FACTORISATIE EN CRYPTOGRAFIE

Maat: px
Weergave met pagina beginnen:

Download "FACTORISATIE EN CRYPTOGRAFIE"

Transcriptie

1 FACTORISATIE EN CRYPTOGRAFIE COMPUTERPRACTICUM UvA-MASTERCLASS WISKUNDE 1993 G.C.M. Ruitenburg Faculteit Wiskunde en Informatica Universiteit van Amsterdam 1993

2

3 INLEIDING In dit computer prakticum volgen we de aantekeningen van het hoorcollege van de masterclass. We gebruiken het computer programma Maple om het soort berekeningen uit te voeren, dat in deze aantekeningen wordt besproken. Deze tekst is daarom op precies dezelfde manier onderverdeeld in secties als de aantekeningen van het hoorcollege. Alles zal aan de hand van voorbeelden worden uitgelegd. Voer de voorbeelden uit de tekst ook op de computer uit. Vaak doen de gekozen getallen er niet toe en dan mogen ook andere getallen worden gekozen. Probeer verder de opgaven te maken. 1. GEHELE GETALLEN, FACTORISATIE In deze sectie bespreken we het rekenen met gehele getallen. We beginnen met de bekende operaties optellen, aftrekken, vermenigvuldigen en machtsverheffen (+, -, *, ^). Dit soort operaties kan men gewoon intoetsen, met een puntkomma afsluiten en tenslotte op de return toets drukken. > 2+3; > ( )*(1+8^2); > 123^100; \ \ > length("); 209 De volgorde waarin operaties worden uitgevoerd is bepaald door de bekende regel: Meneer Van Dalen Wacht Op Antwoord. Met ronde haakjes kan men de rekenvolgorde naar behoefte wijzigen. De schuine streep aan het eind van een regel geeft aan dat een getal op de volgende regel verder gaat. Getallen mogen uit meer dan cijfers bestaan. Met length vraagt men het aantal cijfers van een getal, de dubbele quote verwijst altijd naar het laatst berekende resultaat. Dus bestaat uit 209 cijfers. Men kan een getal ook toekennen aan een naam en met die naam verder rekenen. Op die manier hoeft men grote getallen bijvoorbeeld niet steeds opnieuw in te toetsen. > x:=3; x := 3 > x+5; 8 > abs(length(x^2)-x!); 1

4 > x:=x^2; 5 x := 9 De functie abs(x) staat voor de absolute waarde x van x. Op elkaar delen van gehele getallen levert meestal breuken op. Deling met rest levert echter wel gehele getallen op. Als a en b natuurlijke getallen zijn met b 0, dan zijn er volgens Lemma 1.4 natuurlijke getallen q en r zodat a = qb + r en 0 r < b. Met de functies iquo en irem kan men q en r berekenen. > a:= ; a := > b:= ; > q:=iquo(a,b); > r:=irem(a,b); b := q := 2335 r := > q*b+r; Het Euclidisch algorithme berekent door herhaald delen met rest de ggd van getallen. Hiervoor kunnen we de functie igcd gebruiken. > igcd(a,b); 621 Volgens Stelling 1.6 zijn er gehele getallen x, y Z zodat xa + yb = gcd(a, b). De functie igcdex berekent behalve de ggd ook deze twee extra getallen: > igcdex(a,b, x, y ); 621 > x; y; > x*a+y*b; Hierbij zijn de enkele quotes (') rond x en y belangrijk en deze moeten niet verward worden met back quotes (`). Tenslotte onderscheiden we in Z priemgetallen en is volgens Stelling 1.3 ieder positief getal op eenduidige wijze te schrijven als product van priemgetallen. Gegeven een getal n dan kunnen we vragen of n een priemgetal is, om het grootste priemgetal < n en om het kleinste priemgetal > n: > n:=10^6; n := > isprime(n); false 2

5 > prevprime(n); > nextprime(n); Voor getallen van honderd cijfers is de wachttijd op het antwoord van deze functies nog acceptabel. Veel moeilijker is het factoriseren van getallen. Hiervoor is de functie ifactor bestemd. Bij getallen van 25 cijfers kan men nog op het antwoord wachten maar voor getallen van 50 cijfers is een mensenleven al te kort. (Voor de meest succesvolle algoritmen liggen deze grenzen hoger dan bij Maple.) Verder is er een optie (easy) om alleen naar eenvoudig te bepalen factoren te zoeken, d.w.z. de kleine priemfactoren te zoeken. > n:= ; n := > ifactor(n); > ifactor(n,easy); ( ) ( ) _c24 > ifactor( ,easy); (3) (331) _c42 De namen c24 en c42 staan voor het product van grote priemgetallen, die Maple verder niet eenvoudig kan vinden. Opgaven 1.1. Voer de volgende berekeningen uit. > 1234^4321; > ^654321; 1.2. Bepaal de ggd van a = uw telefoonnummer (zonder netnummer) en b = uw geboortedatum (geschreven als voor bijvoorbeeld 12 maart 1963) en vind x, y Z zodat xa+yb gelijk is aan deze ggd Bereken de ggd van a = en b = en bepaal x, y Z zodat xa + yb gelijk is aan deze ggd Bereken het kleinste priemgetal p dat uit 30 cijfers bestaat. Ontbind daarna p 1 in priemfactoren. 3

6 2. MODULAIR REKENEN Deze sectie bespreekt het rekenen met gehele getallen modulo een getal n > 0. Getallen in Z/nZ hebben geen eenduidige notatie, tenzij we afspreken elementen x Z altijd te noteren als r Z, met r {0, 1, 2,..., n 1} de rest van x bij deling door n. Dit wordt reduceren modulo n genoemd. Na reduceren modulo n kunnen we zien welke getallen modulo n gelijk zijn: > n:=12345; n := > x:= ; y:= ; z:=391667; x := y := z := > x mod n; y mod n; z mod n; > irem(x,n); irem(y,n); irem(z,n); Dus in Z/nZ geldt x = y en niet x = z. Verder zien we dat reduceren modulo n en delen met rest inderdaad overeenstemmen. Bij modulair rekenen gaan optellen, aftrekken en vermenigvuldigen als in Z, alleen voegt men mod n aan de opdrachten toe. > x+y mod n; > x^2-y*z mod n; Door toevoegen van mod n wordt na de berekening het resultaat modulo n gereduceerd. Daardoor kan men nog steeds geen hoge machten uitrekenen, dit is echter wel mogelijk door met &^ i.p.v. ^ te werken: > n:= ; n := > a:= ; a := > b:= ; b :=

7 > a ^ b mod n; Error, integer too large in context > a &^ b mod n; Tenslotte kan Z/nZ zgn. eenheden bevatten. Volgens Stelling 2.2 is a 0 Z/nZ een eenheid als ggd(a, n) = 1. Bovendien als ggd(a, n) = 1 dan zijn er volgens Stelling 1.6 x, y Z met xa + yn = 1, zodat x a = 1 in Z/nZ. Met behulp van igcdex kunnen we x (en y) uitrekenen. We demonstreren dit en laten meteen een veel praktischer opdracht zien, om het zelfde resultaat te berekenen. > n:= ; n := > a:= ; a := > igcdex(a,n, x, y ); 1 > x:=x mod n; x := > a * x mod n; 1 > 1/a mod n; De laatste instructie laat zien, dat men ook in een keer de inverse kan vragen. Als men dit probeert men een niet eenheid, dan volgt een foutmelding. Opgaven Wat is de inverse van 19 in Z/65Z? Heeft 26 een inverse in Z/65Z? 2.2. Bereken de inverse van 7 in Z/( )Z Neem m = en reduceer m m modulo 7. 5

8 3. CRYPTOGRAFIE We gaan modulair rekenen gebruiken om boodschappen te coderen en decoderen. Boodschappen bestaan uit tekst, terwijl modulair rekenen met getallen werkt. De functie texttonum kan tekst in een getal omzetten en de functie numtotext kan zo n getal weer naar de oorspronkelijke tekst terugvertalen. Iedere letter wordt in een getal van twee cijfers omgezet (a = 01, b = 02,..., z = 26, A = 27,..., etc.) en zo ontstaat vanzelf uit een tekst een groot getal. Bijvoorbeeld: > texttonum(`a`); 27 > texttonum(`j`); > texttonum(`ajax`); > numtotext( ); Ajax Het is vervelend, maar noodzakelijk, dat we om de tekst back quotes (`) typen. De getallen van de losse letters worden achter elkaar gezet (waarbij we met twee cijfers werken, dus 01 invullen voor a en niet 1). We gaan nu kijken hoe B volgens het RSA systeem haarzelf gecodeerde boodschappen kan laten toesturen, die alleen zij kan decoderen. B begint met het maken van twee priemgetallen: > p:=nextprime(15233); > q:=nextprime(77721); p := q := Uit deze twee priemgetallen berekent B vervolgens getallen n en e. Omdat e moet voldoen aan gcd(e, (p 1)(q 1)) = 1 probeert B een paar waarden, totdat zo n e gevonden is. > n:=p*q; n := > e:=33; > gcd(e,(p-1)*(q-1)); > e:=37; e := 33 3 e := 37 > gcd(e,(p-1)*(q-1)); 1 Het getal n is de publieke modulus en het getal e de publieke exponent. Deze twee getallen maakt B aan iedereen bekend, die haar gecodeerde boodschappen wil sturen. Voor haarzelf berekent B ook nog de inverse exponent van e. Omdat gcd(e, (p 1)(q 1)) = 1, is e modulo (p 1)(q 1) een eenheid en kan een inverse worden berekend: 6

9 > f:=1/e mod ((p-1)*(q-1)); f := Deze f houdt B samen met de priemgetallen p en q geheim. We laten nu A de boodschap Ajax coderen: > b:=texttonum(`ajax`); > c:=b&^e mod n; b := c := Dit getal c stuurt A naar B. Ieder ander mag dit getal weten, maar zal het niet kunnen decoderen, zolang f onbekend is. B kent f wel en decodeert de boodschap als volgt: > d:=c&^f mod n; > numtotext(d); d := Ajax De truc zit hem er dus in, dat de e de macht nemen modulo n (door A) ongedaan kan worden gemaakt met de f de macht nemen modulo n (door B). Omdat n en e algemeen bekend worden gemaakt, is het voor C (een Rotterdammer) voldoende om f te weten, om ook de boodschap te decoderen. In dit geval kan C dit omdat n klein is: > ifactor(n); (77723) (15241) Hiermee heeft C de priemgetallen p en q bepaald en kan vervolgens net als B boven deed f uit rekenen. Wil B dus voorkomen dat een ander voor haar bestemde berichten decodeert, dan zal zij p en q zo groot moeten kiezen, dat een ander n niet kan factoriseren. Dat is geen probleem. Met nextprime kan B eenvoudig en snel twee priemgetallen van honderd cijfers maken. Het product n heeft dan twee honderd cijfers en iemand moet meer geluk hebben dan er in het heelal aanwezig is, om deze n nog te kunnen factoriseren (met de op dit moment op aarde bekende methoden). Opgaven Stel B heeft publieke modulus n = en publieke exponent e = 5. Hoe ziet nu de vercijferde vorm van de boodschap N = uva = er uit die we aan B kunnen sturen? Kraak vervolgens deze code door n te factoriseren en de inverse exponent f van e te berekenen. Controleer de kraak door het vercijferde bericht met behulp van f te decoderen Stel B heeft publieke modulus n = en publieke exponent e = Kraak deze code en ontcijfer het gecodeerde bericht voor B. 7

10 3.3. Gegeven zij vier personen B1, B2, B3 en B4. Zij hebben ieder een publieke modulus ni, publieke exponent ei en een gecodeerde boodschap ci ontvangen (i = 1, 2, 3, 4). De preciese waarden zijn gegeven door: n1:=\ \ \ ; e1:= ; c1:=\ \ \ ; n2:=\ \ \ ; e2:= ; c2:=\ \ \ ; n3:=\ \ \ ; e3:= ; c3:=\ \ \ ; n4:=\ \ \ ; e4:= ; c4:=\ \ \ ; Door de volgende opdracht in te typen, worden alle bovenstaande waarden automatisch toegekend, zodat u ze niet zelf hoeft in te typen. > read opgave; Omdat n1, n2, n3 en n4 nu te groot zijn om te factoriseren, lukt het niet een van de codes te kraken en dus ook niet een van de berichten c1, c2, c3 of c4 te ontcijferen. We gaan dadelijk een priemgetal krijgen, waarmee precies één van de bovenstaande codes is te kraken. De opdracht luidt daarna: zoek uit welke van de vier codes u kunt kraken met het gekregen priemgetal en decodeer de boodschap. Kies voor i een van de getallen 1, 2 of 3 en voer dan de volgende opdracht (met voor i uw keus ingevuld) uit: > p:=kies(i); 8

FACTORISATIE EN CRYPTOGRAFIE

FACTORISATIE EN CRYPTOGRAFIE FACTORISATIE EN CRYPTOGRAFIE UvA-MASTERCLASS WISKUNDE 1993 P. Stevenhagen Faculteit Wiskunde en Informatica Universiteit van Amsterdam 1993 INLEIDING In deze masterclass zullen we ons voornamelijk bezighouden

Nadere informatie

RSA. F.A. Grootjen. 8 maart 2002

RSA. F.A. Grootjen. 8 maart 2002 RSA F.A. Grootjen 8 maart 2002 1 Delers Eerst wat terminologie over gehele getallen. We zeggen a deelt b (of a is een deler van b) als b = qa voor een of ander geheel getal q. In plaats van a deelt b schrijven

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

Public Key Cryptography. Wieb Bosma

Public Key Cryptography. Wieb Bosma Public Key Cryptography de wiskunde van het perfecte kopje koffie Wieb Bosma Radboud Universiteit Nijmegen Bachelordag 2 april 2011 Nijmegen, 6 november 2010 0 Nijmegen, 6 november 2010 1 cryptografie

Nadere informatie

Het RSA Algoritme. Erik Aarts - 1 -

Het RSA Algoritme. Erik Aarts - 1 - Het RSA Algoritme Erik Aarts - 1 - 1 Wiskunde... 3 1.1 Het algoritme van Euclides... 3 1.1.1 Stelling 1... 4 1.2 Het uitgebreide algoritme van Euclides... 5 1.3 Modulo rekenen... 7 1.3.1 Optellen, aftrekken

Nadere informatie

Hoe je het cryptosysteem RSA soms kunt kraken. Benne de Weger

Hoe je het cryptosysteem RSA soms kunt kraken. Benne de Weger Hoe je het cryptosysteem RSA soms kunt kraken Benne de Weger 28 aug. / 4 sept. RSA 1/38 asymmetrisch cryptosysteem versleutelen met de publieke sleutel ontsleutelen met de bijbehorende privé-sleutel gebaseerd

Nadere informatie

Probabilistische aspecten bij public-key crypto (i.h.b. RSA)

Probabilistische aspecten bij public-key crypto (i.h.b. RSA) p. 1/21 Probabilistische aspecten bij public-key crypto (i.h.b. RSA) Herman te Riele, CWI Amsterdam Nationale Wiskunde Dagen Noordwijkerhout, 31 januari 2015 p. 2/21 verzicht Binair exponentiëren RSA Factorisatie-algoritmen

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002

Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 19.a) Laat zien dat 5 een voortbrenger is van F 37. b) In het sleuteldistributiesysteem van Diffie en Hellman (met G = F 37, α =

Nadere informatie

OPLOSSINGEN VAN DE OEFENINGEN

OPLOSSINGEN VAN DE OEFENINGEN OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen ( 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (  15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

De wiskunde van geheimschriften. R. Cramer, B. de Smit, P. Stevenhagen, A. Stolk, M. Streng, L. Taelman

De wiskunde van geheimschriften. R. Cramer, B. de Smit, P. Stevenhagen, A. Stolk, M. Streng, L. Taelman De wiskunde van geheimschriften R. Cramer, B. de Smit, P. Stevenhagen, A. Stolk, M. Streng, L. Taelman Februari Maart 2008 update 2014 Inhoudsopgave 1 Geheime communicatie 5 Wat is cryptografie?.......................

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

Geldwisselprobleem van Frobenius

Geldwisselprobleem van Frobenius Geldwisselprobleem van Frobenius Karin van de Meeberg en Dieuwertje Ewalts 12 december 2001 1 Inhoudsopgave 1 Inleiding 3 2 Afspraken 3 3 Is er wel zo n g? 3 4 Eén waarde 4 5 Twee waarden 4 6 Lampenalgoritme

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Oefening: Markeer de getallen die een priemgetal zijn.

Oefening: Markeer de getallen die een priemgetal zijn. Getallenkennis : Priemgetallen. Wat is een priemgetal? Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. (m.a.w. een priemgetal is een natuurlijk getal

Nadere informatie

Memoriseren: Een getal is deelbaar door 10 als het laatste cijfer een 0 is. Of: Een getal is deelbaar door 10 als het eindigt op 0.

Memoriseren: Een getal is deelbaar door 10 als het laatste cijfer een 0 is. Of: Een getal is deelbaar door 10 als het eindigt op 0. REKENEN VIJFDE KLAS en/of ZESDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Luc Cielen: Regels van deelbaarheid, grootste gemene deler en kleinste gemeen veelvoud 1 Deelbaarheid door 10, 100, 1000. Door

Nadere informatie

Kraak de Code. Koen Stulens

Kraak de Code. Koen Stulens Kraak de Code Koen Stulens KRAAK DE CODE Koen Stulens k-stulens@ti.com CRYPTOGRAGIE STAMT VAN HET GRIEKS: CRYPTOS = GEHEIM, GRAFEIN = SCHRIJVEN. Sinds mensen met elkaar communiceren is er steeds nood geweest

Nadere informatie

College 1. Geheime communicatie

College 1. Geheime communicatie College 1 Geheime communicatie Wat is cryptografie? Wat het schrift tot een van de fundamenten van de menselijke cultuur maakt, is de mogelijkheid die het geeft om gedachten op zo n manier aan papier of

Nadere informatie

Rekenen met de GRM. 1 van 1. Inleiding: algemene zaken. donkerder. lichter

Rekenen met de GRM. 1 van 1. Inleiding: algemene zaken. donkerder. lichter 1 van 1 Rekenen met de GRM De grafische rekenmachine (voortaan afgekort met GRM) ga je bij hoofdstuk 1 voornamelijk als gewone rekenmachine gebruiken. De onderste zes rijen toetsen zijn vergelijkbaar met

Nadere informatie

Zwakke sleutels voor RSA

Zwakke sleutels voor RSA Zwakke sleutels voor RSA Benne de Weger, Mike Boldy en Hans Sterk 23 juni 2008 Zwakke sleutels voor RSA Benne de Weger, Mike Boldy en Hans Sterk 23 juni 2008 RSA: beroemd cryptosysteem Genoemd naar Rivest,

Nadere informatie

1.5.1 Natuurlijke, gehele en rationale getallen

1.5.1 Natuurlijke, gehele en rationale getallen 46 Getallen 1.5 Getaltheorie 1.5.1 Natuurlijke, gehele en rationale getallen De getallen 0,1,2,3,4,... enz. worden de natuurlijke getallen genoemd (de heleverzamelingvanaldezegetallenbijelkaarnoterenwemethetteken:

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

De wiskunde van geheimschriften. R. Cramer, B. de Smit, P. Stevenhagen, A. Stolk, M. Streng, L. Taelman

De wiskunde van geheimschriften. R. Cramer, B. de Smit, P. Stevenhagen, A. Stolk, M. Streng, L. Taelman De wiskunde van geheimschriften R. Cramer, B. de Smit, P. Stevenhagen, A. Stolk, M. Streng, L. Taelman Februari Maart 2008 Inhoudsopgave 1 Geheime communicatie 5 Wat is cryptografie?.......................

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

In dit stuk worden een aantal berekeningen behandeld, die voor verschillende kostenberekeningen noodzakelijk zijn:

In dit stuk worden een aantal berekeningen behandeld, die voor verschillende kostenberekeningen noodzakelijk zijn: BEREKENINGEN In dit stuk worden een aantal berekeningen behandeld, die voor verschillende kostenberekeningen noodzakelijk zijn: Behandeld worden: Machtsverheffen Berekeningen met verhoudingen Vergelijkingen

Nadere informatie

Opgeloste en onopgeloste mysteries in de getaltheorie

Opgeloste en onopgeloste mysteries in de getaltheorie Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste

Nadere informatie

Hoofdstuk 1 - Drie manieren om een getal te schrijven

Hoofdstuk 1 - Drie manieren om een getal te schrijven Hoofdstuk - Drie manieren om een getal te schrijven. Beginnen met een breuk Je kunt een breuk schrijven als decimaal getal en ook als percentage, kijk maar: = 0,5 = 50% 4 = 0,75 = 75% 5 = 0,4 = 40% Hoe

Nadere informatie

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare

Nadere informatie

2. Optellen en aftrekken van gelijknamige breuken

2. Optellen en aftrekken van gelijknamige breuken 1. Wat is een breuk? Een breuk Een breuk is een verhoudingsgetal. Een breuk geeft aan hoe groot een deel is van een geheel. Stel een taart is verdeeld in stukken. Je neemt 2 stukken van de taart. Je hebt

Nadere informatie

Bijzondere kettingbreuken

Bijzondere kettingbreuken Hoofdstuk 15 Bijzondere kettingbreuken 15.1 Kwadratische getallen In het vorige hoofdstuk hebben we gezien dat 2 = 1, 2, 2, 2, 2, 2, 2,.... Men kan zich afvragen waarom we vanaf zeker moment alleen maar

Nadere informatie

slides10.pdf December 5,

slides10.pdf December 5, Onderwerpen Inleiding Algemeen 10 Cryptografie Wat is cryptography? Waar wordt cryptografie voor gebruikt? Cryptographische algoritmen Cryptographische protocols Piet van Oostrum 5 dec 2001 INL/Alg-10

Nadere informatie

Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens

Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens Algoritmes in ons dagelijks leven Leve de Wiskunde! 7 April 2017 Jacobien Carstens Wat is een algoritme? Een algoritme is een eindige reeks instructies die vanuit een gegeven begintoestand naar een beoogd

Nadere informatie

Priemfactoren. Grote getallen. Geavanceerde methoden. Hoe ontbind je een getal N in priemfactoren?

Priemfactoren. Grote getallen. Geavanceerde methoden. Hoe ontbind je een getal N in priemfactoren? Docentenhandleiding Inhoudsopgave Docentenhandleiding... 1 Inhoudsopgave... 2 Priemfactoren... 3 Grote getallen... 3 Geavanceerde methoden... 3 Primaliteit en factorisatie... 4 Literatuur... 4 Software...

Nadere informatie

Willem van Ravenstein

Willem van Ravenstein Willem van Ravenstein 1. Variabelen Rekenen is het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken je de bewerkingen machtsverheffen en worteltrekken.

Nadere informatie

Opgaven Eigenschappen van Getallen Security, 2018, Werkgroep.

Opgaven Eigenschappen van Getallen Security, 2018, Werkgroep. Opgaven Eigenschappen van Getallen Security, 2018, Werkgroep. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal zes tot acht

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2 Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) = a b 5.1 Herleiden [1] Voorbeeld 1: (a + 5)(a 6) (a + 5)(-a + 7) = a 6a + 5a 30 ( a + 14a 5a + 35) = a 6a + 5a 30

Nadere informatie

Kernbegrippen Kennisbasis wiskunde Onderdeel breuken

Kernbegrippen Kennisbasis wiskunde Onderdeel breuken Kernbegrippen Kennisbasis wiskunde Onderdeel breuken De omschreven begrippen worden expliciet genoemd in de Kennisbasis. De begrippen zijn in alfabetische volgorde opgenomen. Breuk Een breuk is een getal

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Tweede Huiswerk Security 26 of 28 oktober, 11.00, Nabespreken op Werkcollege.

Tweede Huiswerk Security 26 of 28 oktober, 11.00, Nabespreken op Werkcollege. Tweede Huiswerk Security 26 of 28 oktober, 11.00, Nabespreken op Werkcollege. Kijk het huiswerk van je collega s na en schrijf de namen van de nakijkers linksboven en het totaalcijfer rechts onder de namen

Nadere informatie

handleiding ontbinden

handleiding ontbinden handleiding ontbinden inhoudsopgave inhoudsopgave de grote lijn 3 Bespreking per paragraaf 4 Applets 4 1 met gegeven product 4 ontbinden van getallen 4 3 vergelijkingen 5 4 onderzoek 6 tijdpad 9 materialen

Nadere informatie

??? Peter Stevenhagen. 7 augustus 2008 Vierkant voor wiskunde

??? Peter Stevenhagen. 7 augustus 2008 Vierkant voor wiskunde 1 ??? Peter Stevenhagen 7 augustus 2008 Vierkant voor wiskunde 2 Wiskunde en cryptografie Peter Stevenhagen 7 augustus 2008 Vierkant voor wiskunde 3 Crypto is voor iedereen Peter Stevenhagen 7 augustus

Nadere informatie

WISKUNDE 1. Aansluitmodule wiskunde MBO-HBO

WISKUNDE 1. Aansluitmodule wiskunde MBO-HBO WISKUNDE 1 Aansluitmodule wiskunde MBO-HBO Wat moet je aanschaffen? Basisboek wiskunde tweede editie Jan van de Craats en Rob Bosch isbn:978-90-430-1673-5 Dit boek gebruikt men ook op de Hanze bij engineering.

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

Complex multiplication constructions in genus 1 and 2

Complex multiplication constructions in genus 1 and 2 Complex multiplication constructions in genus 1 and 2 Peter Stevenhagen Universiteit Leiden AMS San Diego January 7, 2008 1 Cryptografie 2 Cryptografie cryptografie: kunst om geheimschrift te schrijven

Nadere informatie

ProefToelatingstoets Wiskunde B

ProefToelatingstoets Wiskunde B Uitwerking ProefToelatingstoets Wiskunde B Hulpmiddelen :tentamenpapier,kladpapier, een eenvoudige rekenmachine (dus geen grafische of programmeerbare rekenmachine) De te bepalen punten per opgave staan

Nadere informatie

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen Worteltrekken modulo een priemgetal: van klok tot cutting edge Roland van der Veen Modulorekenen Twee getallen a en b zijn gelijk modulo p als ze een veelvoud van p verschillen. Notatie: a = b mod p Bijvoorbeeld:

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA?

Algoritmes en Priemgetallen. Hoe maak je een sleutelpaar voor RSA? Algoritmes en Priemgetallen Hoe maak je een sleutelpaar voor RSA? Het recept van RSA Kies p q priemgetallen en bepaal N = pq Kies e Z N (publieke sleutel) Bepaal d e 1 mod φ N (privésleutel) x ed x kφ

Nadere informatie

niet: achterop een ansichtkaart schrijven postbode (en wie al niet meer) leest mee

niet: achterop een ansichtkaart schrijven postbode (en wie al niet meer) leest mee Het geheim van goede koffie Benne de Weger oktober 2013 b.m.m.d.weger@tue.nl http://www.win.tue.nl/~bdeweger versturen van geheimen hoe moet je een geheim opsturen als onderweg iemand kan afluisteren?

Nadere informatie

Het programma ELGAMAL

Het programma ELGAMAL Het programma ELGAMAL Gerard Tel Universiteit Utrecht, Departement Informatica 21 oktober 2005 Dit boekje is een inhoudelijke beschrijving van het programma ELGAMAL dat door Gerard Tel is geschreven voor

Nadere informatie

REKENVAARDIGHEID BRUGKLAS

REKENVAARDIGHEID BRUGKLAS REKENVAARDIGHEID BRUGKLAS Schooljaar 008/009 Inhoud Uitleg bij het boekje Weektaak voor e week: optellen en aftrekken Weektaak voor e week: vermenigvuldigen Weektaak voor e week: delen en de staartdeling

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm

Veeltermen. Module 2. 2.1 Definitie en voorbeelden. Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm Module 2 Veeltermen 2.1 Definitie en voorbeelden Een veelterm met reële coëfficiënten in één veranderlijke x is een uitdrukking van de vorm a 0 +a 1 x+a 2 x 2 + +a n x n met a 0,a 1,a 2,...,a n Ê en n

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

Opgaven Rekenen met Getallen Security, 2018, Werkgroep.

Opgaven Rekenen met Getallen Security, 2018, Werkgroep. Opgaven Rekenen met Getallen Security, 2018, Werkgroep. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal zes tot acht opgaven.

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Cryptografie: de wetenschap van geheimen

Cryptografie: de wetenschap van geheimen Cryptografie: de wetenschap van geheimen Benne de Weger b.m.m.d.weger@tue.nl augustus 2018 Cryptografie als Informatiebeveiliging 1 beveiliging: doe iets tegen risico s informatie-risico s en eisen: informatie

Nadere informatie

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs Uitwerkingen van de opgaven bij de basisvaardigheden 1 Hele getallen Peter Ale Martine van Schaik u i t g e v e r ij c o u t i

Nadere informatie

Dossier 3 PRIEMGETALLEN

Dossier 3 PRIEMGETALLEN Dossier 3 PRIEMGETALLEN atomen van de getallenleer Dr. Luc Gheysens Een priemgetal is een natuurlijk getal met twee verschillende delers, nl. 1 en het getal zelf. De priemgetallen zijn dus 2, 3, 5, 7,

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties Hoofdstuk 6 Congruentierekening 6.1 Congruenties We hebben waarschijnlijk allemaal wel eens opgemerkt dat bij vermenigvuldigen van twee getallen de laatste cijfers als het ware meevermenigvuldigen. Stel

Nadere informatie

regel: de som van de cijfers op de even plaatsen min de som van de cijfers op de oneven plaatsen moet 0 of 11 zijn.

regel: de som van de cijfers op de even plaatsen min de som van de cijfers op de oneven plaatsen moet 0 of 11 zijn. Rekenperiode 5e klas januari - februari 1998 1. deelbaarheid door 2 2. deelbaarheid door 4 3. deelbaarheid door 8 4. opgave 5. deelbaarheid door 3 6. deelbaarheid door 9 7. opgave 8. deelbaarheid door

Nadere informatie

Opgeloste en onopgeloste mysteries in de getaltheorie

Opgeloste en onopgeloste mysteries in de getaltheorie Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste

Nadere informatie

Priemontbinding en ggd s

Priemontbinding en ggd s Hoofdstuk 3 Priemontbinding en ggd s 3.1 Priemgetallen Een getal > 1 dat alleen 1 en zichzelf als positieve deler heeft noemen we een priemgetal. De rij priemgetallen begint als volgt, 2, 3, 5, 7, 11,

Nadere informatie

Universiteit Gent. Academiejaar Discrete Wiskunde. 1ste kandidatuur Informatica. Collegenota s. Prof. Dr.

Universiteit Gent. Academiejaar Discrete Wiskunde. 1ste kandidatuur Informatica. Collegenota s. Prof. Dr. Universiteit Gent Academiejaar 2001 2002 Discrete Wiskunde 1ste kandidatuur Informatica Collegenota s Prof. Dr. Frank De Clerck Herhalingsoefeningen 1. Bepaal het quotiënt en de rest van de deling van

Nadere informatie

Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2

Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2 Getallen 2 Getallen 2 bestrijkt de uitbreiding van de basisvaardigheden van het rekenen, regels en vaardigheden die in het vmbo en de onderbouw van havo/vwo worden aangeleerd, geoefend en toegepast. Doelgroep

Nadere informatie

Beste deelnemer, Wanneer we vanmiddag op het kampterrein aankomen, zullen we beginnen met een verkenningsrondje over het terrein. Dat is op zichzelf

Beste deelnemer, Wanneer we vanmiddag op het kampterrein aankomen, zullen we beginnen met een verkenningsrondje over het terrein. Dat is op zichzelf Beste deelnemer, Wanneer we vanmiddag op het kampterrein aankomen, zullen we beginnen met een verkenningsrondje over het terrein. Dat is op zichzelf al best leuk, maar het wordt nog veel leuker als we

Nadere informatie

Tips Wiskunde Kwadratische vergelijkingen: een uitgebreid stappenplan

Tips Wiskunde Kwadratische vergelijkingen: een uitgebreid stappenplan Tips Wiskunde Kwadratische vergelijkingen: een uitgebreid stappenplan Tips door F. 738 woorden 18 januari 2013 5,9 25 keer beoordeeld Vak Methode Wiskunde Getal en Ruimte Stappenplan voor oplossen van

Nadere informatie

Security. Eerste tentamen

Security. Eerste tentamen Security Eerste tentamen Het tentamen normale rekenmachine mag mee. Gastpresentaties Weetvragen Lees je eigen aantekeningen goed door. Malware Weetvragen Introductiecollege Weetvragen! Kijk naar de lijst

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

Kerstvakantiecursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven VWO kan niet korter

Kerstvakantiecursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven VWO kan niet korter Voorbereidende opgaven VWO Kerstvakantiecursus wiskunde A Tips: Maak de voorbereidende opgaven voorin in een van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk

Nadere informatie

2. Ga voor volgende relaties na of het al dan niet functies, afbeeldingen, bijecties, injecties, surjecties zijn :

2. Ga voor volgende relaties na of het al dan niet functies, afbeeldingen, bijecties, injecties, surjecties zijn : HOOFDSTUK. VERZAMELINGEN, RELATIES EN FUNCTIES Opgaven verzamelingen, relaties en functies. Toon aan : a) (A B) C = A (B C) b) A (B C) = (A B) (A C) c) (A B) c = A c B c d) A B B c A c. Ga voor volgende

Nadere informatie

GETALTHEORIE 1. de Leuke En Uitdagende Wiskunde 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65,

GETALTHEORIE 1. de Leuke En Uitdagende Wiskunde 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65, GETALTHEORIE 1 1, 2, 3, 4, 5, 1, 3, 6, 10, 15, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 1, 6, 15, 28, 65, SAMENSTELLING: H. de Leuw - 1 - 1. NATUURLIJKE GETALLEN. Als kind hebben we allemaal leren tellen: 1,

Nadere informatie

Getaltheorie II. ax + by = c, a, b, c Z (1)

Getaltheorie II. ax + by = c, a, b, c Z (1) Lesbrief 2 Getaltheorie II 1 Lineaire vergelijkingen Een vergelijking van de vorm ax + by = c, a, b, c Z (1) heet een lineaire vergelijking. In de getaltheorie gaat het er slechts om gehele oplossingen

Nadere informatie

Producten, machten en ontbinden in factoren

Producten, machten en ontbinden in factoren Joke Smit College Producten, machten en ontbinden in factoren Voor cursisten uit de volgende klassen: alle Havo en VWO klassen (wiskunde, wiskunde A en wiskunde B) Wat kun je oefenen? 1. Het uitrekenen

Nadere informatie

De volgorde bij samengestelde reken-wiskunde bewerkingen

De volgorde bij samengestelde reken-wiskunde bewerkingen Ministerie van Onderwijs, Wetenschap en Cultuur (MinOWC) Lesbrief Basis-, VOJ- en VOS onderwijs De volgorde bij samengestelde reken-wiskunde bewerkingen juli 2015, MinOWC, Paramaribo Niets uit deze folder

Nadere informatie

Algebra. voor Informaticastudenten Getallen. Ernic Kamerich. Jean Delville: de school van Plato

Algebra. voor Informaticastudenten Getallen. Ernic Kamerich. Jean Delville: de school van Plato Algebra voor Informaticastudenten Getallen Jean Delville: de school van Plato Ernic Kamerich januari 2007 Inhoud 1 De gehele getallen..........................................................................

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Examencursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven VWO kan niet korter

Examencursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven VWO kan niet korter Voorbereidende opgaven VWO Examencursus wiskunde A Tips: Maak de voorbereidende opgaven voorin in een van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk hem dan

Nadere informatie

Uitwerking Puzzel 93-1, Doelloos

Uitwerking Puzzel 93-1, Doelloos Uitwerking Puzzel 93-1, Doelloos Wobien Doyer Lieke de Rooij Volgens de titel is deze puzzel zonder doel, dus zonder bekende toepassing. Het doel is echter nul en dat is zeker in de wiskunde niet niks.

Nadere informatie

De Chinese reststelling

De Chinese reststelling De Chinese reststelling 1 Inleiding 1. De Chinese reststelling is een stelling binnen de getaltheorie. De stelling werd voor het eerst beschreven in de vierde eeuw na Chr. door de Chinese wiskundige Sunzi

Nadere informatie

Lessenserie Cryptografie

Lessenserie Cryptografie Een van de meest tot de verbeelding sprekende voorgestelde keuzeonderwerpen is cryptografie Onafhankelijk van elkaar gingen Monique Stienstra en Harm Bakker aan de slag om lesmateriaal te ontwikkelen en

Nadere informatie

Cryptografie met krommen. Reinier Bröker. Universiteit Leiden

Cryptografie met krommen. Reinier Bröker. Universiteit Leiden Cryptografie met krommen Reinier Bröker Universiteit Leiden Nationale Wiskundedagen Februari 2006 Cryptografie Cryptografie gaat over geheimschriften en het versleutelen van informatie. Voorbeelden. Klassieke

Nadere informatie

Getaltheorie groep 3: Primitieve wortels

Getaltheorie groep 3: Primitieve wortels Getaltheorie groep 3: Primitieve wortels Trainingsweek juni 2008 Inleiding Voor a relatief priem met m hebben we de orde van a modulo m gedefinieerd als ord m (a) = min { n Z + a n 1 (mod m) }. De verzameling

Nadere informatie

Opgaven Discrete Logaritme en Cryptografie Security, 22 okt 2018, Werkgroep.

Opgaven Discrete Logaritme en Cryptografie Security, 22 okt 2018, Werkgroep. Opgaven Discrete Logaritme en Cryptografie Security, 22 okt 2018, Werkgroep. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal

Nadere informatie

Algebra, Les 18 Nadruk verboden 35

Algebra, Les 18 Nadruk verboden 35 Algebra, Les 18 Nadruk verboden 35 18,1 Ingeklede vergelijkingen In de vorige lessen hebben we de vergelijkingen met één onbekende behandeld Deze vergelijkingen waren echter reeds opgesteld en behoefden

Nadere informatie

Programma. - Sommetjes overschrijven!!!! - Voorkennis mag ook na paragraaf 1 t/m 3 - priemfactoren - rekenen met getallen. hfst 9 rekenen2.

Programma. - Sommetjes overschrijven!!!! - Voorkennis mag ook na paragraaf 1 t/m 3 - priemfactoren - rekenen met getallen. hfst 9 rekenen2. Programma - Sommetjes overschrijven!!!! - Voorkennis mag ook na paragraaf 1 t/m 3 - priemfactoren - rekenen met getallen 1 priemfactoren Programma - Sommetjes overschrijven!!!! - Voorkennis mag ook na

Nadere informatie

Uiteenzetting Wiskunde Grafische rekenmachine (ti 83) uitleg

Uiteenzetting Wiskunde Grafische rekenmachine (ti 83) uitleg Uiteenzetting Wiskunde Grafische rekenmachine (ti 83) uitleg Uiteenzetting door een scholier 2691 woorden 4 juni 2005 5,9 118 keer beoordeeld Vak Wiskunde Basisbewerkingen 1. Inleiding De onderste zes

Nadere informatie

6 Ringen, lichamen, velden

6 Ringen, lichamen, velden 6 Ringen, lichamen, velden 6.1 Polynomen over F p : irreducibiliteit en factorisatie Oefening 6.1. Bewijs dat x 2 + 2x + 2 irreducibel is in Z 3 [x]. Oplossing 6.1 Aangezien de veelterm van graad 3 is,

Nadere informatie