5 Afronden en afkappen

Maat: px
Weergave met pagina beginnen:

Download "5 Afronden en afkappen"

Transcriptie

1 WIS5 1 5 Afronden en afkappen 5.1 Floor en ceiling Floor en ceiling Conversiefuncties van reële getallen naar gehele getallen. x = het grootste gehele getal et x x = het kleinste gehele getal et x Uitspraak: x als floor x of entier x, en x als ceiling x. Verband et typeconversie in Java: { x als x 0 (int)x = x als x < 0 Grafiek Rekenregels Voor x R en n Z geldt x 1 < x x x < x + 1 x x = [x Z] x = x x = x x = n n x < n + 1 x = n x 1 < n x x = n n 1 < x n x = n x n < x + 1 x + n = x + n x + n = x + n

2 WIS5 Rekenregels Voor x R en n Z geldt Bewijs (van de eerste equivalentie): x < n { x x } x < n {beide leden geheeltallig} x n 1 { x 1 < x } x 1 < n 1 {tel 1 op bij beide leden} x < n x < n x < n n < x n < x x n x n n x n x Geheeltallige logarite Linear search int ilg(int n) { int k = 0; int t = 1; // invariant t = k while (t < n) { t*=; k++; } // k iniaal et k n return k; } Dit prograa berekent log n. Aantal bits Noe bits(n) het aantal bits in de binaire voorstelling van een getal n. Odat geldt (1 } {{ 1} ) = 1 (1)

3 WIS5 3 bits(n) {(1)} n 1 {tel bij beide leden 1 op} n + 1 {onotonie van log } log(n + 1) {eigenschap } log(n + 1) dus bits(n) = log(n + 1) Wortel van floor = x. Bewijs: voor gehele niet- Te bewijzen: voor reële niet-negatieve x is negatieve is x < {eigenschap van } x < {onotonie van kwadrateren} x < {eigenschap van } x < {onotonie van kwadrateren} x < {eigenschap van } x < x Integers in een interval Gegeven een interval tussen de reële getallen α en β, de eindpunten al dan niet daarbij ingesloten, hoeveel gehele getallen bevat dit? Voor α < β en gehele n geldt n [α.. β] {per definitie} α n β {eigenschap van en } α n β dus het aantal gehele getallen in [α.. β] is β α + 1. Evenzo: [α.. β) β α (α.. β] β α (α.. β) β α 1

4 WIS5 4 Roulette Een getal n et 1 n 1000 heet een winnaar als 3 n \n. Het aantal winnaars is 1000 n=1 [ 3 n \n] = {introduceer teller k, eenpuntsregel} k,n [k = 3 n ][k\n][1 n 1000] = {introduceer teller, eenpuntsregel} k,,n [k = 3 n ][n = k][1 n 1000] = {splits af n = 1000 } 1 + k,,n [k = 3 n ][n = k][1 n < 1000] = {eigenschap van } 1 + k,,n [k3 n < (k + 1) 3 ][n = k][1 n < 1000] = {eliinatie teller n, eenpuntsregel} 1 + k, [k3 k < (k + 1) 3 ][1 k < 1000] = {herordenen dubbelso, erk op k 3 < 1000 alss k < 10 } 1 + k, [1 k < 10][k < (k + 1) 3 /k] = {aantal integers in interval} 1 + k [1 k < 10]( (k + 1) 3 /k k ) Roulette Het aantal winnaars is 1 + k [1 k < 10]( (k + 1) 3 /k k ) = { (k + 1) 3 /k = k + 3k /k } k=1 (3k + 4) = {rekenkundige rij} = {rekenen} 17 Asyptotische roulette Vervang 1000 in het voorgaande door N. Dan is het aantal winnaars k, [k3 k < (k + 1) 3 ][1 k N] = {herordenen dubbelso, noe K := 3 N } k, [1 k < K][k < (k + 1) 3 /k] + [K N/K] = {eerste so als voorheen; tweede via aantal integers in interval} K 1 k=1 (3k + 4) + ( N/K K + 1 ) = {rekenkundige rij; K Z } 1 (7 + 3K + 1)(K 1) + ( N/K K + 1 ) = {rekenen} 1 K + 5 K 3 + N/K Hierin is, voor grote waarden van N, als benadering N/K N /3 en 1 K 1 N/3, terwijl de andere teren van de orde van grootte van N 1/3 of inder zijn. We schrijven het

5 WIS5 5 aantal winnaars als 3 N/3 + O(N 1/3 ) Recurrente betrekkingen Veel recurrente betrekkingen kunnen worden vereenvoudigd worden door floor en ceiling te gebruiken. In college zagen we als forule voor M n, het aantal vergelijkingen nodig voor het sorteren van n eleenten et Mergesort, M k = M k + k 1 M k+1 = M k + M k+1 + k Dit kan eenvoudiger worden geschreven (en opgelost!) als M n = M n/ + M n/ + n 1 In college 1 hadden we de recurrente betrekking voor het Josephus-problee wat eenvoudiger is te schrijven als J(k) = J(k) 1 J(k + 1) = J(k) + 1 J(n) = J( n/ ) ( 1) n 5. Geheeltallige deling Geheeltallige deling Voor willekeurige x en y 0 noteren we x od y = x y x/y Uitspraak: x odulo y. Dit is voor positieve gehele x en y de rest bij deling van x door y, in Java genoteerd als x%y. Bijvoorbeeld 5 od 3 = 5 od 3 = 1 5 od 3 = 1 5 od 3 = (Merk op dat in Java 5%(-3) == en (-5)%3 == -, dus bij negatieve operanden steen de definities niet overeen.) Voor de volledigheid definiëren we nog x od 0 = x

6 WIS5 6 Rekenregels 0 x od y < y als y > 0 0 x od y > y als y < 0 x = x + x od 1 c(x od y) = (cx) od (cy) 5.3 Soatie Tekst in koloen Gegeven een tekst van n regels die we in koloen willen verdelen. Dan zijn er n od lange koloen, ter lengte n/. En er zijn n od korte koloen, ter lengte n/. Tekst in koloen Laat k lopen over het gebied 0 k <. Dan n k k = {zij q := n/ en r := n od } k q+r k = {rekenen} q + r k k = {eigenschap van, gebruik q geheel} ( q + r k ) k = {tersplitsing, constante ter} q + r k k = { 0 r < } q + k [k < r] = {doeinsplitsing, constante ter} q + r = {definitie van q en r, definitie van od } n Merk op: n k is de lengte van kolo k in het voorgaande problee.

7 WIS5 7 So van wortels Stilzwijgend laten we k en alleen over niet-negatieve gehele getallen lopen. k [k < n] k = {introduceer teller ; eenpuntsregel} k, [k < n][ = k ] = {eigenschap } k, [k < n][ k < + 1] = {onotonie kwadrateren} k, [k < n][ k < ( + 1) ] = {doeinsplitsing} k, [ k < ( + 1) n] + k, [ k < n < ( + 1) ] = {zij a := n } k, [ k < ( + 1) ][ + 1 a] + k, [ = a][a k < n] So van wortels De eerste so geeft k, [ k < ( + 1) ][ + 1 a] = {constante ter} ( ( + 1) ) [ + 1 a] = {rekenen} ( + 1)[ < a] = {zie ( college 4} + 3 1) [ < a] = {notatie} a ( ) δ = {differentie-soatiestelling} 3 a3 + 3 a = {definitie van a i } 3 a(a 1)(a ) + 3 a(a 1) = {rekenen} 3 a3 1 a 1 6 a So van wortels De tweede so geeft k, [ = a][a k < n] = {eenpuntsregel} k a[a k < n] = {constante ter} a(n a ) Conclusie: n 1 k = na 1 3 a3 1 a 1 6 a k=0

8 waarin a = n. Asyptotisch dus 3 n3/. WIS5 8

Tweede college complexiteit. 12 februari Wiskundige achtergrond

Tweede college complexiteit. 12 februari Wiskundige achtergrond College 2 Tweede college complexiteit 12 februari 2019 Wiskundige achtergrond 1 Agenda vanmiddag Floor, Ceiling Rekenregels logaritmen Tellen Formele definitie O, Ω, Θ met voorbeelden Stellingen over faculteiten

Nadere informatie

Zevende college algoritmiek. 23/24 maart Verdeel en Heers

Zevende college algoritmiek. 23/24 maart Verdeel en Heers Zevende college algoritmiek 23/24 maart 2017 Verdeel en Heers 1 Algoritmiek 2017/Backtracking Tweede Programmeeropdracht 0 1 2 3 0 1 2 3 4 1 2 3 4 5 2 Algoritmiek 2017/Backtracking Tweede Programmeeropdracht

Nadere informatie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie

Discrete Structuren. Piter Dykstra Opleidingsinstituut Informatica en Cognitie Discrete Structuren Piter Dykstra Opleidingsinstituut Informatica en Cognitie www.math.rug.nl/~piter piter@math.rug.nl 22 februari 2009 INDUCTIE & RECURSIE Paragrafen 4.3-4.6 Discrete Structuren Week 3:

Nadere informatie

Zevende college Algoritmiek. 6 april Verdeel en Heers

Zevende college Algoritmiek. 6 april Verdeel en Heers Zevende college Algoritmiek 6 april 2018 Verdeel en Heers 1 Algoritmiek 2018/Backtracking Programmeeropdracht 2 Puzzel 2: D O N A L D G E R A L D + R O B E R T Elke letter stelt een cijfer voor (0,1,...,9)

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

1 Rekenen in eindige precisie

1 Rekenen in eindige precisie Rekenen in eindige precisie Een computer rekent per definitie met een eindige deelverzameling van getallen. In dit hoofdstuk bekijken we hoe dit binnen een computer is ingericht, en wat daarvan de gevolgen

Nadere informatie

1 Recurrente betrekkingen

1 Recurrente betrekkingen WIS1 1 1 Recurrente betrekkingen 1.1 De torens van Hanoi De torens van Hanoi Edouard Lucas, 1884: Gegeven 3 pinnen en 64 schijven van verschillende grootte. Startsituatie: 64 op linkerpin, geordend naar

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Programmeermethoden. Recursie. week 11: november kosterswa/pm/

Programmeermethoden. Recursie. week 11: november kosterswa/pm/ Programmeermethoden Recursie week 11: 21 25 november 2016 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Pointers Derde programmeeropgave 1 Het spel Gomoku programmeren we als volgt: week 1: pointerpracticum,

Nadere informatie

2 Recurrente betrekkingen

2 Recurrente betrekkingen WIS2 1 2 Recurrente betrekkingen 2.1 Fibonacci De getallen van Fibonacci Fibonacci (= Leonardo van Pisa), 1202: Bereken het aantal paren konijnen na één jaar, als 1. er na 1 maand 1 paar pasgeboren konijnen

Nadere informatie

Wetenschappelijk Rekenen

Wetenschappelijk Rekenen Wetenschappelijk Rekenen Eamen - Bacheloropleiding informatica Oefeningen 10 juni 2014 1. In de oefeninglessen hebben we gezien dat we de machine-epsilon bekomen bij het berekenen van ( 4 1) 1. Beschouw

Nadere informatie

Zevende college algoritmiek. 24 maart Verdeel en Heers

Zevende college algoritmiek. 24 maart Verdeel en Heers Zevende college algoritmiek 24 maart 2016 Verdeel en Heers 1 Verdeel en heers 1 Divide and Conquer 1. Verdeel een instantie van het probleem in twee (of meer) kleinere instanties 2. Los de kleinere instanties

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

Eerste Toets Datastructuren 22 mei 2019, , Educ-β en Megaron.

Eerste Toets Datastructuren 22 mei 2019, , Educ-β en Megaron. Eerste Toets Datastructuren 22 mei 209, 3.30 5.30, Educ-β en Megaron. Motiveer je antwoorden kort! Stel geen vragen over deze toets; als je een vraag niet duidelijk vindt, schrijf dan op hoe je de vraag

Nadere informatie

6 Complexe getallen. 6.1 Definitie WIS6 1

6 Complexe getallen. 6.1 Definitie WIS6 1 WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We

Nadere informatie

1 WAAM - Differentiaalvergelijkingen

1 WAAM - Differentiaalvergelijkingen 1 WAAM - Differentiaalvergelijkingen 1.1 Algemene begrippen Een (gewone) differentiaalvergelijking heeft naast de onafhankelijke veranderlijke (bijvoorbeeld genoteerd als x), eveneens een onbekende functie

Nadere informatie

compact weer te geven (ken ook een waarde toe aan n).

compact weer te geven (ken ook een waarde toe aan n). 1 HOVO: Gravitatie en kosmologie OPGAVEN WEEK 2 - Oplossingen Opgave 1: Er geldt n 3 en we hebben de compacte uitdrukking y i a r i x r, waarbij we gebruik maken van de Einsteinsommatieconventie. a Schrijf

Nadere informatie

1 Limiet van een rij Het begrip rij Bepaling van een rij Expliciet voorschrift Recursief voorschrift 3

1 Limiet van een rij Het begrip rij Bepaling van een rij Expliciet voorschrift Recursief voorschrift 3 HOOFDSTUK 6: RIJEN 1 Limiet van een rij 2 1.1 Het begrip rij 2 1.2 Bepaling van een rij 2 1.2.1 Expliciet voorschrift 2 1.2.2 Recursief voorschrift 3 1.2.3 Andere gevallen 3 1.2.4 Rijen met de grafische

Nadere informatie

Inleiding Analyse 2009

Inleiding Analyse 2009 Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn

Nadere informatie

Programmeermethoden. Recursie. Walter Kosters. week 11: november kosterswa/pm/

Programmeermethoden. Recursie. Walter Kosters. week 11: november kosterswa/pm/ Programmeermethoden Recursie Walter Kosters week 11: 20 24 november 2017 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Vierde programmeeropgave 1 De Grote getallen programmeren we als volgt: week 1: pointerpracticum,

Nadere informatie

Combinatoriek groep 1 & 2: Recursie

Combinatoriek groep 1 & 2: Recursie Combinatoriek groep 1 & : Recursie Trainingsweek juni 008 Inleiding Bij een recursieve definitie van een rij wordt elke volgende term berekend uit de vorige. Een voorbeeld van zo n recursieve definitie

Nadere informatie

Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, , Examenzaal

Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, , Examenzaal Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, 14.00 17.00, Examenzaal Het gebruik van een rekenmachine en/of telefoon is niet toegestaan. U mag geen gebruik maken van het boek

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

eerste en laatste cijfers Jaap Top

eerste en laatste cijfers Jaap Top eerste en laatste cijfers Jaap Top JBI-RuG & DIAMANT j.top@rug.nl 3-10 april 2013 (Collegecarrousel, Groningen) 1 laatste, eerste?! over getallen 2,..., 101,..., 2014,...... laatste cijfers hiervan: 2,...,

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

Groepen, ringen en velden

Groepen, ringen en velden Groepen, ringen en velden Groep Een groep G is een verzameling van elementen en een binaire operator met volgende eigenschappen: 1. closure (gesloten): als a en b tot G behoren, doet a b dat ook. 2. associativiteit:

Nadere informatie

1. Toon aan dat de rij (e n := (1 + 1 n )n ) monotoon stijgend en naar boven begrensd is. Conclusie i.v.m. convergentie? 13. Toon aan dat er voor elk

1. Toon aan dat de rij (e n := (1 + 1 n )n ) monotoon stijgend en naar boven begrensd is. Conclusie i.v.m. convergentie? 13. Toon aan dat er voor elk Rijen en reeksen Oefeningen Wiskundige Analyse I 1. Toon aan dat de limiet van een convergente rij uniek is.. Toon aan dat elke deelrij van een convergente rij, convergeert naar dezelfde limiet als de

Nadere informatie

Achtste college algoritmiek. 12 april Verdeel en Heers. Dynamisch Programmeren

Achtste college algoritmiek. 12 april Verdeel en Heers. Dynamisch Programmeren Achtste college algoritmiek 12 april 2019 Verdeel en Heers Dynamisch Programmeren 1 Uit college 7: Partitie Partitie Partitie(A[l r]) :: // partitioneert een (sub)array, met A[l] als spil (pivot) p :=

Nadere informatie

KETTINGBREUKEN VAN COMPLEXE GETALLEN MART KELDER

KETTINGBREUKEN VAN COMPLEXE GETALLEN MART KELDER KETTINGBREUKEN VAN COMPLEXE GETALLEN MART KELDER 7 mei 2009 Inhoudsopgave Reële kettingbreuken 2. Voorwoord 2.2 Verschillende reële kettingbreuken 2.3 Roosters 2.3. Definities 2.4 Voorbeelden van Roosters

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Examen Datastructuren en Algoritmen II

Examen Datastructuren en Algoritmen II Tweede bachelor Informatica Academiejaar 2016 2017, eerste zittijd Examen Datastructuren en Algoritmen II Naam :.............................................................................. Lees de hele

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

Vierde college complexiteit. 14 februari Beslissingsbomen

Vierde college complexiteit. 14 februari Beslissingsbomen College 4 Vierde college complexiteit 14 februari 2017 Restant zoeken Beslissingsbomen 1 Binair zoeken Links := 1; Rechts := n; while Links Rechts do Midden := Links + Rechts 2 ; if X = A[Midden] then

Nadere informatie

Analyse 1 Handout limieten en continuïteit

Analyse 1 Handout limieten en continuïteit Analyse Handout ieten en continuïteit Rogier Bos Inhoudsopgave Limieten 2. Intuïtief ieten bepalen........................ 2.2 Rekenen aan ieten........................... 4.3 Limieten als spel.............................

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Oneindige spelen. Dion Coumans. Begeleider: dr. W. Veldman

Oneindige spelen. Dion Coumans. Begeleider: dr. W. Veldman Oneindige spelen ion Coumans Begeleider: dr. W. Veldman Inhoudsopgave 1 Voorwoord 3 2 efinities 4 3 A is aftelbaar 6 4 Gale-Stewart-stelling 7 5 Stelling van Wolfe 11 2 1 Voorwoord Banach, Mazur en Ulam

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Genererende Functies K. P. Hart

Genererende Functies K. P. Hart genererende_functies.te 27--205 Z Hoe kun je een rij getallen zo efficiënt mogelijk coderen? Met behulp van functies. Genererende Functies K. P. Hart Je kunt rijen getallen op diverse manieren weergeven

Nadere informatie

De steen in de vijver 19 december 2007

De steen in de vijver 19 december 2007 De in de vijver 19 deceber 2007 Inleiding Er is een oud, bekend problee waarbij een in de vijver gegooid wordt. Het zal daardoor stijgen. ls dezelfde in een je in het gelegd wordt zal het ook stijgen.

Nadere informatie

Vierde college complexiteit. 26 februari Beslissingsbomen en selectie Toernooimethode Adversary argument

Vierde college complexiteit. 26 februari Beslissingsbomen en selectie Toernooimethode Adversary argument Complexiteit 2019/04 College 4 Vierde college complexiteit 26 februari 2019 Beslissingsbomen en selectie Toernooimethode Adversary argument 1 Complexiteit 2019/04 Zoeken: samengevat Ongeordend lineair

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Ruimtemeetkunde deel 1

Ruimtemeetkunde deel 1 Ruimtemeetkunde deel 1 1 Punten We weten reeds dat Π 0 het meetkundig model is voor de vectorruimte R 2. We definiëren nu op dezelfde manier E 0 als meetkundig model voor de vectorruimte R 3. De elementen

Nadere informatie

Opgaven Inleiding Analyse

Opgaven Inleiding Analyse Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van iet dat y 0 y = 0. (b) Bewijs y 0 y 3 = 0 uit de definitie van iet. (c) Bewijs y 0 y 3

Nadere informatie

Derde college complexiteit. 7 februari Zoeken

Derde college complexiteit. 7 februari Zoeken College 3 Derde college complexiteit 7 februari 2017 Recurrente Betrekkingen Zoeken 1 Recurrente betrekkingen -1- Rij van Fibonacci: 0,1,1,2,3,5,8,13,21,... Vanaf het derde element: som van de voorgaande

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

Datastructuren en Algoritmen

Datastructuren en Algoritmen Datastructuren en Algoritmen Tentamen Vrijdag 6 november 2015 13.30-16.30 Toelichting Bij dit tentamen mag je gebruik maken van een spiekbriefje van maximaal 2 kantjes. Verder mogen er geen hulpmiddelen

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Opgaven Fibonacci-getallen Datastructuren, 23 juni 2017, Werkgroep.

Opgaven Fibonacci-getallen Datastructuren, 23 juni 2017, Werkgroep. Opgaven Fibonacci-getallen Datastructuren, 3 juni 017, Werkgroep Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege Cijfer: Op een toets krijg je meestal zes tot acht

Nadere informatie

Examencursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven VWO kan niet korter

Examencursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven VWO kan niet korter Voorbereidende opgaven VWO Examencursus wiskunde A Tips: Maak de voorbereidende opgaven voorin in een van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk hem dan

Nadere informatie

Hoofdstuk 3. Equivalentierelaties. 3.1 Modulo Rekenen

Hoofdstuk 3. Equivalentierelaties. 3.1 Modulo Rekenen Hoofdstuk 3 Equivalentierelaties SCHAUM 2.8: Equivalence Relations Twee belangrijke voorbeelden van equivalentierelaties in de informatica: resten (modulo rekenen) en cardinaliteit (aftelbaarheid). 3.1

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan

Nadere informatie

Wiskundige Analyse I. Hoofdstuk 1. Vraag 1.1 Het beginvoorwaardenprobleem. x 2 y + xy + x 2 y = 0, y(0+) = 1, y (0+) = 0. bezit een unieke oplossing.

Wiskundige Analyse I. Hoofdstuk 1. Vraag 1.1 Het beginvoorwaardenprobleem. x 2 y + xy + x 2 y = 0, y(0+) = 1, y (0+) = 0. bezit een unieke oplossing. Hoofdstuk 1 Wiskundige Analyse I Vraag 1.1 Het beginvoordenprobleem x 2 y + xy + y = 0, y(0+) = 1, y (0+) = 0 bezit een unieke oplossing. vals Vraag 1.2 Het beginvoordenprobleem x 2 y + xy + x 2 y = 0,

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

META-kaart vwo3 - domein Getallen en variabelen

META-kaart vwo3 - domein Getallen en variabelen META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek

Nadere informatie

n=0 en ( f(y n ) ) ) n=0 equivalente rijen zijn.

n=0 en ( f(y n ) ) ) n=0 equivalente rijen zijn. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 8 juli 2011, 14.00 17.00 Het gebruik van een rekenmachine en/of telefoon is niet toegestaan. U mag geen gebruik maken van het boek Analysis I. Geef

Nadere informatie

Discrete Wiskunde 2WC15, Lente Jan Draisma

Discrete Wiskunde 2WC15, Lente Jan Draisma Discrete Wiskunde 2WC15, Lente 2010 Jan Draisma HOOFDSTUK 2 Gröbnerbases 1. Vragen We hebben gezien dat de studie van stelsels polynoomvergelijkingen in meerdere variabelen op natuurlijke manier leidt

Nadere informatie

RSA. F.A. Grootjen. 8 maart 2002

RSA. F.A. Grootjen. 8 maart 2002 RSA F.A. Grootjen 8 maart 2002 1 Delers Eerst wat terminologie over gehele getallen. We zeggen a deelt b (of a is een deler van b) als b = qa voor een of ander geheel getal q. In plaats van a deelt b schrijven

Nadere informatie

Stoomcursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven VWO ( ) = = ( ) ( ) ( ) = ( ) ( ) = ( ) = = ( )

Stoomcursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven VWO ( ) = = ( ) ( ) ( ) = ( ) ( ) = ( ) = = ( ) Voorbereidende opgaven VWO Stoomcursus wiskunde A Tips: Maak de voorbereidende opgaven voorin in een van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk hem dan

Nadere informatie

1 Recurrente betrekkingen De torens van Hanoi Vlakverdeling Het Josephus-probleem... 9

1 Recurrente betrekkingen De torens van Hanoi Vlakverdeling Het Josephus-probleem... 9 Wisundige technieen in de informatica Inhoudsopgave Recurrente betreingen 3. De torens van Hanoi................................. 3.2 Vlaverdeling..................................... 7.3 Het Josephus-probleem................................

Nadere informatie

Ongelijkheden groep 1

Ongelijkheden groep 1 Ongelijkheden groep 1 Cauchy-Schwarz Trainingsdag (Transtrend, 6 maart 009 Cauchy-Schwarz Voor reële getallen x 1,, x n en y 1,, y n geldt: x i y i met gelijkheid dan en slechts dan als er een reëel getal

Nadere informatie

Hoofdstuk 1 : Vectoren (A5D)

Hoofdstuk 1 : Vectoren (A5D) 1 Hoofdstuk 1 : Vectoren (A5D) Hoofdstuk 1 : Vectoren (A5D) Les 1 : Stelsels en Echelon vorm DOEL : WE GAAN EEN AANTAL VERGELIJKINGEN MET EEN AANTAL VARIABELEN PROBEREN OP TE LOSSEN. Definities Stelsel

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i COMPLEXE GETALLEN Invoering van de complexe getallen Definitie Optellen en vermenigvuldigen Delen De complexe getallen zijn al behoorlijk oud; in de zestiende eeuw doken ze op bij het oplossen van algebraïsche

Nadere informatie

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten.

Toepassingen in de natuurkunde: snelheden, versnellingen, krachten. WIS8 8 Vectoren 8. Vectoren Vectoren Een vector met dimensie is een kolom bestaande uit twee reële getallen, bijvoorbeeld [ We kunnen deze meetkundig interpreteren als een pijl in het platte vlak van de

Nadere informatie

Divide & Conquer: Verdeel en Heers. Algoritmiek

Divide & Conquer: Verdeel en Heers. Algoritmiek Divide & Conquer: Verdeel en Heers Algoritmiek Algoritmische technieken Trucs; methoden; paradigma s voor het ontwerp van algoritmen Gezien: Dynamisch Programmeren Volgend college: Greedy Vandaag: Divide

Nadere informatie

Divide & Conquer: Verdeel en Heers. Algoritmiek

Divide & Conquer: Verdeel en Heers. Algoritmiek Divide & Conquer: Verdeel en Heers Algoritmiek Algoritmische technieken Trucs; methoden; paradigma s voor het ontwerp van algoritmen Gezien: Dynamisch Programmeren Hierna: Greedy Vandaag: Divide & Conquer

Nadere informatie

Voorkennis : Breuken en letters

Voorkennis : Breuken en letters Hoofdstuk 1 Rekenregels en Verhoudingen (H4 Wis A) Pagina 1 van 11 Voorkennis : Breuken en letters Les 1 : Breuken Bereken : a. 4 2 3 b. x 5 = c. 12 3 x a. 4 2 3 = 8 3 = 2 2 3 b. x 5 = 1 5 x c. 12 3 x

Nadere informatie

Kwantummechanica Donderdag, 13 oktober 2016 OPGAVEN SET HOOFDSTUK 4. Bestudeer Appendix A, bladzijden van het dictaat.

Kwantummechanica Donderdag, 13 oktober 2016 OPGAVEN SET HOOFDSTUK 4. Bestudeer Appendix A, bladzijden van het dictaat. 1 Kwantummechanica Donderdag, 1 oktober 016 OPGAVEN SET HOOFDSTUK 4 VECTOREN OVER DE REËLE RUIMTE DUS DE ELEMENTEN ZIJN REËLE GETALLEN Bestudeer Appendix A, bladzijden 110-114 van het dictaat. Opgave 1:

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

REEKS II. Zaterdag 6 november 2010, 11u

REEKS II. Zaterdag 6 november 2010, 11u TEST INFORMATICA 1STE BACHELOR IN DE INGENIEURSWETENSCHAPPEN - ACADEMIEJAAR 2010-2011 REEKS II Zaterdag 6 november 2010, 11u NAAM :... VRAAG 1: AFSTAND [5 PUNTEN] In deze oefening gaan we opzoek naar identieke

Nadere informatie

Deel 2. Basiskennis wiskunde

Deel 2. Basiskennis wiskunde Deel 2. Basiskennis wiskunde Vraag 26 Definieer de functie f : R R : 7 cos(2 ). Bepaal de afgeleide van de functie f in het punt 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D)

Nadere informatie

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.

I.3 Functies. I.3.2 Voorbeeld. De afbeeldingen f: R R, x x 2 en g: R R, x x 2 zijn dus gelijk, ook al zijn ze gegeven door verschillende formules. I.3 Functies Iedereen is ongetwijfeld in veel situaties het begrip functie tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie fx = x die aan elk

Nadere informatie

f : z z 2 + c. x n = 1 2 z n dan krijgen we z n+1 = z 2 n + a 2 a2 4 De parameter c correspondeert dus met a middels c = a 2 a2 4

f : z z 2 + c. x n = 1 2 z n dan krijgen we z n+1 = z 2 n + a 2 a2 4 De parameter c correspondeert dus met a middels c = a 2 a2 4 Juliaverzamelingen en de Mandelbrotverzameling In de eerste twee colleges hebben we gezien hoe het itereren van een eenvoudige afbeelding tot ingewikkelde verschijnselen leidt. Nu gaan we dit soort afbeeldingen

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

Numerieke aspecten van de vergelijking van Cantor. Opgedragen aan Th. J. Dekker. H. W. Lenstra, Jr.

Numerieke aspecten van de vergelijking van Cantor. Opgedragen aan Th. J. Dekker. H. W. Lenstra, Jr. Numerieke aspecten van de vergelijking van Cantor Opgedragen aan Th. J. Dekker H. W. Lenstra, Jr. Uit de lineaire algebra is bekend dat het aantal oplossingen van een systeem lineaire vergelijkingen gelijk

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica september 2018: algemene feedback

IJkingstoets Wiskunde-Informatica-Fysica september 2018: algemene feedback IJkingstoets wiskunde-informatica-fysica september 8 - reeks - p. IJkingstoets Wiskunde-Informatica-Fysica september 8: algemene feedback Positionering ten opzichte van andere deelnemers In totaal namen

Nadere informatie

III.3 Supremum en infimum

III.3 Supremum en infimum III.3 Supremum en infimum Zowel de reële getallen als de rationale getallen vormen geordende lichamen. Deze geordende lichamen zijn echter principieel verschillend. De verzameling R is bijvoorbeeld aanzienlijk

Nadere informatie

Aanvullende tekst bij hoofdstuk 1

Aanvullende tekst bij hoofdstuk 1 Aanvullende tekst bij hoofdstuk 1 Wortels uit willekeurige getallen In paragraaf 1.3.5 hebben we het worteltrekalgoritme besproken. Dat deden we aan de hand van de relatie tussen de (van tevoren gegeven)

Nadere informatie

Datastructuren. Analyse van algoritmen. José Lagerberg. FNWI, UvA. José Lagerberg (FNWI, UvA) Datastructuren 1 / 46

Datastructuren. Analyse van algoritmen. José Lagerberg. FNWI, UvA. José Lagerberg (FNWI, UvA) Datastructuren 1 / 46 Datastructuren Analyse van algoritmen José Lagerberg FNWI, UvA José Lagerberg (FNWI, UvA) Datastructuren 1 / 46 Datastructuren en Algoritmen Datastructuren, 6 ECTS eerstejaars Bachelor INF Datastructuren,

Nadere informatie

De Dekpuntstelling van Brouwer

De Dekpuntstelling van Brouwer De Dekpuntstelling van Brouwer Non impeditus ab ulla scientia K. P. Hart Faculteit EWI TU Delft Twente, 19 oktober 2009: 18:00 20:00 Outline 1 2 3 4 De formulering Dekpuntstelling van Brouwer Zij n een

Nadere informatie

METRISCHE RUIMTEN EN CONTINUE AFBEELDINGEN aanvullend materiaal voor het college Analyse 1 Dr J. Hulshof (R.U.L.)

METRISCHE RUIMTEN EN CONTINUE AFBEELDINGEN aanvullend materiaal voor het college Analyse 1 Dr J. Hulshof (R.U.L.) METRISCHE RUIMTEN EN CONTINUE AFBEELDINGEN aanvullend materiaal voor het college Analyse 1 Dr J. Hulshof (R.U.L.) 1. Inleiding. In deze syllabus behandelen we een aantal fundamentele onderwerpen uit de

Nadere informatie

Zevende college complexiteit. 7 maart Mergesort, Ondergrens sorteren (Quicksort)

Zevende college complexiteit. 7 maart Mergesort, Ondergrens sorteren (Quicksort) College 7 Zevende college complexiteit 7 maart 2017 Mergesort, Ondergrens sorteren (Quicksort) 1 Inversies Definitie: een inversie van de permutatie A[1],A[2],...,A[n] is een paar (A[i],A[j]) waarvoor

Nadere informatie

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1 Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking

Nadere informatie

Caleidoscoop: Logica

Caleidoscoop: Logica Caleidoscoop: Logica Non impeditus ab ulla scientia K. P. Hart Faculteit EWI TU Delft Delft, 3 October, 2007 Overzicht 1 2 Negaties We gaan rekenen met proposities (beweringen). Bedenker: George Boole

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie

Inhoud college 4 Basiswiskunde. 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie Inhoud college 4 Basiswiskunde 2.6 Hogere afgeleiden 2.8 Middelwaardestelling 2.9 Impliciet differentiëren 4.9 Linearisatie 2 Basiswiskunde_College_4.nb 2.6 Hogere afgeleiden De afgeleide f beschrijft

Nadere informatie

Combinatoriek groep 1

Combinatoriek groep 1 Combinatoriek groep 1 Recursie Trainingsdag 3, 2 april 2009 Getallenrijen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een directe formule geeft a n in

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Analyse A, deeltentamen Uitwerkingen maandag 1 november 2010, 9 11 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan

Nadere informatie

3.1 Negatieve getallen vermenigvuldigen [1]

3.1 Negatieve getallen vermenigvuldigen [1] 3.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5-3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 3 = -15 Voorbeeld 4: -5 3 9 2

Nadere informatie

1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks

1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 7 augustus 2015, 16:30 19:30 (20:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Normering en schaallengte

Normering en schaallengte Bron: www.citogroep.nl Welk cijfer krijg ik met mijn score? Als je weet welke score je ongeveer hebt gehaald, weet je nog niet welk cijfer je hebt. Voor het merendeel van de scores wordt het cijfer bepaald

Nadere informatie

Wanneer zijn veelvouden van proniks proniks?

Wanneer zijn veelvouden van proniks proniks? 1 Uitwerking puzzel 92-1 Wanneer zijn veelvouden van proniks proniks? Harm Bakker noemde het: pro-niks voor-niks De puzzel was voor een groot deel afkomstig van Frits Göbel. Een pronik is een getal dat

Nadere informatie

Examen G0U13 - Bewijzen en Redeneren,

Examen G0U13 - Bewijzen en Redeneren, Examen G0U13 - Bewijzen en Redeneren, 2010-2011 bachelor in de Wisunde, bachelor in de Fysica, bachelor in de Economische Wetenschappen en bachelor in de Wijsbegeerte Vrijdag 4 februari 2011, 8u30 Naam:

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie