Tweede Deeltoets Security 3 juli 2015, , Educatorium-Γ.

Maat: px
Weergave met pagina beginnen:

Download "Tweede Deeltoets Security 3 juli 2015, 8.30 10.30, Educatorium-Γ."

Transcriptie

1 Tweede Deeltoets Security 3 juli 2015, , Educatorium-Γ. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe je de vraag interpreteert en beantwoord de vraag zoals je hem begrijpt. Cijfer: Vragen 2 en 4 zijn 3pt, de andere elk 2pt. Te halen 14, cijfer is som plus 1 gedeeld door 1,3. Maak vraag 1 en 2 op pagina 1, 3 en 4 op pagina 2 en 5 en 6 op pagina Euclides: Bereken met het algoritme van Euclides de waarde van d = ggd(1230, 504). Laat alle tussenresultaten zien. Bereken x en y waarvoor geldt dat d = 1230x + 504y. Oplossing: De achtereenvolgende resten bij deling zijn 222, 60, 42, 18, 6 en 0. Resultaat 6 is ( 61). Beoordeling: Te halen 2pt, 1 voor de ggd en tussenresultaten en 1 voor de x en y. X = Geen x en y berekend.

2 2. Code Signing: Martin wil een malafide, creditcardstelende app MM in de ipad Appstore plaatsen. Helaas voor Martin worden alle apps eerst door Apple bekeken, en alleen apps die geen creditcards stelen worden ondertekend (met een Hash plus RSA mechanisme). De controle op de inhoud van de apps is vrij goed, en de RSA handtekening van Apple kan Martin niet namaken. Martin probeert een goedgekeurde, bonafide app BB te vervangen door MM, maar zo dat de signature onder BB nu geldig is voor MM. (a) Eerst probeert Martin, zelf een goeie app BB te maken naast zijn eigen MM. Welke eigenschap van de gebruikte hashfunctie zal moeten voorkomen dat Martin slaagt? Leg uit. (b) Martin probeert, een reeds bestaande veelgebruikte app BB te vervangen door MM. Welke eigenschap van de gebruikte hashfunctie zal moeten voorkomen dat Martin slaagt? Leg uit. (c) Schat hoeveel werk de aanvallen in (a) en (b) zijn, als Apple een hashwaarde van 192 bits gebruikt. Oplossing: (a) Elke bestaande handtekening S is maar voor een enkele hash geldig, namelijk H = S e. Martin kan dus alleen slagen als BB en MM dezelfde hashwaarde hebben. In zijn eerste poging heeft Martin controle over BB en hij probeert twee strings te produceren (BB en MM) met dezelfde hash. Dit is onmogelijk wegens de sterke botsingsvrijheid. (b) In de tweede poging beschouwt Martin de BB als gegeven en probeert bij die BB een string MM te vinden met dezelfde hash. Dit is onmogelijk wegens de zwakke botsingsvrijheid. (c) Martin kan een soort van BruteForcen door zijn code (BB en/of MM) van commentaar met lange random strings te voorzien. Als hij BB als gegeven beschouwt, moet hij naar verwachting ongeveer waarden van x proberen om te bereiken dat H(MM, x) = H(BB). Als hij met MM en BB mag variëren, heeft hij aan ongeveer 2 96 waarden van x en evenzoveel van y genoeg om een botsing te vinden tussen H(mm, x) en H(bb, y). Het is dus makkelijker voor martin om zijn eigen bonafide app te maken! Beoordeling: Totaal 3, 1 voor elke deelvraag. A = Alleen de complexiteit van (b) is te weinig voor punten bij (c), want dit is wat te vanzelfsprekend. D = Met het maken van twee apps hebben die nog lang niet Dezelfde hash, M = Je moet bij (c) wel inzien dat de eerste aanval Makkelijker is. T = Onterechte deling door Twee; een aanval op zwakke botsingsvrijheid kost verwacht 2 k hashes, en niet 2 k /2. W = De One Way eigenschap is hier (iha bij Signing) nauwelijks relevant, de apps staan immers open en bloot in de Appstore.

3 3. RSA Encryptie versus Decryptie: Kees gaat RSA gebruiken met een sleutellengte van 3072 bits. Om de encryptietijd laag te houden, besluit hij de waarde e = 17 te nemen. Geef een schatting van de verhouding tussen encryptie- en decryptietijd. Oplossing: Met e = 17 kost de encryptie slechts 5 vermenigvuldigingen. Voor decryptie met exponent d van 3072 bits zijn ongeveer anderhalf maal de lengte, ofwel 4608 vermenigvuldigingen nodig. Dat is ongeveer 922 keer zoveel. Je kunt decryptie viermaal versnellen met CRT, dan kost het nog maar ongever 230x zoveel. Beoordeling: Te halen 2pt voor goedgemotiveerde uitkomst 230. A = Weet Aantal vermenigvuldigingen voor een macht niet. De eerste 1 in de exponent kost je niets, daarna elke 0 een vermenigvuldiging en elke 1 twee. C = Zonder CRT kom je slechts op 922, min 1/2. H = Door de lage e krijg je een hoge d; onjuist, de hoogte van de een zegt niet zoveel over de ander! De d vind je door inverteren en kun je ongeveer zien als een random getal tussen 0 en φ(m). I = Met de CRT gaat het viermaal zo snel. Maar niet met 1152 In plaats van 4608 vermenigvuldigingen, wel met evenveel vermenigvuldigingen op halflange getallen. K = Komt zover als O(k) keer sneller, 1pt.

4 4. Wortel Funding: Instant Root Incorporated (Inst Inc) ontwikkelt een app voor modulair worteltrekken. Na invoer van een modulus m (max. 3072bits) en een getal b < m, produceert de InstInc app een getal a (als dat bestaat) dat voldoet aan a 2 = b (mod m). De nodige euro wil InstInc met crowd funding bij elkaar brengen. (a) Laat zien hoe je door deze app slim te gebruiken, de factoren van m kunt vinden. (b) Denk je dat Inst Inc de investering kan terugverdienen? (c) Bij nadere lezing van het persbericht zie je, dat de nieuwe app alleen zal werken als m een priemgetal is. Denk je nu dat Inst Inc de investering kan terugverdienen? Oplossing: (a) Als m priem is, is m zelf de enige factor en ben je klaar. Als m even is, deel door 2 tot het resultaat oneven is. Als m oneven en samengesteld is, zijn er bij elke b minstens vier getallen met b als kwadraat. Neem een random c en bereken b = c 2, en gebruik de app om een a te vinden met a 2 = c 2. Omdat c random gekozen is, is er een kans van minstens 1/2 dat c noch aan a, noch aan a gelijk is. Herhaal het kiezen van c tot dit optreedt. Je beschikt dan over twee niet-complementaire getallen met gelijk kwadraat, waarmee je een factor van m vindt als ggd(m, a + c). Deze berekening is (exclusief het gebruik van de app) polynomiaal en roept de app verwacht hoogstens tweemaal aan. (b) Nee. Omdat je met een goeie wortels-app kunt factoriseren, denk ik om te beginnen niet dat Inst Inc dat echt kan waarmaken. Als het ze wel is gelukt om dit 3000 jaar oude probleem op te lossen, hebben ze een RSA-kraker in handen waarmee ze het Internet en de rest van de wereld rulen. Ze zijn waarschijnlijk al door de Amerikanen, de Russen, de Chinezen, de Israeli s en de Koreanen ontvoerd, gemarteld en vermoord en bestolen voordat ze hun eerste cent hebben omgezet. (c) Modulo een priemgetal m kun je gemakkelijk de wortel uit b vinden, namelijk als a = b (p+1)/4. Die berekening kun je best in een app programmeren, maar ik geloof niet dat je daarmee een half miljoen kunt verdienen. Beoordeling: Totaal 3pt, 2 voor a en 1/2 voor b en c elk. D = Dat de worteltrektruuk alleen voor viervouden plus Drie geldt is juist maar dat hoefde er niet bij. F = Bij (c): niet nuttig want een priem is niet te factoriseren. Geen goed antwoord, want het is niet gezegd dat factoriseren de enige nuttige toepassing van de app kan zijn. H = Je mag de app ook prijzen als grote doorbraak, maar zeg wel iets over de Haalbaarheid. Je steekt je geld toch ook niet in een Perpetuum Mobiel app? K = Je Kunt weinig met zo n app. Hm, kijk eens in de app store of dat wel zo n sterk argument is om geen geld met de app te kunnen verdienen. M = De gevalsonderscheiding hierboven is niet compleet, want het geval dat m een macht van een priemgetal is, ontbreekt. Bv 625 is niet priem, niet even, en de CRT werkt er niet voor. Maar dit mocht je negeren. Overigens is het in polynomiale tijd te testen of m een priemmacht is. N = De app bewijst dat P = NP; onjuist want Factoriseren is wel in NP, maar voor zover we weten niet NP-compleet. Dus helaas, zelfs als de app zou werken, nog geen millenniumprijs. P = Voor viervouden Plus 1 is worteltrekken niet behandeld, maar zeker niet moeilijk (dat is wel genoemd op HC), dus ook daarmee kun je nog geen half miljoen terugverdienen. T = Je moet Twee wortels van hetzelfde getal hebben. Dat doe je niet door meerdere malen dezelfde b aan te bieden! De app kan deterministisch werken zodat je steeds dezelfde a krijgt. Ook input 1 aanbieden (waarvan je wortels 1 en 1 al kent) is niet goed omdat je nooit weet of je dan een niet-complementaire krijgt. W = Gebruik de W p en W q ; dat kan niet, want die kun je pas vinden als je de factoren kent.

5 5. Elgamal rekentijd: Voor Elgamal encryptie worden gedeelde parameters, een modulus en een generator g gebruikt. De private key is een getal a en de public key is b = g a. Je hoort geruchten dat bij Elgamal, de encryptie tweemaal zo duur is als de decryptie, maar dat je de berekening kunt versnellen door een Chinese stelling te gebruiken. (a) Klopt het dat encryptie zoveel duurder is, en waarom? (b) Hoeveel kun je de berekening versnellen met die Chinese stelling? Oplossing: (a) Ja, dat klopt. De rekentijd wordt gedomineerd door machtsverheffen. Voor encryptie moet dat twee keer (Rnd k, u = b k, v = g k x) en voor decryptie maar een keer (x = v/u a ). (b) De modulus p is een priemgetal, daarvoor is splitsen van de berekening in twee delen met de CRT niet mogelijk. Het tweede gerucht is onjuist, de triviale speedup factor is dus 1. Beoordeling: Tot 2pt, 1 voor a en 1 voor b. C = De CRT is een Rest Stelling, geen Rijst-stelling. F = Je kunt CRT niet gebruiken omdat je de factorisatie van de modulus niet kent is onjuist! K = De berekening van b = g a is deel van de Key generation en telt niet mee bij de decryptie. M = Het is niet Machtsverheft maar machtsverheven. V = Je kunt u = b k wel Voorberekenen, maar je moet dit wel voor elk bericht weer doen, dus telt wel mee voor encryptietijd. 6. Een Kraak bij SecuCert: Chinese hackers hebben ingebroken bij Certificate Authority SecuCert en de geheime signing key gestolen, waardoor zij valse SecuCert-websitecertificaten kunnen uitgeven. Lia weet dat gmail.com niet beveiligd is met een SecuCert-certificaat, maar met een GeoTrust-certificaat. Kan Lia veilig naar gmail.com gaan, en welke maatregelen moet zij eventueel nemen? Oplossing: De echte gmail.com site heeft wel een GeoTrust certificaat, maar de hackers kunnen een neppe site maken met een vals SecuCert certificaat! De browser signaleert niet waar een certificaat vandaan komt, als er maar een trust chain is die loopt tot een root certificaat. Lia moet dus bij het checken van haar mail opletten dat de site die zij bezoekt, niet is beveiligd met een certificaat van SecuCert. Na een update van haar browser zal SecuCert waarschijnlijk vanzelf uit de lijst van vertrouwde aanbieders zijn verdwenen. Beoordeling: Tot 2pt voor goede uitleg. In de volksmond wordt erover gesproken dat een certificaat een site beveiligt, maar je moet inzien dat een certificaat weinig doet als je eenmaal op de goede site zit. Het certificaat is een instrument dat jou moet terugsturen wanneer je op een verkeerde site terecht komt. Dat kan door criminelen worden uitgelokt met typosquatten (gmall.com of gmial.com). Maar de overheid, NSA en/of providers kunnen het ook wanneer je het goede adres typt door een omleiding van verkeer binnen het Internet. Dit is na de DigiNotar hack daadwekelijk gebeurd bij Iraanse dissidenten; die hebben hun gmailwachtwoord ingetypt op een neppe site, iets wat in sommige landen erg gevaarlijke gevolgen kan hebben. A = Je moet opletten dat gmail niet opeens een Ander certificaat heeft. D = In de DigiNotar kwestie is dit echt gebeurd. J = Het adres juist intypen is niet genoeg ivm. omleiding van verkeer.

Tweede Huiswerk Security 26 of 28 oktober, 11.00, Nabespreken op Werkcollege.

Tweede Huiswerk Security 26 of 28 oktober, 11.00, Nabespreken op Werkcollege. Tweede Huiswerk Security 26 of 28 oktober, 11.00, Nabespreken op Werkcollege. Kijk het huiswerk van je collega s na en schrijf de namen van de nakijkers linksboven en het totaalcijfer rechts onder de namen

Nadere informatie

Tweede Toets Security 2 november 2015, , Educ-α.

Tweede Toets Security 2 november 2015, , Educ-α. Tweede Toets Security 2 november 2015, 8.30 10.30, Educ-α. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe je

Nadere informatie

Het programma ELGAMAL

Het programma ELGAMAL Het programma ELGAMAL Gerard Tel Universiteit Utrecht, Departement Informatica 21 oktober 2005 Dit boekje is een inhoudelijke beschrijving van het programma ELGAMAL dat door Gerard Tel is geschreven voor

Nadere informatie

RSA. F.A. Grootjen. 8 maart 2002

RSA. F.A. Grootjen. 8 maart 2002 RSA F.A. Grootjen 8 maart 2002 1 Delers Eerst wat terminologie over gehele getallen. We zeggen a deelt b (of a is een deler van b) als b = qa voor een of ander geheel getal q. In plaats van a deelt b schrijven

Nadere informatie

Probabilistische aspecten bij public-key crypto (i.h.b. RSA)

Probabilistische aspecten bij public-key crypto (i.h.b. RSA) p. 1/21 Probabilistische aspecten bij public-key crypto (i.h.b. RSA) Herman te Riele, CWI Amsterdam Nationale Wiskunde Dagen Noordwijkerhout, 31 januari 2015 p. 2/21 verzicht Binair exponentiëren RSA Factorisatie-algoritmen

Nadere informatie

Code signing. Door: Tom Tervoort

Code signing. Door: Tom Tervoort Code signing Door: Tom Tervoort Wat is code signing? Digitale handtekening onder stuk software Geeft garanties over bron Voorkomt modificatie door derden Bijvoorbeeld met doel malware toe te voegen Ontvanger

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

7.1 Het aantal inverteerbare restklassen

7.1 Het aantal inverteerbare restklassen Hoofdstuk 7 Congruenties in actie 7.1 Het aantal inverteerbare restklassen We pakken hier de vraag op waarmee we in het vorige hoofdstuk geëindigd zijn, namelijk hoeveel inverteerbare restklassen modulo

Nadere informatie

Getaltheorie groep 3: Primitieve wortels

Getaltheorie groep 3: Primitieve wortels Getaltheorie groep 3: Primitieve wortels Trainingsweek juni 2008 Inleiding Voor a relatief priem met m hebben we de orde van a modulo m gedefinieerd als ord m (a) = min { n Z + a n 1 (mod m) }. De verzameling

Nadere informatie

Code signing. Het mechanisme. Tom Tervoort

Code signing. Het mechanisme. Tom Tervoort Code signing Tom Tervoort Code signing is een methode om gedistribueerde software te beveiligen en om de ontvanger van deze software een garantie te geven van authenticiteit en integriteit: dit houdt in

Nadere informatie

De wiskunde achter de Bitcoin

De wiskunde achter de Bitcoin De wiskunde achter de Bitcoin Bas Edixhoven Universiteit Leiden NWD, Noordwijkerhout, 2015/01/31 Deze aantekeningen zal ik op mijn homepage plaatsen. Bas Edixhoven (Universiteit Leiden) De wiskunde achter

Nadere informatie

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen

Worteltrekken modulo een priemgetal: van klok tot cutting edge. Roland van der Veen Worteltrekken modulo een priemgetal: van klok tot cutting edge Roland van der Veen Modulorekenen Twee getallen a en b zijn gelijk modulo p als ze een veelvoud van p verschillen. Notatie: a = b mod p Bijvoorbeeld:

Nadere informatie

Hoe je het cryptosysteem RSA soms kunt kraken. Benne de Weger

Hoe je het cryptosysteem RSA soms kunt kraken. Benne de Weger Hoe je het cryptosysteem RSA soms kunt kraken Benne de Weger 28 aug. / 4 sept. RSA 1/38 asymmetrisch cryptosysteem versleutelen met de publieke sleutel ontsleutelen met de bijbehorende privé-sleutel gebaseerd

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Zoek- en sorteeralgoritmen en hashing

Zoek- en sorteeralgoritmen en hashing Zoek- en sorteeralgoritmen en hashing Femke Berendsen (3689301) en Merel van Schieveen (3510190) 9 april 2013 1 Inhoudsopgave 1 Inleiding 3 2 Zoek- en sorteeralgoritmen 3 2.1 Grote O notatie..........................

Nadere informatie

Het RSA Algoritme. Erik Aarts - 1 -

Het RSA Algoritme. Erik Aarts - 1 - Het RSA Algoritme Erik Aarts - 1 - 1 Wiskunde... 3 1.1 Het algoritme van Euclides... 3 1.1.1 Stelling 1... 4 1.2 Het uitgebreide algoritme van Euclides... 5 1.3 Modulo rekenen... 7 1.3.1 Optellen, aftrekken

Nadere informatie

OPLOSSINGEN VAN DE OEFENINGEN

OPLOSSINGEN VAN DE OEFENINGEN OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

4Passief: n Afluisteren. n Geen gegevens gewijzigd of vernietigd. n Via de routers van WAN. n Via draadloze verbindingen. 4Fysieke afsluiting

4Passief: n Afluisteren. n Geen gegevens gewijzigd of vernietigd. n Via de routers van WAN. n Via draadloze verbindingen. 4Fysieke afsluiting Telematica Hoofdstuk 20 4Passief: n Afluisteren Bedreigingen n Alleen gegevens (inclusief passwords) opgenomen n Geen gegevens gewijzigd of vernietigd n Op LAN kan elk station alle boodschappen ontvangen

Nadere informatie

Priemfactoren. Grote getallen. Geavanceerde methoden. Hoe ontbind je een getal N in priemfactoren?

Priemfactoren. Grote getallen. Geavanceerde methoden. Hoe ontbind je een getal N in priemfactoren? Docentenhandleiding Inhoudsopgave Docentenhandleiding... 1 Inhoudsopgave... 2 Priemfactoren... 3 Grote getallen... 3 Geavanceerde methoden... 3 Primaliteit en factorisatie... 4 Literatuur... 4 Software...

Nadere informatie

Opgeloste en onopgeloste mysteries in de getaltheorie

Opgeloste en onopgeloste mysteries in de getaltheorie Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste

Nadere informatie

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule Heron driehoek 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule = s(s a)(s b)(s c) met s = a + b + c 2 die gebruikt wordt om de oppervlakte van een driehoek te berekenen in

Nadere informatie

2. Ga voor volgende relaties na of het al dan niet functies, afbeeldingen, bijecties, injecties, surjecties zijn :

2. Ga voor volgende relaties na of het al dan niet functies, afbeeldingen, bijecties, injecties, surjecties zijn : HOOFDSTUK. VERZAMELINGEN, RELATIES EN FUNCTIES Opgaven verzamelingen, relaties en functies. Toon aan : a) (A B) C = A (B C) b) A (B C) = (A B) (A C) c) (A B) c = A c B c d) A B B c A c. Ga voor volgende

Nadere informatie

1. Optellen en aftrekken

1. Optellen en aftrekken 1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'

Nadere informatie

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden

1 Hele getallen. Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs. Uitwerkingen van de opgaven bij de basisvaardigheden Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs Uitwerkingen van de opgaven bij de basisvaardigheden 1 Hele getallen Peter Ale Martine van Schaik u i t g e v e r ij c o u t i

Nadere informatie

Opgeloste en onopgeloste mysteries in de getaltheorie

Opgeloste en onopgeloste mysteries in de getaltheorie Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste

Nadere informatie

Digitale Handtekening Praktische problemen bij toepassingen TestNet: Testen van Security ING Group, April 2006 Ruud Goudriaan

Digitale Handtekening Praktische problemen bij toepassingen TestNet: Testen van Security ING Group, April 2006 Ruud Goudriaan Digitale Handtekening Praktische problemen bij toepassingen TestNet: Testen van Security ING Group, pril 2006 Ruud Goudriaan Digitale handtekeningen Korte uitleg symmetrische Cryptografie Hoe gebruik je

Nadere informatie

7 Deelbaarheid. 7.1 Deelbaarheid WIS7 1

7 Deelbaarheid. 7.1 Deelbaarheid WIS7 1 WIS7 1 7 Deelbaarheid 7.1 Deelbaarheid Deelbaarheid Voor geheeltallige d en n met d > 0 zeggen we dat d een deler is van n, en ook dat n deelbaar is door d, als n d een geheel getal is. Notatie: d\n k

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Public Key Cryptography. Wieb Bosma

Public Key Cryptography. Wieb Bosma Public Key Cryptography de wiskunde van het perfecte kopje koffie Wieb Bosma Radboud Universiteit Nijmegen Bachelordag 2 april 2011 Nijmegen, 6 november 2010 0 Nijmegen, 6 november 2010 1 cryptografie

Nadere informatie

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,

Nadere informatie

Groepen, ringen en velden

Groepen, ringen en velden Groepen, ringen en velden Groep Een groep G is een verzameling van elementen en een binaire operator met volgende eigenschappen: 1. closure (gesloten): als a en b tot G behoren, doet a b dat ook. 2. associativiteit:

Nadere informatie

Digitale geldtransacties. Stefanie Romme Wiskunde, Bachelor Begeleider: Wieb Bosma

Digitale geldtransacties. Stefanie Romme Wiskunde, Bachelor Begeleider: Wieb Bosma Digitale geldtransacties Stefanie Romme 3013170 Wiskunde, Bachelor Begeleider: Wieb Bosma Radboud Universiteit Nijmegen 5 juli 2012 Samenvatting Sinds de opkomst van het internet zijn elektronische geldtransacties

Nadere informatie

1. Uw tablet beveiligen

1. Uw tablet beveiligen 11 1. Uw tablet beveiligen Het risico op virussen of andere schadelijke software (malware genoemd) is bekend van pc s. Minder bekend is dat u ook op een tablet met malware geconfronteerd kan worden als

Nadere informatie

WISKUNDE B -DAG 2002 1+ 1 = 2. maar en hoe nu verder? 29 november 2002

WISKUNDE B -DAG 2002 1+ 1 = 2. maar en hoe nu verder? 29 november 2002 - 0 - WISKUNDE B -DAG 2002 1+ 1 = 2 maar en hoe nu verder? 29 november 2002 De Wiskunde B-dag wordt gesponsord door Texas Instruments - 1 - Inleiding Snel machtverheffen Stel je voor dat je 7 25 moet uitrekenen.

Nadere informatie

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties Hoofdstuk 6 Congruentierekening 6.1 Congruenties We hebben waarschijnlijk allemaal wel eens opgemerkt dat bij vermenigvuldigen van twee getallen de laatste cijfers als het ware meevermenigvuldigen. Stel

Nadere informatie

Diophantische vergelijkingen

Diophantische vergelijkingen Diophantische vergelijkingen 1 Wat zijn Diophantische vergelijkingen? Een Diophantische vergelijking is een veeltermvergelijking waarbij zowel de coëfficiënten als de oplossingen gehele getallen moeten

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Oplossing van opgave 6 en van de kerstbonusopgave.

Oplossing van opgave 6 en van de kerstbonusopgave. Oplossing van opgave 6 en van de kerstbonusopgave. Opgave 6 Lesbrief, opgave 4.5 De getallen m en n zijn verschillende positieve gehele getallen zo, dat de laatste drie cijfers van 1978 m en 1978 n overeenstemmen.

Nadere informatie

Transport Layer Security. Presentatie Security Tom Rijnbeek

Transport Layer Security. Presentatie Security Tom Rijnbeek Transport Layer Security Presentatie Security Tom Rijnbeek World Wide Web Eerste webpagina: 30 april 1993 Tegenwoordig: E-mail Internetbankieren Overheidszaken (DigiD) World Wide Web Probleem: World Wide

Nadere informatie

Credit cards, computationele complexiteit en consistentie uitspraken

Credit cards, computationele complexiteit en consistentie uitspraken Credit cards, computationele complexiteit en consistentie uitspraken Joost J. Joosten 14 december 2005 Praag en bier Sinds enkele maanden werk ik als post-doc aan de Czech Academy of Sciences in Praag.

Nadere informatie

Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens

Algoritmes in ons dagelijks leven. Leve de Wiskunde! 7 April 2017 Jacobien Carstens Algoritmes in ons dagelijks leven Leve de Wiskunde! 7 April 2017 Jacobien Carstens Wat is een algoritme? Een algoritme is een eindige reeks instructies die vanuit een gegeven begintoestand naar een beoogd

Nadere informatie

Getaltheorie II. ax + by = c, a, b, c Z (1)

Getaltheorie II. ax + by = c, a, b, c Z (1) Lesbrief 2 Getaltheorie II 1 Lineaire vergelijkingen Een vergelijking van de vorm ax + by = c, a, b, c Z (1) heet een lineaire vergelijking. In de getaltheorie gaat het er slechts om gehele oplossingen

Nadere informatie

Priemgetallen. van nutteloos tot staatsgevaarlijk? Wieb Bosma. Nijmeegse Tweedaagse Radboud Universiteit

Priemgetallen. van nutteloos tot staatsgevaarlijk? Wieb Bosma. Nijmeegse Tweedaagse Radboud Universiteit Priemgetallen van nutteloos tot staatsgevaarlijk? Wieb Bosma Nijmeegse Tweedaagse Radboud Universiteit Nijmegen oktober 2008 Priemgetallen 2 Voorwoord Dit zijn de aantekeningen bij één van de twee onderwerpen

Nadere informatie

Modulair rekenen en de Montgomery vermenigvuldiging

Modulair rekenen en de Montgomery vermenigvuldiging Modulair rekenen en de Montgomery vermenigvuldiging Inleiding door Theo Kortekaas Modulair rekenen is rekenen met resten. Als we een vliegreis maken van 31 uur en we vertrekken vandaag om 12:00 uur dan

Nadere informatie

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999 ANTWOORDEN blz. 3 a. Zeer onwaarschijnlijk Zeer onwaarschijnlijk a. Dan heb je ergens een schuld uitstaan 86 Dan hadden beide een kopie van de kerfstok; om fraude te voorkomen a. MMXII, MCCCXXVII, DLXXXVI,

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Hoofdstuk 1: Basisvaardigheden

Hoofdstuk 1: Basisvaardigheden Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen

Nadere informatie

Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002

Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 19.a) Laat zien dat 5 een voortbrenger is van F 37. b) In het sleuteldistributiesysteem van Diffie en Hellman (met G = F 37, α =

Nadere informatie

Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ.

Tweede Toets Datastructuren 29 juni 2016, , Educ-Γ. Tweede Toets Datastructuren 29 juni 2016, 13.30 15.30, Educ-Γ. Motiveer je antwoorden kort! Zet je mobiel uit. Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe

Nadere informatie

Hoofdstuk 5: Functies voor getallen en teksten

Hoofdstuk 5: Functies voor getallen en teksten Programmeren in Microsoft Visual Basic 6.0, lessenserie voor het voortgezet onderwijs HAVO/VWO David Lans, Emmauscollege, Marnix Gymnasium Rotterdam, maart 2001 Hoofdstuk 5: Functies voor getallen en teksten

Nadere informatie

1.3 Rekenen met pijlen

1.3 Rekenen met pijlen 14 Getallen 1.3 Rekenen met pijlen 1.3.1 Het optellen van pijlen Jeweetnuwatdegetallenlijnisendat0nochpositiefnochnegatiefis. Wezullen nu een soort rekenen met pijlen gaan invoeren. We spreken af dat bij

Nadere informatie

Rekenen met de GRM. 1 van 1. Inleiding: algemene zaken. donkerder. lichter

Rekenen met de GRM. 1 van 1. Inleiding: algemene zaken. donkerder. lichter 1 van 1 Rekenen met de GRM De grafische rekenmachine (voortaan afgekort met GRM) ga je bij hoofdstuk 1 voornamelijk als gewone rekenmachine gebruiken. De onderste zes rijen toetsen zijn vergelijkbaar met

Nadere informatie

Java Les 3 Theorie Herhaal structuren

Java Les 3 Theorie Herhaal structuren Java Les 3 Theorie Herhaal structuren Algemeen Een herhaal structuur een is programmeertechniek waarbij bepaalde Java instructies worden herhaald net zo lang tot een bepaalde voorwaarde is bereikt. Een

Nadere informatie

1 Complexe getallen in de vorm a + bi

1 Complexe getallen in de vorm a + bi Paragraaf in de vorm a + bi XX Complex getal Instap Los de vergelijkingen op. a x + = 7 d x + 4 = 3 b 2x = 5 e x 2 = 6 c x 2 = 3 f x 2 = - Welke vergelijkingen hebben een natuurlijk getal als oplossing?...

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel)

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel) 1 Inleiding Wortels met getallen en letters WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht

Nadere informatie

De digitale handtekening

De digitale handtekening De digitale handtekening De rol van de digitale handtekening bij de archivering van elektronische documenten Prof. dr. Jos Dumortier http://www.law.kuleuven.ac.be/icri Probleemstelling: «integriteit» Elektronisch

Nadere informatie

Aanvullende tekst bij hoofdstuk 1

Aanvullende tekst bij hoofdstuk 1 Aanvullende tekst bij hoofdstuk 1 Wortels uit willekeurige getallen In paragraaf 1.3.5 hebben we het worteltrekalgoritme besproken. Dat deden we aan de hand van de relatie tussen de (van tevoren gegeven)

Nadere informatie

ICT en de digitale handtekening. Door Peter Stolk

ICT en de digitale handtekening. Door Peter Stolk ICT en de digitale handtekening Door Peter Stolk Onderwerpen Elektronisch aanleveren van akten Issues bij de start Aanbieders van akten Hoe krijgen we ze zover? Demonstratie Welke technieken hebben we

Nadere informatie

Inhoudsopgave. Onderzoeksrapport: SSL; Dion Bosschieter; ITopia

Inhoudsopgave. Onderzoeksrapport: SSL; Dion Bosschieter; ITopia SSL veilig of niet? Dion Bosschieter Dit is een onderzoeksrapport dat antwoord geeft op de vraag: Kan een gebruiker er zeker van zijn dat SSL veilig is? ITopia Dion Bosschieter 23-04- 2012 Inhoudsopgave

Nadere informatie

informatica. cryptografie. overzicht. hoe & wat methodes belang & toepassingen moderne cryptografie

informatica. cryptografie. overzicht. hoe & wat methodes belang & toepassingen moderne cryptografie informatica cryptografie overzicht hoe & wat methodes belang & toepassingen moderne cryptografie 1 SE is op papier hoe & wat vragen komen uit methode en verwijzingen die in de methode staan in mappen RSA

Nadere informatie

VBA voor Doe het Zelvers deel 20

VBA voor Doe het Zelvers deel 20 VBA voor Doe het Zelvers deel 20 Handleiding van Auteur: leofact Augustus 2015 handleiding: VBA voor Doe het Zelvers deel 20 Vorige aflevering In het vorige deel werd besproken hoe je de structuur en vensteropbouw

Nadere informatie

De Chinese reststelling

De Chinese reststelling De Chinese reststelling 1 Inleiding 1. De Chinese reststelling is een stelling binnen de getaltheorie. De stelling werd voor het eerst beschreven in de vierde eeuw na Chr. door de Chinese wiskundige Sunzi

Nadere informatie

Inleiding tot programmeren: Javascript

Inleiding tot programmeren: Javascript Inleiding tot programmeren: Javascript Een definitie JavaScript is een scripttaal met objectgeoriënteerde mogelijkheden. Deze geïnterpreteerde programmeertaal is vooral gericht op het gebruik in webpagina

Nadere informatie

handleiding ontbinden

handleiding ontbinden handleiding ontbinden inhoudsopgave inhoudsopgave de grote lijn 3 Bespreking per paragraaf 4 Applets 4 1 met gegeven product 4 ontbinden van getallen 4 3 vergelijkingen 5 4 onderzoek 6 tijdpad 9 materialen

Nadere informatie

1. REGELS VAN DEELBAARHEID.

1. REGELS VAN DEELBAARHEID. REKENEN VIJFDE KLAS Luc Cielen 1. REGELS VAN DEELBAARHEID. Deelbaarheid door 10, 100, 1000 10: het laatste cijfer (= cijfer van de eenheden) is 0 100: laatste twee cijfers zijn 0 (cijfers van de eenheden

Nadere informatie

Hoe je het cryptosysteem RSA soms kunt kraken

Hoe je het cryptosysteem RSA soms kunt kraken Hoe je het cryptosysteem RSA soms kunt kraken Benne de Weger Technische Universiteit Eindhoven Inleiding. RSA RSA is een veelgebruikt cryptografisch systeem, bijvoorbeeld voor het beveiligen van internetverkeer.

Nadere informatie

SAMENVATTING BASIS & KADER

SAMENVATTING BASIS & KADER SAMENVATTING BASIS & KADER Afronden Hoe je moet afronden hangt af van de situatie. Geldbedragen rond je meestal af op twee decimalen, 15,375 wordt 15,38. Grote getallen rondje meestal af op duizendtallen,

Nadere informatie

Het warmteverlies van het lichaamsoppervlak aan de wordt gegeven door de volgende formule:

Het warmteverlies van het lichaamsoppervlak aan de wordt gegeven door de volgende formule: Opgave 1. (4 punten) Inleiding: Een vleermuis is een warmbloedig zoogdier. Dat wil zeggen dat hij zijn lichaamstemperatuur op een konstante waarde moet zien te houden. Als de omgeving kouder is dan de

Nadere informatie

Uitwerkingen oefeningen hoofdstuk 1

Uitwerkingen oefeningen hoofdstuk 1 Uitwerkingen oefeningen hoofdstuk 1 1.4.1 Basis Oefeningen Romeinse cijfers 1 Op deze zonnewijzer staan achtereenvolgens de getallen: I (= 1) II (= 2) III (= 3) IV (= 4) V (= 5) VI (= 6) VII (= 7) VIII

Nadere informatie

Netwerken. Beveiliging Cryptografie

Netwerken. Beveiliging Cryptografie Netwerken 15 Beveiliging Cryptografie Lennart Herlaar 2 november 2016 Onderwerpen Beveiliging Cryptografie Cryptografische algoritmen en protocollen Toepassing van cryptografie in beveiliging Lennart Herlaar

Nadere informatie

Een topprogrammeur in het OO programmeren is Graig Larman. Hij bedacht de volgende zin:

Een topprogrammeur in het OO programmeren is Graig Larman. Hij bedacht de volgende zin: Java Les 2 Theorie Beslissingen Algemeen Net als in het dagelijks leven worden in software programma s beslissingen genomen, naast het toekennen van waarden aan variabelen zijn beslissingen één van de

Nadere informatie

niet: achterop een ansichtkaart schrijven postbode (en wie al niet meer) leest mee

niet: achterop een ansichtkaart schrijven postbode (en wie al niet meer) leest mee Het geheim van goede koffie Benne de Weger oktober 2013 b.m.m.d.weger@tue.nl http://www.win.tue.nl/~bdeweger versturen van geheimen hoe moet je een geheim opsturen als onderweg iemand kan afluisteren?

Nadere informatie

Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen.

Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen. Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen. Het werkt als volgt, Je maakt een opgave bijv. opgave 1. Hoe gaat het ook al weer denk je dan. Nou,

Nadere informatie

1.1 Tweedegraadsvergelijkingen [1]

1.1 Tweedegraadsvergelijkingen [1] 1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2

Nadere informatie

Algoritmes voor Priemgetallen

Algoritmes voor Priemgetallen Algoritmes voor Priemgetallen Tom van der Zanden Projectje Security, juni 2013 1 Introductie Voor cryptograe zijn priemgetallen erg belangrijk. Veel encryptiesystemen maken gebruik van hun eigenschappen

Nadere informatie

??? Peter Stevenhagen. 7 augustus 2008 Vierkant voor wiskunde

??? Peter Stevenhagen. 7 augustus 2008 Vierkant voor wiskunde 1 ??? Peter Stevenhagen 7 augustus 2008 Vierkant voor wiskunde 2 Wiskunde en cryptografie Peter Stevenhagen 7 augustus 2008 Vierkant voor wiskunde 3 Crypto is voor iedereen Peter Stevenhagen 7 augustus

Nadere informatie

Hoofdstuk 1 : REKENEN

Hoofdstuk 1 : REKENEN 1 / 6 H1 Rekenen Hoofdstuk 1 : REKENEN 1. Wat moet ik leren? (handboek p.3-34) 1.1 Het decimaal stelsel In verband met het decimaal stelsel: a) het grondtal van ons decimaal stelsel geven. b) benamingen

Nadere informatie

Je gaat leren programmeren en een spel bouwen met de programmeertaal Python. Websites zoals YouTube en Instagram zijn gebouwd met Python.

Je gaat leren programmeren en een spel bouwen met de programmeertaal Python. Websites zoals YouTube en Instagram zijn gebouwd met Python. 1 Je gaat leren programmeren en een spel bouwen met de programmeertaal Python. Websites zoals YouTube en Instagram zijn gebouwd met Python. Voordat je leert programmeren, moet je jouw pc zo instellen dat

Nadere informatie

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare

Nadere informatie

Geheimschrift op de TI-83+ Gerard Tel

Geheimschrift op de TI-83+ Gerard Tel Geheimschrift op de TI-83+ Gerard Tel Department of Information and Computing Sciences, Utrecht University Technical Report UU-CS-2006-017 www.cs.uu.nl ISSN: 0924-3275 Geheimschrift op de TI-83+ Gerard

Nadere informatie

Cryptografie met krommen. Reinier Bröker. Universiteit Leiden

Cryptografie met krommen. Reinier Bröker. Universiteit Leiden Cryptografie met krommen Reinier Bröker Universiteit Leiden Nationale Wiskundedagen Februari 2006 Cryptografie Cryptografie gaat over geheimschriften en het versleutelen van informatie. Voorbeelden. Klassieke

Nadere informatie

PG blok 4 werkboek bijeenkomst 4 en 5

PG blok 4 werkboek bijeenkomst 4 en 5 2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene

Nadere informatie

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden.

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden. EXACT- Periode 1 Hoofdstuk 1 1.1 Grootheden. Een grootheid is in de natuurkunde en in de chemie en in de biologie: iets wat je kunt meten. Voorbeelden van grootheden (met bijbehorende symbolen): 1.2 Eenheden.

Nadere informatie

opgaven formele structuren deterministische eindige automaten

opgaven formele structuren deterministische eindige automaten opgaven formele structuren deterministische eindige automaten Opgave. De taal L over het alfabet {a, b} bestaat uit alle strings die beginnen met aa en eindigen met ab. Geef een reguliere expressie voor

Nadere informatie

PKI, geen mysterie en zeker geen magie

PKI, geen mysterie en zeker geen magie 4 Informatiebeveiliging - nummer 7-2011 PKI, geen mysterie en zeker geen magie Shaun is werkzaam als freelance technical writer. Hij is bekend bij de redactie. Reacties graag via de redactie. Door de recente

Nadere informatie

De Wetenschappelijke notatie

De Wetenschappelijke notatie De Wetenschappelijke notatie Grote getallen zijn vaak lastig te lezen. Hoeveel is bijvoorbeeld 23000000000000? Eén manier om het lezen te vergemakkelijken is het zetten van puntjes of spaties: 23.000.000.000.000

Nadere informatie

Een Stelling over Priemgetallen Bewezen op een Schaakbord Seminar Combinatorial Algorithms (voorjaar 2010)

Een Stelling over Priemgetallen Bewezen op een Schaakbord Seminar Combinatorial Algorithms (voorjaar 2010) Een Stelling over Priemgetallen Bewezen op een Schaakbord Seminar Combinatorial Algorithms (voorjaar 2010) Johan de Ruiter, johan.de.ruiter@gmail.com 27 april 2010 1 De stelling van Fermat over de som

Nadere informatie

Complexe getallen: oefeningen

Complexe getallen: oefeningen Complexe getallen: oefeningen Hoofdstuk 2 Praktisch rekenen met complexe getallen 2.1 Optelling en aftrekking (modeloplossing) 1. Gegeven zijn de complexe getallen z 1 = 2 + i en z 2 = 2 3i. Bereken de

Nadere informatie

De waarde van een plaats in een getal.

De waarde van een plaats in een getal. Komma getallen. Toen je net op school leerde rekenen, wist je niet beter dan dat getallen heel waren. Dus een taart was een taart, een appel een appel en een peer een peer. Langzaam maar zeker werd dit

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Grafieken van veeltermfuncties

Grafieken van veeltermfuncties (HOOFDSTUK 43, uit College Mathematics, door Frank Ayres, Jr. and Philip A. Schmidt, Schaum s Series, McGraw-Hill, New York; dit is de voorbereiding voor een uit te geven Nederlandse vertaling). Grafieken

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Tokenauthenticatie & XML Signature in detail

Tokenauthenticatie & XML Signature in detail Tokenauthenticatie & XML Signature in detail Tokenauthenticatie QURX_ EX990011NL smartcard met private key Certificaat token maken SignedInfo maken RSA / SHA sig maken signeddata SignedInfo SignatureValue

Nadere informatie

Handleiding Installatie Mobiele Token

Handleiding Installatie Mobiele Token Handleiding Installatie Mobiele Token Versie: 1.1 Datum: 31-12-2014 Inhoud Uitleg... 3 Installatie Digipass for Mobile ES App... 4 Installatie op een Apple apparaat... 4 Installatie op een Android apparaat...

Nadere informatie

Concept. Inleiding. Advies. Agendapunt: 04 Bijlagen: - College Standaardisatie

Concept. Inleiding. Advies. Agendapunt: 04 Bijlagen: - College Standaardisatie Forum Standaardisatie Wilhelmina v Pruisenweg 104 2595 AN Den Haag Postbus 84011 2508 AA Den Haag www.forumstandaardisatie.nl COLLEGE STANDAARDISATIE Concept CS07-05-04I Agendapunt: 04 Bijlagen: - Aan:

Nadere informatie

Cryptografie met behulp van elliptische krommen

Cryptografie met behulp van elliptische krommen Cryptografie met behulp van elliptische krommen Bachelorscriptie Wiskunde Erik van der Kouwe Studentnummer 1397273 E-mail: erik@erisma.nl Vrije Universiteit Amsterdam Faculteit Exacte Wetenschappen Afdeling

Nadere informatie