-rekenen Diffie-Hellman werkt met modulo-rekenen klokrekenen is rekenen modulo 12 7 uur na 8 uur is het 3 uur (mod 12) 12 heet de modulus kan ook met een andere modulus m je zegt a b (mod m) als a en b een m-voud verschillen modulo 17 zijn er maar 17 verschillende getallen 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 want 17 0, 18 1, 19 2, (mod 17) en -1 16, -2 15, -3 14, (mod 17) je kunt altijd terug naar een getal 0 en m 1 10 sleutelparen bij Diffie-Hellman Diffie-Hellman systeemparameters een groot priemgetal p een getal g met 1 < g < p 1 een Diffie-Hellman sleutelpaar privésleutel: willekeurig getal met 1 < x < p 1 publieke sleutel: y g x (mod p) voorbeeld: (met kleine getallen) p = 19, g = 3 x = 5, y = 15 want 3 5 = (mod 19) x = 6, y = 7 want 3 6 = (mod 19) 11 6

7 Diffie-Hellman sleutelafspraak verschillende berekeningen zelfde uitkomst 12 een voorbeeld systeemparameters: p = 19, g = 3 sleutelpaar van Alice: x A = 5, y A = 15 sleutelpaar van Bob: x B = 6, y B = 7 Alice berekent: s A = 7 5 = (mod 19) Bob berekent: s B = 15 6 (-4) 6 = (mod 19) het gedeelde geheime getal is nu s =

8 waarom werkt dit? sleutelpaar van Alice is x A, y A g x A (mod p) sleutelpaar van Bob is x B, y B g x B (mod p) Alice berekent s A y x A B (mod p) dit is y x A B (g x B) x A = g x B x A (mod p) Bob berekent s B y x B A (mod p) dit is y x B A (g x A) x B = g x A x B (mod p) dat is dus hetzelfde geheim: s = s A s B (mod p) x A = 5 y A = (mod 19) x B = 6 y B = (mod 19) s A 7 5 (mod 19) 7 5 (3 6 ) 5 = 3 6x5 (mod 19) s B 15 6 (mod 19) 15 6 (3 5 ) 6 = 3 5x6 (mod 19) s 3 6x5 = 3 5x6 (mod 19) (mod 19) 14 veiligheid van Diffie-Hellman waarom is dit veilig? een afluisteraar ziet alleen: systeemparameters p, g en publieke sleutels y A, y B en wil graag een privésleutel weten kun je x berekenen uit y = g x? als y = g x dan is x = g log(y) logaritmen zijn toch makkelijk? waarom is de privésleutel dan toch veilig? 15 8

9 logaritmen bij gewone getallen zijn makkelijk logaritmen (mod p) zijn moeilijk

10 versleutelen en ontsleutelen met Diffie-Hellman met het gedeelde geheim s kun je nu een bericht B versleutelen tot een geheimschrift G een geheimschrift G ontsleutelen tot het oorspronkelijke bericht B s = 11 dat kan heel simpel: B = 13 Alice versleutelt met vermenigvuldigen (mod p) G B x s (mod p) Bob ontsleutelt met delen (mod p) B G / s (mod p) (optellen en aftrekken is minder veilig ) G = 9 want 13 x 11 = (mod 19) B = 13 want 9 / / 11 = 13 (mod 19) 18 computerpraktikum Diffie-Hellman op school zelf doen met grotere getallen modulo-rekenen op de laptop met het programma MCB publieke sleutels en geheimschriften uitwisselen via een gedeelde netwerk-map privésleutels en geheime berichten alleen opgeslagen in eigen map of zelf met de web-versie MCR:

11 de wiskunde erachter 20 11

Public Key Cryptography. Wieb Bosma

Public Key Cryptography. Wieb Bosma Public Key Cryptography de wiskunde van het perfecte kopje koffie Wieb Bosma Radboud Universiteit Nijmegen Bachelordag 2 april 2011 Nijmegen, 6 november 2010 0 Nijmegen, 6 november 2010 1 cryptografie

Nadere informatie

Hoe je het cryptosysteem RSA soms kunt kraken. Benne de Weger

Hoe je het cryptosysteem RSA soms kunt kraken. Benne de Weger Hoe je het cryptosysteem RSA soms kunt kraken Benne de Weger 28 aug. / 4 sept. RSA 1/38 asymmetrisch cryptosysteem versleutelen met de publieke sleutel ontsleutelen met de bijbehorende privé-sleutel gebaseerd

Nadere informatie

Toepassingen van de Wiskunde in de Digitale Wereld

Toepassingen van de Wiskunde in de Digitale Wereld Toepassingen van de Wiskunde in de Digitale Wereld Eindhoven 17 juli 2010 Henk van Tilborg Technische Universiteit Eindhoven 1 Beschermen van digitale gegevens. Bijna alle informatie (muziek, video, foto's,

Nadere informatie

Het RSA Algoritme. Erik Aarts - 1 -

Het RSA Algoritme. Erik Aarts - 1 - Het RSA Algoritme Erik Aarts - 1 - 1 Wiskunde... 3 1.1 Het algoritme van Euclides... 3 1.1.1 Stelling 1... 4 1.2 Het uitgebreide algoritme van Euclides... 5 1.3 Modulo rekenen... 7 1.3.1 Optellen, aftrekken

Nadere informatie

Geheimschrift op de TI-83+ Gerard Tel

Geheimschrift op de TI-83+ Gerard Tel Geheimschrift op de TI-83+ Gerard Tel Department of Information and Computing Sciences, Utrecht University Technical Report UU-CS-2006-017 www.cs.uu.nl ISSN: 0924-3275 Geheimschrift op de TI-83+ Gerard

Nadere informatie

Theorie & Opdrachten

Theorie & Opdrachten Theorie & Opdrachten Inhoudsopgave INHOUDSOPGAVE 3 1. GEHEIMSCHRIFTEN 4 2. CRYPTOSYSTEMEN 5 3. DOOR ELKAAR SCHUDDEN 6 4. KOLOMMEN 7 5. SUBSTITUTIE ALFABET 8 6. DELERS EN PRIEMGETALLEN 9 7. ALGORITME VAN

Nadere informatie

Cryptografie met krommen. Reinier Bröker. Universiteit Leiden

Cryptografie met krommen. Reinier Bröker. Universiteit Leiden Cryptografie met krommen Reinier Bröker Universiteit Leiden Nationale Wiskundedagen Februari 2006 Cryptografie Cryptografie gaat over geheimschriften en het versleutelen van informatie. Voorbeelden. Klassieke

Nadere informatie

??? Peter Stevenhagen. 7 augustus 2008 Vierkant voor wiskunde

??? Peter Stevenhagen. 7 augustus 2008 Vierkant voor wiskunde 1 ??? Peter Stevenhagen 7 augustus 2008 Vierkant voor wiskunde 2 Wiskunde en cryptografie Peter Stevenhagen 7 augustus 2008 Vierkant voor wiskunde 3 Crypto is voor iedereen Peter Stevenhagen 7 augustus

Nadere informatie

De wiskunde achter de Bitcoin

De wiskunde achter de Bitcoin De wiskunde achter de Bitcoin Bas Edixhoven Universiteit Leiden NWD, Noordwijkerhout, 2015/01/31 Deze aantekeningen zal ik op mijn homepage plaatsen. Bas Edixhoven (Universiteit Leiden) De wiskunde achter

Nadere informatie

Lessenserie Cryptografie

Lessenserie Cryptografie Een van de meest tot de verbeelding sprekende voorgestelde keuzeonderwerpen is cryptografie Onafhankelijk van elkaar gingen Monique Stienstra en Harm Bakker aan de slag om lesmateriaal te ontwikkelen en

Nadere informatie

Inhoudsopgave. Onderzoeksrapport: SSL; Dion Bosschieter; ITopia

Inhoudsopgave. Onderzoeksrapport: SSL; Dion Bosschieter; ITopia SSL veilig of niet? Dion Bosschieter Dit is een onderzoeksrapport dat antwoord geeft op de vraag: Kan een gebruiker er zeker van zijn dat SSL veilig is? ITopia Dion Bosschieter 23-04- 2012 Inhoudsopgave

Nadere informatie

Oude cijfers en moderne cryptosystemen

Oude cijfers en moderne cryptosystemen Oude cijfers en moderne cryptosystemen SuperTU/esday Eindhoven 11 februari, 2010 Henk van Tilborg Technische Universiteit Eindhoven 1 Het Caesar systeem Julius Caesar (100-44 BC), die Romeinse keizer was

Nadere informatie

Is RSA-cryptografie nu veilig genoeg en wat betekent dit voor de toekomst van digitale beveiliging?

Is RSA-cryptografie nu veilig genoeg en wat betekent dit voor de toekomst van digitale beveiliging? Is RSA-cryptografie nu veilig genoeg en wat betekent dit voor de toekomst van digitale beveiliging? Profielwerkstuk Examenkandidaten: Nahom Tsehaie (N&T en N&G) Jun Feng (N&T) Begeleiders: David Lans Albert

Nadere informatie

Profielwerkstuk Informatica en Wiskunde Is RSA-cryptografie nu veilig genoeg en wat betekent dit voor de toekomst van digitale beveiliging?

Profielwerkstuk Informatica en Wiskunde Is RSA-cryptografie nu veilig genoeg en wat betekent dit voor de toekomst van digitale beveiliging? Profielwerkstuk Informatica en Wiskunde Is RSA-cryptografie nu veilig genoeg en wat betekent dit voor de toekomst van digitale beveiliging? Door Nahom Tsehaie en Jun Feng Begeleiders: David Lans en Albert

Nadere informatie

Profielwerkstuk Wiskunde 2005

Profielwerkstuk Wiskunde 2005 Profielwerkstuk Wiskunde 2005 Sander Wildeman 6VWO profiel NT Begeleider: Cor Steffens Inhoudsopgave Voorwoord... 2 Introductie... 3 1. Geschiedenis... 4 1.1 De Caesar code... 4 1.2 De Vigenère code...

Nadere informatie

2. Optellen en aftrekken van gelijknamige breuken

2. Optellen en aftrekken van gelijknamige breuken 1. Wat is een breuk? Een breuk Een breuk is een verhoudingsgetal. Een breuk geeft aan hoe groot een deel is van een geheel. Stel een taart is verdeeld in stukken. Je neemt 2 stukken van de taart. Je hebt

Nadere informatie

DigiD SSL. Versie 2.1.1. Datum 16 augustus 2010 Status Definitief

DigiD SSL. Versie 2.1.1. Datum 16 augustus 2010 Status Definitief DigiD SSL Versie 2.1.1 Datum 16 augustus 2010 Status Definitief Colofon Projectnaam DigiD Versienummer 2.1.1 Organisatie Logius Postbus 96810 2509 JE Den Haag servicecentrum@logius.nl Pagina 2 van 9 Inhoud

Nadere informatie

Hoe je het cryptosysteem RSA soms kunt kraken

Hoe je het cryptosysteem RSA soms kunt kraken Hoe je het cryptosysteem RSA soms kunt kraken Benne de Weger Technische Universiteit Eindhoven Inleiding. RSA RSA is een veelgebruikt cryptografisch systeem, bijvoorbeeld voor het beveiligen van internetverkeer.

Nadere informatie

aé=êçä=î~å=çé=åêóéíçäçöáé=éå=çé=çáöáí~äé=ü~åçíéâéåáåö= áåò~âé=çé=îéáäáöüéáç=î~å=éäéâíêçåáëåüé=áåñçêã~íáéj ìáíïáëëéäáåö

aé=êçä=î~å=çé=åêóéíçäçöáé=éå=çé=çáöáí~äé=ü~åçíéâéåáåö= áåò~âé=çé=îéáäáöüéáç=î~å=éäéâíêçåáëåüé=áåñçêã~íáéj ìáíïáëëéäáåö aé=êçä=î~å=çé=åêóéíçäçöáé=éå=çé=çáöáí~äé=ü~åçíéâéåáåö= áåò~âé=çé=îéáäáöüéáç=î~å=éäéâíêçåáëåüé=áåñçêã~íáéj ìáíïáëëéäáåö müáäáééé=p`eo^bmbk éêçãçíçê=w mêçñkçêkáê=cê~åë=ibjbfob = báåçîéêü~åçéäáåö=îççêöéçê~öéå=íçí=üéí=äéâçãéå=î~å=çé=öê~~ç=

Nadere informatie

Hoofdstuk 9. Cryptografie. 9.1 Geheimtaal

Hoofdstuk 9. Cryptografie. 9.1 Geheimtaal Hoofdstuk 9 Cryptografie 9.1 Geheimtaal Ter bescherming van privacy en van vertrouwelijke mededelingen wordt sinds de oudheid gebruik gemaakt van geheimschriften. Als kind wisselden mijn vriendjes en ik

Nadere informatie

1.5.1 Natuurlijke, gehele en rationale getallen

1.5.1 Natuurlijke, gehele en rationale getallen 46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:

Nadere informatie

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen Worteltrekken modulo een priemgetal: van klok tot cutting edge Roland van der Veen Modulorekenen Twee getallen a en b zijn gelijk modulo p als ze een veelvoud van p verschillen. Notatie: a = b mod p Bijvoorbeeld:

Nadere informatie

Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen

Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen Ter inleiding: tellen Turven, maar: onhandig bij grote aantallen. Romeinse cijfers: speciale symbolen voor

Nadere informatie

Vermogen- en tijdsanalyse van cryptosystemen gebaseerd op elliptische krommen

Vermogen- en tijdsanalyse van cryptosystemen gebaseerd op elliptische krommen Vermogen- en tijdsanalyse van cryptosystemen gebaseerd op elliptische krommen Nele Mentens, Pieter Rommens en Marian Verhelst 3 de Ir. micro-elektronica 16 mei 23 ii Copyright by K.U.Leuven Zonder voorafgaande

Nadere informatie

I.1 Wiskunde in uw broekzak

I.1 Wiskunde in uw broekzak I I I.1 Wiskunde in uw broekzak Vrijwel alle Nederlanders hebben in hun portemonnee een aantal betaalkaarten. Heel populair is de pinpas, en ook creditcards zijn allang niet meer voorbehouden aan een elite.

Nadere informatie

SUM OF US 2011: CRYPTOGRAFIE

SUM OF US 2011: CRYPTOGRAFIE SUM OF US 2011: CRYPTOGRAFIE De Zodiac Killer of simelweg de Zodiac is één van de meest beruchte en raadselachtige seriemoordenaars in de geschiedenis van de Verenigde Staten. In de jaren 60 en de vroege

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Veilig e-mailen. Waarom e-mailen via een beveiligde verbinding? U vertrouwt de verbinding met de e-mailserver van InterNLnet niet

Veilig e-mailen. Waarom e-mailen via een beveiligde verbinding? U vertrouwt de verbinding met de e-mailserver van InterNLnet niet Veilig e-mailen E-mail heeft zich inmiddels ruimschoots bewezen als communicatiemiddel. Het is een snelle en goedkope manier om met anderen waar ook ter wereld te communiceren. Als gevolg hiervan vindt

Nadere informatie

De waarde van een plaats in een getal.

De waarde van een plaats in een getal. Komma getallen. Toen je net op school leerde rekenen, wist je niet beter dan dat getallen heel waren. Dus een taart was een taart, een appel een appel en een peer een peer. Langzaam maar zeker werd dit

Nadere informatie

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28

2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28 Breuken Samenvatting Als je hele getallen deelt, kunnen er breuken ontstaan. Een breuk is een deel van iets. Je hebt iets in gelijke delen verdeeld. Wanneer je een kwart van een pizza hebt, dan heb je

Nadere informatie

De digitale handtekening

De digitale handtekening De digitale handtekening De rol van de digitale handtekening bij de archivering van elektronische documenten Prof. dr. Jos Dumortier http://www.law.kuleuven.ac.be/icri Probleemstelling: «integriteit» Elektronisch

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

1. Optellen en aftrekken

1. Optellen en aftrekken 1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'

Nadere informatie

Programma. - Sommetjes overschrijven!!!! - Voorkennis mag ook na paragraaf 1 t/m 3 - priemfactoren - rekenen met getallen. hfst 9 rekenen2.

Programma. - Sommetjes overschrijven!!!! - Voorkennis mag ook na paragraaf 1 t/m 3 - priemfactoren - rekenen met getallen. hfst 9 rekenen2. Programma - Sommetjes overschrijven!!!! - Voorkennis mag ook na paragraaf 1 t/m 3 - priemfactoren - rekenen met getallen 1 priemfactoren Programma - Sommetjes overschrijven!!!! - Voorkennis mag ook na

Nadere informatie

HOE BEWAAR JE SAMEN EEN GEHEIM

HOE BEWAAR JE SAMEN EEN GEHEIM HOE BEWAAR JE SAMEN EEN GEHEIM KOEN DE NAEGHEL Samenvatting. Dit artikel gaat over hoe een groep mensen samen een waardevol document of een grote som geld in een kluis kunnen bewaren, en wel op zo n manier

Nadere informatie

5. Functies. In deze module leert u:

5. Functies. In deze module leert u: 5. Functies In deze module leert u: - Wat functies zijn; - Functies uitvoeren; - De verschillende functies van Calc kennen. - Naar een ander werkblad verwijzen. U kunt eenvoudige berekeningen, zoals aftrekken,

Nadere informatie

Het weetjesschrift. Weetjesschrift Galamaschool

Het weetjesschrift. Weetjesschrift Galamaschool Het weetjesschrift Dit is het weetjesschrift. In dit schrift vind je heel veel weetjes over taal, rekenen en andere onderwerpen. Sommige weetjes zal je misschien al wel kennen en anderen leer je nog! Uiteindelijk

Nadere informatie

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs Uitwerkingen van de opgaven bij de basisvaardigheden 1 Hele getallen Peter Ale Martine van Schaik u i t g e v e r ij c o u t i

Nadere informatie

Oefening: Markeer de getallen die een priemgetal zijn.

Oefening: Markeer de getallen die een priemgetal zijn. Getallenkennis : Priemgetallen. Wat is een priemgetal? Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. (m.a.w. een priemgetal is een natuurlijk getal

Nadere informatie

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel)

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel) 1 Inleiding Wortels met getallen en letters WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

cryptografie F. Vonk versie 4 10-8-2015

cryptografie F. Vonk versie 4 10-8-2015 2015 cryptografie F. Vonk versie 4 10-8-2015 inhoudsopgave 1. inleiding... - 2-2. geschiedenis... - 3-3. belang... - 10-4. toepassingen... - 12-5. moderne cryptografie... - 17-6. symmetrisch versus asymmetrisch...

Nadere informatie

Groepen, ringen en velden

Groepen, ringen en velden Groepen, ringen en velden Groep Een groep G is een verzameling van elementen en een binaire operator met volgende eigenschappen: 1. closure (gesloten): als a en b tot G behoren, doet a b dat ook. 2. associativiteit:

Nadere informatie

Kernbegrippen Handig met getallen 1, onderdeel Bewerkingen

Kernbegrippen Handig met getallen 1, onderdeel Bewerkingen Kernbegrippen Handig met getallen 1, onderdeel Bewerkingen 1.12 Kernbegrippen van de Kennisbasis Hele getallen, onderdeel Bewerkingen Aftrekker De aftrekker in een aftreksom is het getal dat aangeeft hoeveel

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

De rol van de digitale handtekening bij de archivering van elektronische documenten

De rol van de digitale handtekening bij de archivering van elektronische documenten De rol van de digitale handtekening bij de archivering van elektronische documenten De toenemende digitalisering heeft verregaande gevolgen voor de archiefwereld. Bijna alle documenten worden momenteel

Nadere informatie

REKENVAARDIGHEID BRUGKLAS

REKENVAARDIGHEID BRUGKLAS REKENVAARDIGHEID BRUGKLAS Schooljaar 008/009 Inhoud Uitleg bij het boekje Weektaak voor e week: optellen en aftrekken Weektaak voor e week: vermenigvuldigen Weektaak voor e week: delen en de staartdeling

Nadere informatie

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat.

3.2 Basiskennis. 3.2.1 De getallenlijn. 3.2.2 Symbolen, tekens en getallen. 92 Algebra. Inhoofdstuk1zijnaandeordegeweest: Het=teken. =staat. 92 Algebra 3.2 Basiskennis Inhoofdstuk1zijnaandeordegeweest: 3.2.1 De getallenlijn... -5-4 -3-2 -1 0 1 2 3 4 5... 3.2.2 Symbolen, tekens en getallen Het=teken 5+2+3=10 = geeft aan dat wat links van = staat,

Nadere informatie

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6

De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6 Breuken Breuk betekent dat er iets gebroken is. Het is niet meer heel. Als je een meloen doormidden snijdt, is die niet meer heel, maar verdeeld in twee stukken. Eén zo n stuk is dan een halve meloen,

Nadere informatie

Hoofdstuk 20: Wiskundige functies

Hoofdstuk 20: Wiskundige functies Hoofdstuk 20: Wiskundige functies 20.0 Introductie Er is een uitgebreid aanbod aan wiskundige functies in Excel, variërend van het simpele + teken tot de esoterische statistiek functies voor een correlatie

Nadere informatie

1.3 Rekenen met pijlen

1.3 Rekenen met pijlen 14 Getallen 1.3 Rekenen met pijlen 1.3.1 Het optellen van pijlen Jeweetnuwatdegetallenlijnisendat0nochpositiefnochnegatiefis. Wezullen nu een soort rekenen met pijlen gaan invoeren. We spreken af dat bij

Nadere informatie

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen -, aan de Universiteit Hasselt.

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen -, aan de Universiteit Hasselt. Auteursrechterlijke overeenkomst Opdat de Universiteit Hasselt uw eindverhandeling wereldwijd kan reproduceren, vertalen en distribueren is uw akkoord voor deze overeenkomst noodzakelijk. Gelieve de tijd

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

Pinniemaat. Zo werkt de leukste spaarpot van Nederland

Pinniemaat. Zo werkt de leukste spaarpot van Nederland Pinniemaat Zo werkt de leukste spaarpot van Nederland 302097_0913.indd 1 27-08-13 14:48 Pinniemaat Gefeliciteerd! Je hebt nu de leukste spaarpot van Nederland: de Pinniemaat. Met jouw Pinniemaat kun je

Nadere informatie

Een formule is een berekening die jij zelf maakt in Excel. Een formule begint met het isgelijkteken en bevat celverwijzingen.

Een formule is een berekening die jij zelf maakt in Excel. Een formule begint met het isgelijkteken en bevat celverwijzingen. Formules Een formule is een berekening die jij zelf maakt in Excel. Een formule begint met het isgelijkteken en bevat celverwijzingen. Figuur 1. Elke formule begint met = Stappen bij het maken van een

Nadere informatie

Getallen 1F Doelen Voorbeelden 2F Doelen Voorbeelden

Getallen 1F Doelen Voorbeelden 2F Doelen Voorbeelden A Notatie en betekenis - Uitspraak, schrijfwijze en betekenis van, symbolen en relaties - Wiskundetaal gebruiken - de relaties groter/kleiner dan - breuknotatie met horizontale streep - teller, noemer,

Nadere informatie

Hoe schrijf je de logaritmische waarden welke bij db s horen?

Hoe schrijf je de logaritmische waarden welke bij db s horen? Die moeilijke decibellen toch. PA0 FWN. Inleiding. Ondanks dat in Electron al vaak een artikel aan decibellen is geweid, en PA0 LQ in het verleden al eens een buitengewoon handige tabel publiceerde waar

Nadere informatie

Cryptografie: Van DES tot Chipknip

Cryptografie: Van DES tot Chipknip Cryptografie: Van DES tot Chipknip Gerard Tel, Informatica Instituut email: gerard@cs.uu.nl Bij Cryptografie denken we het liefst aan een duister clubje ongeschoren Russische spionnen die met een ingewikkeld

Nadere informatie

Inhoud. Kun je die code kraken?

Inhoud. Kun je die code kraken? Dit boekje is een bewerking van de masterclass Informatiebeveiliging: "Kun je die code kraken?", gegeven op 22 maart 2000 door Prof.dr. Henk C.A. van Tilborg. Inhoud 1 Beschermen van digitale gegevens

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Inleiding. Hoofdstuk 1

Inleiding. Hoofdstuk 1 Hoofdstuk 1 Inleiding In dit verslag bespreken wij de beveiliging van een wereldwijd gebruikt communicatiemiddel, namelijk de mobiele telefoon. We bespreken kort de algoritmes voor identificatie en versleuteling

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

Overzicht rekenstrategieën

Overzicht rekenstrategieën Overzicht rekenstrategieën Groep 3 erbij tot tien Groep 3 eraf tot tien Groep 4 erbij tot twintigt Groep 4 eraf tot twintigt Groep 4 erbij tot honderd Groep 4 eraf tot honderd Groep 4 en 5 tafels tot tien

Nadere informatie

Cryptografie met behulp van elliptische krommen

Cryptografie met behulp van elliptische krommen Cryptografie met behulp van elliptische krommen Bachelorscriptie Wiskunde Erik van der Kouwe Studentnummer 1397273 E-mail: erik@erisma.nl Vrije Universiteit Amsterdam Faculteit Exacte Wetenschappen Afdeling

Nadere informatie

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495.

5.327 703 x 15.981 3.728.900 + 3.744.881. 2.160 3.007 x 15.120 6.480.000 + 6.495.120. 2.160 3.007 x 15.120 00.000 0 00.000 6.480.000 + 6.495. Bij vermenigvuldigen van twee grote getallen onder elkaar staan de rijen onder de streep elk voor een tussenstap. De eerste rij staat voor het vermenigvuldigen met het cijfer dat de eenheden van het onderste

Nadere informatie

Hoofdstuk 5: Functies voor getallen en teksten

Hoofdstuk 5: Functies voor getallen en teksten Programmeren in Microsoft Visual Basic 6.0, lessenserie voor het voortgezet onderwijs HAVO/VWO David Lans, Emmauscollege, Marnix Gymnasium Rotterdam, maart 2001 Hoofdstuk 5: Functies voor getallen en teksten

Nadere informatie

Encryptie RSA Carl Reinehr

Encryptie RSA Carl Reinehr Encryptie RSA Kontich, januari 2003 Encryptie RSA Auteur : School : CVO Antwerpen-Zuid Studentnummer : 176 Studierichting : HTL Informatica Netwerkbeheer Module : Datacommunicatie Docent : Marc Rosseau

Nadere informatie

Algebra. voor Informaticastudenten Getallen. Ernic Kamerich. Jean Delville: de school van Plato

Algebra. voor Informaticastudenten Getallen. Ernic Kamerich. Jean Delville: de school van Plato Algebra voor Informaticastudenten Getallen Jean Delville: de school van Plato Ernic Kamerich januari 2007 Inhoud 1 De gehele getallen..........................................................................

Nadere informatie

Algebra en Getaltheorie@Work: van cryptosysteem tot digitale handtekening

Algebra en Getaltheorie@Work: van cryptosysteem tot digitale handtekening Algebra en Getaltheorie@Work: van cryptosysteem tot digitale handtekening Dr. Fabien Decruyenaere, St. Amandscollege, 8500 Kortrijk fabien.decruyenaere@skynet.be Prof. Dr. Paul Igodt, K.U.Leuven Campus

Nadere informatie

Certificaten. Wat betekent certificaat. Certificaten bij e-mail. heeft. en publieke sleutel. handtekening

Certificaten. Wat betekent certificaat. Certificaten bij e-mail. heeft. en publieke sleutel. handtekening Ondergetekende certificeert dat e-mail adres Certificaat Thawte Consulting (Pty) Ltd. Johannes Bernardus Swenker Johan.Swenker@xs4all.nl heeft Wat betekent certificaat Een certificaat lijkt op een paspoort.

Nadere informatie

Informatie coderen en kraken

Informatie coderen en kraken 1 Introductie Informatie coderen en kraken een cryptografie workshop door Ben van Werkhoven en Peter Peerdeman In dit practicum cryptografie raak je bekend met een aantal simpele vormen van cryptografie

Nadere informatie

Afspraken hoofdrekenen eerste tot zesde leerjaar

Afspraken hoofdrekenen eerste tot zesde leerjaar 24/04/2013 Afspraken hoofdrekenen eerste tot zesde leerjaar Sint-Ursula-Instituut Rekenprocedures eerste leerjaar Rekenen, hoe doe ik dat? 1. E + E = E 2 + 5 = 7 Ik heb er 2. Er komen er 5 bij. Dat is

Nadere informatie

WISKUNDE B -DAG 2002 1+ 1 = 2. maar en hoe nu verder? 29 november 2002

WISKUNDE B -DAG 2002 1+ 1 = 2. maar en hoe nu verder? 29 november 2002 - 0 - WISKUNDE B -DAG 2002 1+ 1 = 2 maar en hoe nu verder? 29 november 2002 De Wiskunde B-dag wordt gesponsord door Texas Instruments - 1 - Inleiding Snel machtverheffen Stel je voor dat je 7 25 moet uitrekenen.

Nadere informatie

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN

BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Kommagetallen. Twee stukjes is

Kommagetallen. Twee stukjes is Kommagetallen Een kommagetal is een getal dat niet heel is. Het is een breuk. Voor de komma staan de helen, achter de komma staat de breuk. De cijfers achter de komma staan voor de tienden, honderdsten,

Nadere informatie

The Onion Router: een overzicht

The Onion Router: een overzicht The Onion Router: een overzicht Kaj-Ivar van der Wijst Utrecht University k.vanderwijst@uu.nl 1 Introductie Het TOR netwerk, ook wel The Onion Router genoemd, biedt gebruikers de mogelijkheid om anoniem

Nadere informatie

Rekenen: Getallen groep 5 en hoger. Rekenen en schattingen ontdekken. Algebra groep 5 en hoger. Patronen en relaties ontdekken.

Rekenen: Getallen groep 5 en hoger. Rekenen en schattingen ontdekken. Algebra groep 5 en hoger. Patronen en relaties ontdekken. Activiteit 4 Kaarten truc Fout opsporen & herstellen Samenvatting Wanneer data worden opgeslagen op een harde schijf of worden verzonden van de ene computer naar de andere, nemen we aan dat de data niet

Nadere informatie

Rekenen met verhoudingen

Rekenen met verhoudingen Rekenen met verhoudingen Groep 6, 7 Achtergrond Leerlingen moeten niet alleen met de verhoudingstabel kunnen werken wanneer die al klaar staat in het rekenboek, ze moeten ook zelf een verhoudingstabel

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2. Omschrijving Rekenen en Wiskunde Getallen 2

Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2. Omschrijving Rekenen en Wiskunde Getallen 2 Getallen 2 Getallen 2 bestrijkt de uitbreiding van de basisvaardigheden van het rekenen, regels en vaardigheden die in het vmbo en de onderbouw van havo/vwo worden aangeleerd, geoefend en toegepast. Doelgroep

Nadere informatie

Begin situatie Wiskunde/Rekenen. VMBO BB leerling

Begin situatie Wiskunde/Rekenen. VMBO BB leerling VMBO BB leerling Verbanden en Hoge -bewerkingen onder 100 -tafels t/m 10 (x:) -bewerkingen met eenvoudige grote en -makkelijk rekenen -vergelijken/ordenen op getallenlijn -makkelijke breuken omzetten -deel

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

Numerieke aspecten van de vergelijking van Cantor. Opgedragen aan Th. J. Dekker. H. W. Lenstra, Jr.

Numerieke aspecten van de vergelijking van Cantor. Opgedragen aan Th. J. Dekker. H. W. Lenstra, Jr. Numerieke aspecten van de vergelijking van Cantor Opgedragen aan Th. J. Dekker H. W. Lenstra, Jr. Uit de lineaire algebra is bekend dat het aantal oplossingen van een systeem lineaire vergelijkingen gelijk

Nadere informatie

ALBERDINGK THIJM COLLEGE REKENGIDS. Basis en afspraken rekenen

ALBERDINGK THIJM COLLEGE REKENGIDS. Basis en afspraken rekenen ALBERDINGK THIJM COLLEGE REKENGIDS Basis en afspraken rekenen VOORWOORD Deze rekengids is bedoeld als overzichtelijk naslagwerk voor leerlingen, ouders, docenten en alle anderen die met rekenen te maken

Nadere informatie

Montfortcollege Rotselaar LW6. Schooljaar 2006 2007. Cryptografie. Frederic Vleminckx. Begeleider: Mr. Olaerts. Eindwerk Wiskunde

Montfortcollege Rotselaar LW6. Schooljaar 2006 2007. Cryptografie. Frederic Vleminckx. Begeleider: Mr. Olaerts. Eindwerk Wiskunde Montfortcollege Rotselaar LW6 Schooljaar 2006 2007 Cryptografie Frederic Vleminckx Begeleider: Mr. Olaerts Eindwerk Wiskunde Woord vooraf Cryptografie is een domein dat mij al van kleins af interesseerde.

Nadere informatie

Het Land van Oct. Marte Koning Frans Ballering. Vierkant voor Wiskunde Wiskundeclubs

Het Land van Oct. Marte Koning Frans Ballering. Vierkant voor Wiskunde Wiskundeclubs Het Land van Oct Marte Koning Frans Ballering Vierkant voor Wiskunde Wiskundeclubs Hoofdstuk 1 Inleiding Hoi, ik ben de Vertellende Teller, en die naam heb ik gekregen na mijn meest bekende reis, de reis

Nadere informatie

Drempelbeveiling mogelijk maken voor RFID

Drempelbeveiling mogelijk maken voor RFID Drempelbeveiling mogelijk maken voor RFID Philippe Jeurissen Thesis voorgedragen tot het behalen van de graad van Master in de ingenieurswetenschappen: elektrotechniek, optie Geïntegreerde elektronica

Nadere informatie

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4:

In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel van rekenregel 4: Katern 4 Bewijsmethoden Inhoudsopgave 1 Bewijs uit het ongerijmde 1 2 Extremenprincipe 4 3 Ladenprincipe 8 1 Bewijs uit het ongerijmde In Katern 2 hebben we de volgende rekenregel bewezen, als onderdeel

Nadere informatie

Excel reader. Beginner Gemiddeld. bas@excel-programmeur.nl

Excel reader. Beginner Gemiddeld. bas@excel-programmeur.nl Excel reader Beginner Gemiddeld Auteur Bas Meijerink E-mail bas@excel-programmeur.nl Versie 01D00 Datum 01-03-2014 Inhoudsopgave Introductie... - 3 - Hoofdstuk 1 - Databewerking - 4-1. Inleiding... - 5-2.

Nadere informatie

Update Hoofdstuk 11 Beveiligde E mail. 11.4.1 Software installeren. gebaseerd op de volgende versie: Mozilla Thunderbird 3.1.10

Update Hoofdstuk 11 Beveiligde E mail. 11.4.1 Software installeren. gebaseerd op de volgende versie: Mozilla Thunderbird 3.1.10 Update Hoofdstuk 11 Beveiligde E mail gebaseerd op de volgende versie: Mozilla Thunderbird 3.1.10 11.4.1 Software installeren 5. Vervalt De Importeerassistent zit niet meer in de nieuwe versie 6. Vervalt

Nadere informatie

Hoofdstuk 21: Gegevens samenvatten

Hoofdstuk 21: Gegevens samenvatten Hoofdstuk 21: Gegevens samenvatten 21.0 Inleiding In Excel kunnen grote (en zelfs ook niet zo grote) tabellen met getallen en tekst er nogal intimiderend uitzien. Echter, Excel komt helemaal tot haar recht

Nadere informatie

BWI-werkstuk geschreven door: Aart Valkhof Maart 2003. PGP: Pretty Good Privacy. Een overzicht.

BWI-werkstuk geschreven door: Aart Valkhof Maart 2003. PGP: Pretty Good Privacy. Een overzicht. BWI-werkstuk geschreven door: Aart Valkhof Maart 2003 PGP: Pretty Good Privacy. Een overzicht. PGP: Pretty Good Privacy. Een overzicht. De vrije Universiteit Faculteit der Wiskunde en Informatica Studierichting

Nadere informatie

fx-82es (PLUS) Werken met de CASIO fx-82es (PLUS) instellingen

fx-82es (PLUS) Werken met de CASIO fx-82es (PLUS) instellingen Werken met de CASIO fx-82es (PLUS) Deze 'gewone' rekenmachine heeft een natural display. Het intypen en aflezen van bijv breuken, machten, wortels en logaritmen gaat (eindelijk!) op een manier die logisch

Nadere informatie

Programmeren met Arduino-software

Programmeren met Arduino-software Programmeren met Arduino-software De software waarin we programmeren is Arduino IDE. Deze software is te downloaden via www.arduino.cc. De programmeertaal die hier gebruikt wordt, is gebaseerd op C en

Nadere informatie

1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1.

1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1. Tentamen-wiskunde?. De basiswiskunde. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + ) =. Oplossing : ln(x + 2) = + ln(x + ) x + 2 = ln + x + 3 = ln dus x =

Nadere informatie

4Passief: n Afluisteren. n Geen gegevens gewijzigd of vernietigd. n Via de routers van WAN. n Via draadloze verbindingen. 4Fysieke afsluiting

4Passief: n Afluisteren. n Geen gegevens gewijzigd of vernietigd. n Via de routers van WAN. n Via draadloze verbindingen. 4Fysieke afsluiting Telematica Hoofdstuk 20 4Passief: n Afluisteren Bedreigingen n Alleen gegevens (inclusief passwords) opgenomen n Geen gegevens gewijzigd of vernietigd n Op LAN kan elk station alle boodschappen ontvangen

Nadere informatie

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1.

Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1. Derde domein: gebroken getallen 1 Kennismaking met breuken 1.1 De breuk als deel van een geheel Opdracht 2 blaadje 1 blaadje 2 blaadje 3 blaadje 4 Een blaadje in twee delen vouwen geeft de helft van een

Nadere informatie

creatief met polyomino s

creatief met polyomino s WISKUNDETIJDSCHRIFT VOOR JONGEREN Codemakers winnen van codebrekers De mooiste formule ooit Jubileumprijsvraag: creatief met polyomino s 50ste JAARGANG - NUMMER 5 - APRIL 2011 VERS VAN DE PERS Pythagoras

Nadere informatie